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INERTIAL HYBRID PROJECTION METHODS WITH SELECTION
TECHNIQUES FOR SPLIT COMMON FIXED POINT PROBLEMS IN
HILBERT SPACES

Thanasak Mouktonglang', Raweerote Suparatulatorn?

In this work, we propose a new hybrid projection method based on inertial effects
and selection techniques to solve the split common fized point problem of demicontractive
operators in real Hilbert spaces. The strong convergence of the method is proved by
assuming standard assumptions. Additionally, application is given to the multiple-sets
split feasibility problem.
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1. Introduction

Throughout this article, let H; and Hs be two real Hilbert spaces equipped with their
own inner product (-, -) and norm ||-||. Let A : H; — Hs be a bounded linear operator with
its adjoint operator A*. Define I = {1,2,3,...,s} and I = {1,2,3,...,¢}, where s and ¢
are positive integers.

The split common fixed point problem (SCFPP) requires to seek an element = € 3
satisfying

S ﬂ Fix(S;) such that Az € ﬂ Fiz(Ty), (1)
i€ly JEl2

where Fiz(S;) and Fiz(T;) denote the fixed point sets of two classes of nonlinear operators
Siif}'fl*)j‘fl ande:f}{Qﬁf}{Q.

Recently, Yao et al. [26] presented two iterative methods with selection techniques
for finite families of firmly nonexpansive mappings of the SCFPP (1) and obtain weak
and strong convergence theorems. The case s = t = 1 was firstly introduced by Censor
and Segal [1] and was further studied and extended by many researchers in, for instance,
[6, 11, 15, 20, 21, 22, 23, 24, 25, 27].

In optimization theory, to speed up the convergence rate, Polyak [9] firstly introduced
the so-called heavy ball method for solving smooth convex minimization problem. In order
to improve the convergence rate, Nesterov [8] proposed a modified heavy ball method as
follows:

Yn = T + en(xn - xnfl)a
Tp4+l = Yn — )\nvf(yn)7 n €N, (2)
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where 6,, € [0,1) is an extrapolation factor and A, is a step-size parameter (sufficiently
small) and Vf is the gradient of a smooth convex function f. Let us recall that the term
On(xn — xp—1) in (2) is known as the inertial step and it plays very important role in
improving the performance of the method and has a nice convergence properties, see also
[3, 4, 13, 14].

In 2003, Nakajo and Takahashi [7] established strong convergence of the hybrid pro-
jection method for nonexpansive mappings in Hilbert spaces. Several authors have presented
different methods to solve problems related to fixed point problems; see [2, 10, 12, 16, 18,
19, 28].

Motivated by above research works, we construct inertial hybrid projection method
with selection techniques for solving the SCFPP (1) and prove strong convergence theorem
of the proposed method under some weakened assumptions.

2. Preliminaries

In this section, we give some mathematical preliminaries which will be used in the
sequel. Let H be a real Hilbert space. We know that the metric projection Po from H onto
a nonempty, closed and convex subset C' C H is defined by

Pox :=argmin ||z —y|, =€ I
yeC

Next, we have the following equality:

2(z,y) = |lz|* + yl* — [l — yl® (3)
for all z,y € H.

Definition 2.1. An operator T : C — C is said to be demicontractive (or k-demicontractive)
if there exists a constant k € [0,1) such that

T2 — ™| < lla = «*||* + kllo - Tz|]?,
or equivalently,

1-k

(x —Tx,x —a*) > |z — Tz||?, (4)

for all (z,z*) € C x Fiz(T).

We use — for weak convergence and — for strong convergence. For a sequence {z,}
in H, the weak w-limit set of {x,} is denoted by wy(z,). Next, we give some important
tools for proving our main results.

Definition 2.2. Let T : C — H be an operator. Then T is said to be demiclosed at y € H
if, for any sequence {x,} in C such that x, = x € C and Tx, — y imply Tx = y.

Lemma 2.1. [17] Given © € H and z € C. Then z = Pcox if and only if there holds the
relation:
(x—2,y—2) <0,
for ally € C.
Lemma 2.2. [5] Given that x,y,z € H and a € R. The set
D:={veC:|y—v|* <z —v|* +(z,v) +a}
is convez and closed.

Lemma 2.3. [5] Let {x,} be a sequence in H and u € H. Let z = Pou. If {x,} is such
that wy(z,) C C and satisfies the condition

2n —ull < flu— =],

for alln € N. Then x,, — z.
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3. Main result

In this section, we study the SCFPP (1) under the following hypothesis:
Let S; : 3, — 3y for i € I and T; : Hy — Hy for j € Iy be two finite families of
demicontractive operators with constants 8; € [0,1) and u; € [0, 1), respectively, and both
I —S; and I —Tj are demiclosed at zero. Set 8 = rlrg}ic Bi and p = rjrgg< ft;. Suppose that

Qi=qx:x€ ﬂ Fix(S;) and Az € ﬂ Fix(T;) p # 0.
an jel
Next, the following inertial hybrid projection method with selection techniques is constructed

to solve SCFPP (1). We also prove strong convergence of the proposed method under
standard assumptions.

