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A NEW STRONG CONVERGENCE ALGORITHM WITH MOMENTUM

FOR SOLVING THE SPLIT COMMON FIXED POINT PROBLEMS
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In this paper, we introduce a novel iterative algorithm for solving the split

common fixed point problem with demicontractive operators. Strong convergence theorem
of the proposed algorithm is given. The step-sizes of our algorithm are chosen such that

they do not depend on operator norms. The main results proven in this paper extend

and improve some results in the literature.
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1. Introduction

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively. The split feasibility problem (SFP) is formulated as finding a point x satisfying
the property

x ∈ C such that Ax ∈ Q,

where A : H1 → H2 is a bounded linear operator. The split feasibility problem (SFP) has
been shown to have broad applicability across various fields, including computer tomography,
image restoration, radiation therapy treatment, and numerous other impactful real-world
applications, for instance, see [1, 6, 9, 5, 11, 26]. Due to it has applications across various
fields, recently, the SFP has been widely studied by many authors (see [5, 12, 13, 19, 21, 22,
23, 24, 25, 27, 29, 30, 31, 32]). Due to application in signal processing, Byrne [5] introduced
the so-called CQ algorithm. For any x0 ∈ H1 and define {xn} as

xn+1 = PC(xn − γA∗(I − PQ)Axn),

where 0 < γ <
2

ρ(A∗A)
and where PC denotes the projection onto C and ρ(A∗A) is the

spectral radius of the operator A∗A. It is known that the CQ algorithm converges weakly
to a solution of the SFP if such a solution exists.

In the case where both C and Q consist of fixed point sets of some nonlinear operators,
the SFP is known as the split common fixed point problem (SCFP). More specifically, the
SCFP is to find

x ∈ Fix(S) such that Ax ∈ Fix(T ),

where Fix(S) and Fix(T ) are the fixed point sets of S : H1 → H1 and T : H2 → H2,
respectively. We denote the solution set of the SCFP by

Ω := {x ∈ H1 : x ∈ Fix(S) and Ax ∈ Fix(T )}. (1)
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When S and T are directed operators, Censor and Segal [8] proposed and proved the
convergence of the following algorithm in the setting of the finite dimensional spaces:

xn+1 = S(I − γA∗(I − T )A)xn.

Note that a class of directed operators include the metric projection. So the results of Censor
and Segal recover Byrne’s CQ algorithm.

In the case that S and T are demicontractive mappings with constants β ∈ [0, 1),
µ ∈ [0, 1) respectively, Moudafi [14] introduced the following algorithm for solving the SCFP
(1) as follows: 

x0 ∈ H1

un = xn − γA∗(I − T )Axn,

xn+1 = (1− αn)un + αnSun,

(2)

where αn ∈ (δ, 1−β−δ) for a small enough δ > 0 and γ ∈ (0,
1− µ

ρ
) with ρ being the spectral

radius of A∗A and he presented the weak convergence of the sequence generated by algorithm
(2). It is obvious that to solve the SCFP (1) for demicontractive operators by the sequence
generated by (2) requires the norm of the linear mapping A. This is quite challenging in
practice. To overcome this difficulty recently, some authors considered alternative ways of
constructing variable step sizes.

In [10], Cui and Wang combined algorithm (2) with a self-adaptive step size and
introduced the following algorithm for solving the SCFP (1):

x0 ∈ H1

un = xn − τnA
∗(I − T )Axn,

xn+1 = (1− λ)un + λSun,

where λ ∈ (0, 1− β) and

τn =


(1− µ)∥(I − T )Axn∥2

∥A∗(I − T )Axn∥2
, if Axn ̸= T (Axn),

0, otherwise.
(3)

They obtained a weak convergence result for demicontractive operators provided that Ω ̸= ∅.

The split common fixed point problem (SCFP) (1) for demicontractive operators with
weak convergent results has since garnered significant attention and has been extensively
investigated by numerous researchers (see [20, 21, 28]).

