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DESIGN PRINCIPLES FOR BUILDING NETWORKING 
APPLICATIONS USING GENERAL PURPOSE MULTICORE 

PROCESSORS AND PACKET PROCESSING 
ACCELERATORS 

Cristian F. DUMITRESCU1 

Utilizarea procesoarelor multicore cu arhitectură de uz general pentru 
implementarea aplicaţiilor de procesare a traficului din cadrul unei reţele de 
comunicaţii nu este o temă uşor de rezolvat. Lucrarea de faţă examinează unele din 
problemele cheie care intervin în proiectarea unui astfel de sistem şi explorează 
spaţiul de soluţii aflat la dispoziţie pentru a stabili un set de principii ce trebuie 
respectate în activitatea de proiectare. Deoarece una dintre cerinţele arhitecturale 
cheie pentru orice procesor utilizat la procesarea de pachete este o foarte bună 
programabilitate, lucrarea propune mai multe modele de programare care să facă 
posibilă procesarea de pachete într-un mediu multicore. Rezultatele analizei sunt 
folosite pentru a ilustra modul în care aplicaţia de rutare a pachetelor IPv4, curent 
folosită în industrie pentru măsurarea performanţei de calcul, poate fi implementată 
pe un procesor multicore de uz general echipat cu acceleratoare pentru procesarea 
de pachete. 

Using general purpose multicore processors to build networking applications 
is not an easy task. This paper examines the key design issues and explores the 
solution space to identify a set of design principles to address this challenge. As 
high programmability is one of the key requirements for any packet processing 
architecture, several programming models are proposed to enable the packet 
processing workload in the multicore environment. The findings are used to 
illustrate how the industry standard benchmarking application of IPv4 forwarding 
can be efficiently implemented on a general purpose multicore processor equipped 
with packet processing accelerators. 
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1. Introduction 

With the advent of the latest generation of multi-core processors it has 
become feasible from the performance as well as from the power consumption 
point of view to build complete packet processing applications using general 
purpose architecture processors rather than network processors (NPUs) or 
dedicated Application Specific Integrated Circuits (ASICs).  
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Architects and developers in the industry are now considering these 
processors as an attractive choice for implementing a wide range of networking 
applications, as performance levels that could previously be obtained only with 
NPUs or ASICs are now achievable with multicore processors, but without 
incurring the disadvantages of the former.  

There are several papers that are looking at various hardware and software 
mechanisms to enabling packet processing on NPU architectures [1], [2], [3]. This 
paper examines the usage of general purpose multicore processors to build packet 
processing applications. As high programmability is one of the main reasons for 
using general purpose architectures for applications previously reserved for NPUs 
and ASICs, several programming models are proposed here to facilitate the packet 
processing workload in this environment. One of them, the request-based model, 
is then used to illustrate how the industry standard benchmarking application of 
IPv4 forwarding can be efficiently implemented on a general purpose multicore 
processor equipped with packet processing accelerators. 

2. Why multicore? 

Ideally, a single core processor should be powerful enough to handle all 
the application processing. However, a single core cannot keep up with the 
constant demand for ever increased computing performance. 

The impact of improving the core internal architecture or moving to the 
latest manufacturing process is limited. Higher clock frequencies also result in 
considerably higher energy consumption and further increase in the 
processor-memory frequency gap. 

The way to go forward to continue delivering more energy efficient 
computing power is to make use of the advantages of parallel processing. In fact, 
the latest multicore processors deliver significantly more performance while 
consuming less energy. This approach is definitely the way to go forward for 
applications like packet processing. 

3. Why general purpose architecture processors? 

Good programmability is one of the critical requirements for any processor 
architecture to be successful. Historically, the poor programmability of the NPUs 
is one of the main reasons these architectures were not successful long term. 

To provide functional scalability, the data plane implementation needs to 
be scalable through software, as the support for additional networking protocols 
can be implemented much easier/faster in software than in hardware. 

The processor should provide good performance for packet processing, but 
in the same time it also needs to offer the same degree of programmability as the 
general purpose architectures. Therefore, the processor cores need to have a 
general purpose rather than specialized architecture and instruction set. Examples 
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of general purpose multicore processor architectures currently available are: 
Intel® 64, AMD64®, Power Architecture®, MIPS64® or ARMv7®. 

The topics of core partitioning between the control plane and the data 
plane and role of the operating system in a general purpose multicore processor 
used for packet processing are explored at length in [4]. 