A natural question that arises in the case of infinite dimensional Hilbert spaces is how
to design an algorithm which provides strong convergence for solving SCFP (1). Based on the
algorithm of Cui and Wang, Boikanyo [3] developed the following Halpern-type algorithm for
demicontractive operators, which generates sequences that consistently converge strongly to
a solution of the SCFPP (1) with step sizes that do not depend on the norm of the operator
A. 

x0, u ∈ H1

un = xn − τnA
∗(I − T )Axn,

yn = (1− λ)un + λSun,

xn+1 = αnu+ (1− αn)yn,

and the step size τn is chosen as in (3).
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Now, let us mention an inertial type algorithm. We know that the problem of finding
a zero of a maximal monotone operator A on a real Hilbert H is formulated as

find x ∈ H such that 0 ∈ A(x). (4)

One of the fundamental approaches to solving it is the proximal method, which generates
the next iteration xn+1 by solving the subproblem

0 ∈ λnA(x) + (x− xn), (5)

where xn is the current iteration and λn is a regularization parameter, see [4, ?, 16]. In
2001, Attouch and Alvarez [2] applied an inertial technique to the algorithm (5) to contruct
an inertial proximal method for solving (4). It works as follows: given xn−1, xn ∈ H and
two parameters θn ∈ [0, 1), λn > 0, find xn+1 ∈ H such that

0 ∈ λnA(xn+1) + xn+1 − xn − θn(xn − xn−1),

which can be written equivalently to the following

xn+1 = JA
λn

(xn + θn(xn − xn−1)),

where JA
λn

is the resolvent of A with parameter λn and the inertia is induced by the term
θn(xn−xn−1) and it can be regarded as procedure of seeding up the convergence properties
(see, e.g., [2, 15]).

Motivated by Boikanyo’s work [3], we use the inertial technique in this examined
direction, we propose a new algorithm for solving SCFP of demicontractive operators that
converge strongly to a solution of the problem (1). The aim of our work in this study is as
follows:
(1) First, we introduce a new iterative algorithm that combine the algorithm (2) with the

inertial technique to improve the convergence rate of the algorithm for solving SCFP.
(2) Second, under the suitable conditions, we prove strong convergence result of the iter-

ative sequence generated by our algorithm without prior knowledge of operator norm
A.
This paper is organized as follows: In Sect. 2, we recall some definitions and prelim-

inary results for further use. Sect. 3 deals with analyzing the convergence of the proposed
algorithm. Finally, in Sect. 4 conclusions are given.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. The
weak convergence of {xn}∞n=1 to x is denoted by xn ⇀ x as n → ∞, while the strong
convergence of {xn}∞n=1 to x is written as xn → x as n → ∞.

For each x, y ∈ H, we have the following:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩. (6)

Definition 2.1. Assume that T : H → H is a nonlinear operator with Fix(T ) ̸= ∅. Then
I − T is said to be demiclosed at zero if for any {xn} in H, the following implication holds:

xn ⇀ x and (I − T )xn → 0 =⇒ x ∈ Fix(T ).

Definition 2.2. Let T : H → H be an operator with Fix(T ) ̸= ∅. Then
• T : H → H is called directed if

⟨z − Tx, x− Tx⟩ ≤ 0 ∀z ∈ Fix(T ), x ∈ H,
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or equivalently

∥Tx− z∥2 ≤ ∥x− z∥2 − ∥x− Tx∥2 ∀z ∈ Fix(T ), x ∈ H, (7)

• T : H → H is called quasi-nonexpansive if

∥Tx− z∥ ≤ ∥x− z∥ ∀z ∈ Fix(T ), x ∈ H;

• T : H → H is called β-demicontractive with 0 ≤ β < 1 if

∥Tx− z∥2 ≤ ∥x− z∥2 + β∥(I − T )x∥2 ∀z ∈ Fix(T ), x ∈ H,

or equivalently

⟨Tx− x, x− z⟩ ≤ β − 1

2
∥x− Tx∥2 ∀z ∈ Fix(T ), x ∈ H,

or equivalently

⟨Tx− z, x− z⟩ ≤ ∥x− z∥2 + β − 1

2
∥x− Tx∥2 ∀z ∈ Fix(T ), x ∈ H.