4. Why using packet processing accelerators? 

Apart from the operations commonly performed by any application, the 
packet processing workload also involves some specific operations that cannot be 
efficiently implemented with the general purpose architecture processor cores. 
Typically, such operations are either compute intensive (e.g. encryption) or I/O 
intensive (e.g. external memory intensive operations). In order to meet the packet 
budget, these operations have to be offloaded from the processor cores to 
specialized hardware blocks called accelerators. 

Each accelerator has one of the following roles: 
• Reduce the latency of the offloaded operation. Typical example: 

encryption. By using a specialized accelerator block for this operation it 
becomes possible to encrypt/decrypt a packet in significantly less clock 
cycles than a general purpose core; 

• Hide the latency of the offloaded operation from the cores. Typical 
example: external memory intensive operations. The latency of the 
operation cannot be significantly reduced by using an accelerator block 
instead of a core, but the operation is still offloaded to the accelerator in 
order to enable the cores to do something useful instead of blocking, i.e. 
process other packets meanwhile, and come back to the same packet once 
the accelerator work is completed and the result of the operation is 
available. 

 5. Building packet processing accelerators 

Depending on the specifics of each task, the associated accelerator can be 
implemented either as a hardwired block or as a programmable block that might 
optionally drive some task specific hardwired logic. 

The main advantage of latter approach is the fact that the same accelerator 
design can be reused to implement different tasks. The instruction set can be 
customized for each accelerator, e.g. by removing those instructions that are not 
necessary for the current task. 

The programmable accelerator design should be optimized for 
multi-threading. Having several hardware threads with hardware supported 
contexts (allowing zero thread switching overhead) is usually a useful feature to 
have for such an accelerator. This becomes particularly important for those 
accelerators implementing memory-intensive operations. 
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Unlike the processor cores, the accelerator instruction set should contain 
special purpose instructions supporting the specific task, like: instructions 
optimized for bit field manipulation, linked list manipulation, etc. 

Unlike the processor cores, the accelerators are generally programmed 
directly in their assembly language, as the compiler overhead is usually not 
affordable. This is acceptable from the software development productivity point 
of view, as each accelerator should only be programmed once (firmware) for each 
task. The fact that an accelerator is programmed instead of hardcoded should be 
transparent to the software running on the processor cores. 

The programmable accelerator design removes the need to build another 
custom accelerator from scratch for every acceleration task. Most of the hardwired 
accelerators can be replaced by an array of on-chip programmable accelerators, 
with the function of each accelerator decided at initialization time by loading the 
appropriate code image into its instruction memory. Moreover, the processor can 
be equipped with more programmable accelerators than initially needed in order 
to accommodate future improvements in the application. 

6. Data plane programming models.  
The pipeline model 
In this model, each stage of the data plane pipeline is mapped to a different 

processor core or accelerator, with the packet being sent from one stage to the 
next one in the pipeline. Each block has its fixed place in the pipeline and owns a 
specific stage that it applies on a single packet at a time.  

As each stage is processing a different packet, the packet budget per stage 
is the overall packet budget (determined by the rate of input packets) multiplied 
with the number of pipeline stages. 

It is often the case that some stages require more processing cycles than 
can be achieved with just a single instance of the specific functional block. The 
way to work around this problem is to either break this stage into several stages or 
use the cluster model internally for this stage. 

The pipeline model offers a simple method to map the data plane pipeline 
to the available set of processor cores and accelerators. The lowlights of the model 
are: 

• Potential waste of computing resources due to their fragmentation when 
the computing headroom left unused for some of the blocks is significant; 

• Potential impact to the memory bandwidth due to the packet descriptors 
having to be copied from one stage to the next one throughout the pipeline. 
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Fig. 1. The pipeline model 

The cluster model 
This model combines several instances of the same functional block, either 

processor core or accelerator, into a cluster with each cluster member applying the 
same processing on a different packet. As opposed to the pipeline model, each 
input packet is completely handled by a single functional block, which is why this 
model is also called the run-to-completion model. 

As each cluster member is processing a different packet, the packet budget 
per member is the packet budget of the cluster (determined by the rate of input 
packets) multiplied with the number of cluster members. 

From the outside, the number of cluster members is transparent and 
therefore the cluster looks like a single super-block. However, the cluster model is 
not free of potential problems: 

• The input and output streams of packets are shared by all the cluster 
members, therefore synchronization between the members is required to 
serialize their access to the packet streams; 

• A mechanism for preserving the packet order within the same connection 
has to be put in place. 