Lemma 2.1. Let U : H → H is β- demicontractive with F (U) ̸= ∅ and set Uλ = (1−λ)I+
λU , λ ∈ (0, 1− β). Then:

∥Uλx− z∥2 ≤ ∥x− z∥2 − λ(1− β − λ)∥(I − U)x∥2 ∀x ∈ H, z ∈ Fix(U).

Proof. We have

∥Uλx− z∥2 = ∥(1− λ)x+ λUx− z∥2

= ∥(x− z) + λ(Ux− x)∥2

= ∥x− z∥2 + 2λ⟨x− z, Ux− x⟩+ λ2∥Ux− x∥2

≤ ∥x− z∥2 + λ(β − 1)∥Ux− x∥2 + λ2∥Ux− x∥2

= ∥x− z∥2 − λ(1− β − λ)∥(I − U)x∥2

= ∥x− z∥2 − 1− β − λ

λ
∥(I − Uλ)x∥2.

□

More information on quasi-nonexpansive mappings and demicontractive mappings
can be found, for example [7, 18].

Lemma 2.2. ([17]) Let {an} be sequence of nonnegative real numbers, {αn} be a sequence of
real numbers in (0, 1) with

∑∞
n=1 αn = ∞ and {bn} be a sequence of real numbers. Assume

that
an+1 ≤ (1− αn)an + αnbn, ∀n ≥ 1.

If lim supk→∞ bnk
≤ 0 for every subsequence {ank

} of {an} satisfying lim infk→∞(ank+1 −
ank

) ≥ 0 then limn→∞ an = 0.

3. Strong convergence result

Our strong convergence theorem is established under the following conditions:

Condition 3.1. The solution set Ω ̸= ∅.

Condition 3.2. S : H1 → H1 and T : H2 → H2 are two demicontractive operators with
constants β ∈ [0, 1) and µ ∈ [0, 1), respectively such that I − S and I − T are demiclosed at
zero.

Condition 3.3. A : H1 → H2 is a bounded linear operator with its adjoint operator A∗.

Now, we introduce our algorithm:
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Algorithm 3.1.
Initialization: Let λ ∈ (0, 1−β), γ ∈ (0, 1), α > 0, and v0, v1 ∈ H be arbitrary. We assume

that {βn}, {ϵn} are two positive sequences such that ϵn = 0(βn), that is limn→∞
ϵn
βn

= 0,

where {βn} ⊂ (0, 1) satisfies the following conditions:

lim
n→∞

βn = 0,

∞∑
n=1

βn = ∞.

Iterative Steps: Calculate vn+1 as follows:
Step 1. Given the current iterates vn−1 and vn (n ≥ 1), compute{

qn = (1− βn)[vn + αn(vn − vn−1)],

un = qn − τnA
∗(I − T )Aqn,

where

τn = (1− µ)γ
∥(I − T )Aqn∥2

∥qn − Sqn∥2 + ∥A∗(I − T )Aqn∥2
,

and

αn =

min{α, ϵn
∥vn − vn−1∥

} if vn ̸= vn−1,

α otherwise.
(8)

If un = 0 then stop and qn is a solution of problem (1). Otherwise, go to Step 2.
Step 2. Compute

vn+1 = Uλun,

where Uλ := (1− λ)I + λS.
Let n := n+ 1 and return to Step 1.

Remark 3.1. From (8), the definition of {αn} we have limn→+∞
αn

βn
∥vn − vn−1∥ = 0.

Theorem 3.1. Assume that the Conditions 3.1−3.3 hold. Then the sequence {vn} generated
by Algorithm 3.1 converges strongly to an element x∗ ∈ Ω, where ∥x∗∥ = min{∥u∥ : u ∈ Ω}.
Proof. Claim 1. The sequence {vn} is bounded. Indeed, from x∗ ∈ Ω and using inequality
(7) we have

∥un − x∗∥2 = ∥qn − τnA
∗(I − T )Aqn − x∗∥2

= ∥qn − x∗∥2 + τ2n∥A∗(I − T )Aqn∥2 − 2τn⟨A∗(I − T )Aqn, qn − x∗⟩
= ∥qn − x∗∥2 + τ2n∥A∗(I − T )Atn∥2 − 2τn⟨(I − T )Aqn, Aqn −Ax∗⟩
≤ ∥qn − x∗∥2 + τ2n∥A∗(I − T )Aqn∥2 − (1− µ)τn∥(I − T )Aqn∥2

= ∥qn − x∗∥2 + (1− µ)2γ2 ∥(I − T )Aqn∥4

(∥qn − Sqn∥2 + ∥A∗(I − T )Aqn∥2)2
∥A∗(I − T )Aqn∥2

− (1− µ)2γ
∥(I − T )Aqn∥4

∥qn − Sqn∥2 + ∥A∗(I − T )Aqn∥2

≤ ∥qn − x∗∥2 + (1− µ)2γ2 ∥(I − T )Aqn∥4

∥qn − Sqn∥2 + ∥A∗(I − T )Aqn∥2

− (1− µ)2γ
∥(I − T )Aqn∥4

∥qn − Sqn∥2 + ∥A∗(I − T )Aqn∥2

= ∥qn − x∗∥2 − (1− µ)2γ(1− γ)
∥(I − T )Aqn∥4

∥qn − Sqn∥2 + ∥A∗(I − T )Aqn∥2
. (9)
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This implies that
∥un − x∗∥ ≤ ∥qn − x∗∥. (10)

We have vn+1 = Uλun, we get

∥vn+1 − x∗∥2 = ∥(1− λ)un + λSun − x∗∥2

= ∥un − x∗ + λ(Sun − un)∥2

= ∥un − x∗∥2 + 2λ⟨Sun − un, un − x∗⟩+ λ2∥Sun − un∥2

≤ ∥un − x∗∥2 + λ(β − 1)∥Sun − un∥2 + λ2∥Sun − un∥2

= ∥un − x∗∥2 − λ(1− β − λ)∥Sun − un∥2. (11)

Hence, we get
∥vn+1 − x∗∥ ≤ ∥un − x∗∥. (12)

Combining (10) and (12) we get

∥vn+1 − x∗∥ ≤ ∥un − x∗∥ ≤ ∥qn − x∗∥. (13)

On the other hand, from the definition of vn, we get

∥qn − x∗∥ = ∥(1− βn)(vn + αn(vn − vn−1))− x∗∥
= ∥(1− βn)(vn − x∗) + (1− βn)αn(vn − vn−1)− βnx

∗∥
≤ (1− βn)∥vn − x∗∥+ (1− βn)αn∥vn − vn−1∥+ βn∥x∗∥

= (1− βn)∥vn − x∗∥+ βn[(1− βn)
αn

βn
∥vn − vn−1∥+ ∥x∗∥]. (14)

From the definition of αn we get limn→∞
αn

βn
∥vn − vn−1∥ = 0. Therefore, we deduce

lim
n→∞

[
(1− βn)

αn

βn
∥vn − vn−1∥+ ∥x∗∥

]
= ∥x∗∥.

Thus there exists M > 0 such that

(1− βn)
αn

βn
∥vn − vn−1∥+ ∥x∗∥ ≤ M. (15)

Combining (14) and (15), we obtain

∥qn − x∗∥ ≤ (1− βn)∥vn − x∗∥+ βnM. (16)

Using (13) and (16) we get

∥vn+1 − x∗∥ ≤(1− βn)∥vn − x∗∥+ βnM

= max{∥vn − x∗∥,M} ≤ ... ≤ max{∥v1 − x∗∥,M}.
Therefore, the sequence {vn} is indeed bounded, as claimed.
Claim 2.

(1− µ)2γ(1− γ)
∥(I − T )Aqn∥4

∥qn − Sqn∥2 + ∥A∗(I − T )Aqn∥2
+ λ(1− β − λ)∥Sun − un∥2

≤ ∥vn − x∗∥2 − ∥vn+1 − x∗∥2 + βnM1,

for some M1 > 0. Indeed, by (16) we get

∥qn − x∗∥2 ≤ [(1− βn)∥vn − x∗∥+ βnM ]2

≤ [∥vn − x∗∥+ βnM ]2

= ∥vn − x∗∥2 + 2βn∥vn − x∗∥M + β2
nM

2

= ∥vn − x∗∥2 + βn[2∥vn − x∗∥M + βnM
2]

≤ ∥vn − x∗∥2 + βnM1. (17)
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where M1 = max
n

{2∥vn − x∗∥M + βnM
2}. Now, substituting (17) into (9) we get

∥un − x∗∥2 ≤ ∥vn − x∗∥2 + βnM1 − (1− µ)2γ(1− γ)
∥(I − T )Aqn∥4

∥qn − Sqn∥2 + ∥A∗(I − T )Aqn∥2
.