 
Fig. 2. The cluster model 
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The hybrid model 
The hybrid model combines the advantages of both models by mapping 

the data plane processing to a pipeline of interconnected clusters. One flavor of 
the hybrid model is the request-based model presented next. 

 
Fig. 3. The hybrid model 

The request-based model 
This model assumes that the processor cores are connected with the 

accelerators through queues of request/response messages and with the network 
interfaces through send/receive queues of packet descriptors. In this model, the 
processor cores are acting as routers of packets from one network interface or 
accelerator to the next network interface or accelerator in line. 

Each processor core is assigned one or more input queues which can be 
either packet reception queues from the network interfaces or response message 
queues from the accelerators. All the packets from the same input queue suffer the 
same processing, which is a characteristic of each input queue. After applying the 
processing associated with the input queue the packet was read from, the 
processor core sends the packet to the next accelerator (for further processing) or 
network interface (for transmission) in line, and then it goes back to scanning its 
input queues for the next packet to process. 

This model organizes the processor cores as a cluster serving a number of 
input queues and writing packets to several output queues. The packet descriptors 
have to be stored in a shared memory space to make them available to all the 
processor cores and accelerators, unless the packet descriptor is small enough to 
fit the request – response messages that are passed between the internal blocks. If 
an input queue is scanned by more than one core, a mechanism has to be put in 
place to enforce the preservation of the packet order for the packets that are part of 
the same traffic flow/connection. 

7. Case study: Implementation of the IPv4 forwarding benchmark 
application 

This section illustrates how the design principles presented in this paper 
can be used to implement the industry de-facto standard benchmarking application 
of IPv4 forwarding on a multicore processor with on-chip accelerators for packet 
processing. 

Cluster 1 Cluster 1 
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This application performs the routing of IPv4 packets according to the IP 
Classless Inter-domain Routing (CIDR) mechanism [5] in a system with multiple 
Ethernet interfaces, either Gigabit Ethernet (GbE) or 10 Gigabit Ethernet 
(10GbE). For each input packet, the output interface is determined by searching 
through the IPv4 routing table to find the best matching route for the current 
packet. The search algorithm is Longest Prefix Match (LPM) and the lookup key 
is the destination IP address read from the IPv4 header of the packet. On lookup 
hit, the lookup result is the index of the output interface the packet should be sent 
to. 

The packets with a valid route are further subjected to a lookup into the 
Address Resolution Protocol (ARP) table [6]. The search algorithm is exact match 
and the lookup key is the same destination IP address. On lookup hit, the lookup 
result is the destination MAC address that should be stored in the output packet. 

The internal architecture of the application is presented in Fig. 4.  

 
Fig. 4. IPv4 forwarding implemented with the request-based programming model 

In this example, there are four 10GbE network interfaces, two processor 
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interfaces, processor cores and accelerator instances that are needed to sustain the 
rate of input traffic required by the application is determined during the design 
process. 

Each network interface performs the load balancing of the input traffic for 
the processor cores. The communication between the network interfaces and the 
processor cores is done through queues of packet descriptors that are written by 
the network interfaces and read by the cores. Each network interface is connected 
with each processor core through a separate queue. Similarly, each processor core 
has its own pair of request-response queues with the table lookup accelerator. 

The load balancing logic implemented by each network interface needs to 
meet several constraints. The first one is to make sure that the input traffic is 
evenly distributed between its output queues. The second one is to enforce the 
packet order within each traffic flow. For this application, a traffic flow is 
uniquely identified by the DiffServ 5-tuple of the following fields read from the 
input packet: source IP address, destination IP address, transport layer protocol, 
transport layer source port, transport layer destination port. Examples of 
commonly used transport layer protocols are User Datagram Protocol (UDP) and 
Transmission Control Protocol (TCP).  

All the input packets with the same 5-tuple are considered to be part of the 
same traffic flow and therefore the order they exit the processor should match the 
order they entered the processor. Usually, for Quality of Service (QoS) reasons, 
all the packets that are part of the same traffic flow follow the same path through 
the network from source to destination, as set up by the control plane when the 
traffic flow is initiated. Therefore, all the packets that are part of the same traffic 
flow enter the processor through the same input interface and are sent out through 
the same output interface, which simplifies the packet ordering problem by 
narrowing down its scope to a single receive side interface and a single 
transmission side interface. Similarly, packet reordering is allowed for packets 
that are not part of the same traffic flow. 