(18)

Substituting (18) into (11) we obtain

∥vn+1 − x∗∥2 ≤ ∥vn − x∗∥2 + βnM1 − (1− µ)2γ(1− γ)
∥(I − T )Aqn∥4

∥qn − Sqn∥2 + ∥A∗(I − T )Aqn∥2

− λ(1− β − λ)∥Sun − un∥2.

Hence

(1− µ)2γ(1− γ)
∥(I − T )Aqn∥4

∥qn − Sqn∥2 + ∥A∗(I − T )Aqn∥2
+ λ(1− β − λ)∥Sun − un∥2

≤ ∥vn − x∗∥2 − ∥vn+1 − x∗∥2 + βnM1.

Claim 3.

∥vn+1 − x∗∥2 ≤(1− βn)∥vn − x∗∥2 + βn

[
2(1− βn)∥vn − x∗∥αn

βn
∥vn − vn−1∥

+ αn∥vn − vn−1∥
αn

βn
∥vn − vn−1∥+ 2∥z∥∥qn − vn+1∥+ 2⟨−x∗, vn+1 − x∗⟩

]
.

Indeed, using the inequalities (13) and (6), we get

∥vn+1 − x∗∥2 ≤∥qn − x∗∥2

=∥(1− βn)[vn + αn(vn − vn−1)]− x∗∥2

=∥(1− βn)(vn − x∗) + (1− βn)αn(vn − vn−1)− βnx
∗∥2

≤∥(1− βn)(vn − x∗) + (1− βn)αn(vn − vn−1)∥2 + 2βn⟨−x∗, qn − x∗⟩
≤(1− βn)

2∥vn − x∗∥2 + 2(1− βn)αn∥vn − x∗∥∥vn − vn−1∥+ α2
n∥vn − vn−1∥2

+ 2βn⟨−x∗, qn − vn+1⟩+ 2βn⟨−x∗, vn+1 − x∗⟩

≤(1− βn)∥vn − x∗∥2 + βn

[
2(1− βn)∥vn − x∗∥αn

βn
∥vn − vn−1∥

+ αn∥vn − vn−1∥
αn

βn
∥vn − vn−1∥+ 2∥x∗∥∥qn − vn+1∥+ 2⟨−x∗, vn+1 − x∗⟩

]
.

Claim 4. {∥vn − x∗∥2} converges to zero. Indeed, by Lemma 2.2 it suffices to show that

lim sup
k→∞

⟨x∗, vnk+1 − x∗⟩ ≤ 0 and lim
k→∞

∥qnk
− vnk+1∥ = 0

for every subsequence {∥vnk
− x∗∥} of {∥vn − x∗∥} satisfying

lim inf
k→∞

(∥vnk+1 − x∗∥ − ∥vnk
− x∗∥) ≥ 0.

For this, suppose that {∥vnk
− x∗∥} is a subsequence of {∥vn − x∗∥} such that

lim infk→∞(∥vnk+1 − x∗∥ − ∥vnk
− x∗∥) ≥ 0. Then

lim inf
k→∞

(∥vnk+1 − x∗∥2 − ∥vnk
− x∗∥2)

= lim inf
k→∞

[(∥vnk+1 − x∗∥ − ∥vnk
− x∗∥)(∥vnk+1 − x∗∥+ ∥vnk

− x∗∥)] ≥ 0.
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By Claim 2 we obtain

lim sup
k→∞

(
(1− µ)2γ(1− γ)

∥(I − T )Aqnk
∥4

∥qnk
− Sqnk

∥2 + ∥A∗(I − T )Aqnk
∥2

+ λ(1− β − λ)∥Sunk
− unk

∥2
)

≤ lim sup
k→∞

[∥vnk
− x∗∥2 − ∥vnk+1 − x∗∥2 + βnk

M1]

≤ lim sup
k→∞

[∥vnk
− x∗∥2 − ∥vnk+1 − x∗∥2] + lim sup

k→∞
βnk

M1

= − lim inf
k→∞

[∥vnk+1 − x∗∥2 − ∥vnk
− x∗∥2]

≤ 0.

This implies that

lim
k→∞

∥(I − T )Aqnk
∥4

∥qnk
− Sqnk

∥2 + ∥A∗(I − T )Aqnk
∥2

= 0 and lim
k→∞

∥(I − S)unk
∥ = 0. (19)

Moreover, since {vn} is bounded, using the inequality (16) we also obtain {qn} is bounded.
By Lemma 2.1 we get {qnk

−Sqnk
} is bounded and {A∗(I−T )Aqnk

} is bounded. Therefore
it follows from (19) that

lim
n→∞

∥(I − T )Aqnk
∥ = 0 and lim

k→∞
∥unk

− Sunk
∥ = 0. (20)

On the other hand, using the definition of {unk
}, see that

∥unk
− qnk

∥ = τnk
∥A∗(I − T )Aqnk

∥

≤ ∥(I − T )Aqnk
∥2

∥qnk
− Sqnk

∥2 + ∥A∗(I − T )Aqnk
∥2

∥A∗∥∥(I − T )Aqnk
∥ → 0 as n → ∞.

(21)

Using (20) and the definition of {vn}, we get

∥vnk+1 − unk
∥ = λ∥Sunk

− unk
∥ → 0 as n → ∞. (22)

Now, we show that

∥vnk+1 − vnk
∥ → 0 as n → ∞. (23)

Indeed, using the definition of {vn} we have

∥qnk
− vnk

∥ = ∥(1− βnk
)αnk

(vnk
− vnk−1)− βnk

vnk
∥

≤ (1− βnk
)αnk

∥vnk
− vnk−1∥+ βnk

∥vnk
∥

= βnk

[
(1− βnk

)
αnk

βnk

∥vnk
− vnk−1∥+ ∥vnk

∥
]
→ 0 as n → +∞. (24)

Combining (21) and (24) we have

∥vnk
− unk

∥ → 0. (25)

Combining (22) and (25), we deduce that

lim
k→+∞

∥vnk+1 − vnk
∥ = 0. (26)

Combining (24) and (26), we deduce that

lim
k→+∞

∥vnk+1 − qnk
∥ = 0.

Since the sequence {vnk
} is bounded, it follows that there exists a subsequence {vnkj

} of

{vnk
}, which converges weakly to some z ∈ H, such that

lim sup
k→∞

⟨x∗, vnk
− x∗⟩ = lim

j→∞
⟨x∗, vnkj

− x∗⟩ = ⟨x∗, z − x∗⟩. (27)
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From (24) and (21) we get

qnk
⇀ z, and unk

⇀ z,

this together with (20) and the demiclosedness of I −S and I −T , we have z ∈ Ω and, from
(27) and the definition of x∗ = PΩ(0), we have

lim sup
k→∞

⟨x∗, vnk
− x∗⟩ = ⟨x∗, z − x∗⟩ ≤ 0. (28)

Combining (23) and (28), we have

lim sup
k→∞

⟨x∗, vnk+1 − x∗⟩ ≤ lim sup
k→∞

⟨x∗, vnk
− x∗⟩

= ⟨x∗, z − x∗⟩
≤ 0. (29)

Hence, by (29), limn→∞
αn

βn
∥vn−vn−1∥ = 0, Claim 3 and Lemma 2.2, we have limn→∞ ∥vn−

x∗∥ = 0. This is the desired result.
□

4. Conclusions

In this work, we proposed a new iteration algorithm to obtain the strong convergence
results for split common fixed point problems. Our main results are an extension of the
related results announced in this direction. This paper’s research highlights include a novel
algorithm and its analysis techniques, which use inertia to improve algorithm convergence
rate.
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