One way to implement the load balancing logic to meet both conditions 
specified above is to derive the index of the output queue for the current input 
packet by applying a hash function on the 5-tuple read from the packet and then 
applying the modulo operator with the number of output queues per interface. The 
uniform distribution of the hash function ensures that the traffic is spread evenly 
to the output queues [7], [8], [9]. The use of the 5-tuple as the hash key makes 
sure that all the packets that are part of the same traffic flow are reaching the same 
queue. As each queue is read by a single core, the packets from the same traffic 
flow are processed in the order of their arrival.  

The data plane programming model used by this application is request 
based, which is a flavor of the hybrid model. The packets traverse the following 
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pipeline: network interface reception  processor core cluster  table lookup 
accelerator cluster  processor core cluster  network interface transmission. 

Table 1 
Packet budget and processor internal configuration for minimum packet size traffic 

distribution (all packets are 64 bytes) and processor frequency of 1 GHz 

Table 2 
Packet budget and processor internal configuration for Cisco IMIX traffic distribution 

(average packet size of 354 bytes) and processor frequency of 1 GHz 
 4x 

GbE 
8x 

GbE 
16x 
GbE 

4x 
10GbE 

8x 
10GbE 

16x 
10GbE 

Input rate (Gbps) 4 8 16 40 80 160 

Input rate (Mpps) 1.34 2.67 5.35 13.37 26.74 53.48 

Packet budget (ns) 748 374 187 74.80 37.40 18.70 

Packet budget (cycles at 1GHz) 748 374 187 74.80 37.40 18.70 

Processor core cycles per packet 100 100 100 100 100 100 

Number of processor cores 1 1 1 2 3 6 

Accelerator cycles per packet 160 160 160 160 160 160 

Number of accelerator instances 1 1 1 3 5 9 

The number of members in the processor core cluster and table lookup 
accelerator cluster is determined based on the packet budget and the amount of 
processing performed per packet, as illustrated in Table 1 and Table 2. For example, 
let us discuss the case of the IPv4 forwarding application with four 10GbE 
interfaces and Cisco IMIX traffic distribution. This distribution includes 7 small 
packets (64 bytes), 4 medium sized packets (570 bytes) and a single large packet 
(1518 bytes), which results in an average packet size of 354 bytes. For four 
10GbE interfaces, this average packet size results in an input rate of 13.37 million 

 4x 
GbE

8x 
GbE

16x 
GbE

4x 
10GbE

8x 
10GbE 

16x 
10GbE 

Input rate (Gbps) 4 8 16 40 80 160 

Input rate (Mpps) 5.95 11.90 23.81 59.52 119.05 238.10 

Packet budget (ns) 168 84 42 16.80 8.40 4.20 

Packet budget (cycles at 1GHz) 168 84 42 16.80 8.40 4.20 

Processor core cycles per packet 100 100 100 100 100 100 

Number of processor cores 1 2 3 6 12 24 

Accelerator cycles per packet 160 160 160 160 160 160 

Number of accelerator instances 1 2 4 10 20 39 
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packets per second (Mpps) and equivalently a packet budget of 74.8 ns or 74.8 
cycles for a processor frequency of 1 GHz. Considering that a single processor 
core needs about 100 cycles to process a packet and a single instance of the table 
lookup accelerator can handle a packet in about 160 cycles, this packet budget can 
be met with 2 processor cores and 3 instances of the table lookup accelerator. 

8. Conclusions 

High programmability is one of the most important requirements driving 
the design of the multicore processors for packet processing. Using general 
purpose architectures for the processing cores to meet this requirement is feasible 
as long as the processor is equipped with a set of specialized accelerators to 
address those operations that cannot be efficiently implemented by the cores.  

To fully utilize the power of the cores and accelerators for packet 
processing workloads, the programming model requires special attention. Several 
programming models are proposed in this paper: the pipeline model, the cluster 
model, the hybrid model and the request-based model. The latter is a flavor of the 
hybrid model, as it combines both the pipeline and the cluster models to build the 
application.  

The request-based model is used to illustrate the implementation of the 
de-facto industry standard benchmarking application of IPv4 forwarding on a 
general purpose multicore processor with packet processing accelerators. 
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