Algorithm 3.1

Initialization: given initial points zg,z1 € H; be arbitrary, {n,} C [0,00) such that
mm — 0 as n — oo, {#,} is a real sequence such that |6, < 6 for some 6, and set
Ci=0Q:=H;andn=1.

Iterative Steps: Construct {x,} by using the following steps:

Step 1. Select i, € I} and j, € Is such that

20 = Siyzall = max||z — Szl and (I - Ty,) Az, = max |[(I - T5) Az,
i€l j€ls

where z, =z, + O (xy, — Tp_1).
Step 2. Compute

Yn = 2n — Sin2n + A1 —1T;,)Az,.

If y, = 0, then stop and z, € Q. Otherwise,
Step 3. Compute

Wn = Zn — TnYn,

2= Siy 20 |2+ (T =T, ) Az |12
Myl

where 7, = ~ with v € (0,min{1 — 8,1 — pu}) is a positive
constant.

Step 4. Compute
Tnt1 = Po,n, 21,
where C,, = {v € H; : ||w, —v| < ||zn —v| + 15} and

Qn = {’U €EQn-1: <171 — Tny Tp — U> > O}
Replace n by n + 1 and then repeat Step 1.

Lemma 3.1. z, € Q if and only if y, = 0 for some n € N.

Proof. The sufficiency is obvious. Next, we only need to prove the necessity. Assume that
yn = 0 for some n € N. Then, for any z* € , by (4), we obtain

0= llynllllzn — 2]

> (2n — Si2n + A1 —T;,)Azp, 2, — x7)

= (zn — Si, Zn,2n — ") + (A"(I = Tj,)Azp, 2 — T°)
= (2n — Si, 2n,2n — &) + (I — Tj,)Azp, Az, — Ax™)
51— 6,
- 2

1— s
Zn — SinZn||2 + %

(I = Tj,) Az,
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According to the definitions of i, and jy, it follows from f;,, p;, € [0,1) that
lzn — Siznll < llzn — Si 20l =0, i € 1 and ||(I —T;)Az, (I—-1T;,)Az,|| =0, j €.

<|

Hence, we deduce z, € ﬂ Fixz(S;) and Az, € ﬂ Fiz(T;). Therefore, it follows that

i€l VISP
zn € €L O

Theorem 3.1. The sequence {x,} generated by Algorithm 3.1 converges strongly to a so-
lution Z of problem (1), where Z = Pqxy.

Proof. Claim 1. ||w, — z|| < ||z, — 2|| + 1y, for all z € Q.
Indeed, since z € Q and by (4), we have

(Yns 2n — 2) = (2n — Si 20 + AT — T, ) Azn, 2n — 2)
= (20 — Si,Zn, 2n — 2) + (I = Tj,) Az, Azy, — Az)
> 1-6
- 2
1 . 2 2
2 gmin{l = 5,1~ pu} (lzn = Sipzall® + |(I = Ty,) Azn1?) - (5)

1—
l2n = Sizall? + =T = T, Az

Using (3) and (5), we derive
lwn = 2l* = ll2n — 2 = Taynll®
= |20 = 201* = 27 (Yn, 20 — 2) + T2 l|ynll?
(20 = Sin zall? + 10T = T3, ) Az |2)°

< ||Zn_z||2_7min{1_5al_ﬂ} ||y ||2

2
2 (Izn — Si,znll* + 1 — Ty,) Az |1?)
1yn?

+7

2
(llzn = S, znl* + I — T5,) Aza|1*)
1ynl[?

= |lzn — 2[I* = v (min{1 — 8,1 — p} — )

Since vy € (0, min{l — 8,1 — u}), we obtain Claim 1.

Claim 2. {z,} is well defined and Q C C,, N Q,, for all n € N.

From the definition of C,, and @,,, and by Lemma 2.2, we get C), N @Q,, is closed and convex
for all n € N. By Claim 1, we have Q C C, for all n € N. Further, Q C C; N Q1 and
x2 = Po,ng, 1 is well defined. Assume that Q C Cj;, N Q) for some k € N. This shows that
zr+1 = Poyng,z1 is well defined. By Lemma 2.1, we have (x1 — @41, Tk41 — 2) > 0 for all
z € Cp N Q. So, (1 — Tpt1,Tp+1 — 2) > 0 for all z € Q. Tt implies that Q@ C Qr4+1 and so
Q C Crt1 N Qr+1. Therefore, Claim 2 is obtained.

Claim 3. nl;ngo |xn — 2zn|| = 0.

Indeed, since €) is a nonempty, closed and convex, there exists a unique z € €2 such that
Z = Pox:1. From xn41 = Pc,ng,*1 and Q C C, N Q,,, we have

[#nt1 — 21| < |2 = 21| VR eN. (6)

This implies that {x,} is bounded. Using Lemma 2.1 together with the definition of @,,, we
have x,, = Pg, x1. Since z,41 € Qp, it implies that

|z — 21| < |Tns1 — 21]| Vn €N. (7)

This implies that lim ||z, — x| exists. By Lemma 2.1, it follows that
n—oo

(Tn — Tpg1,Tn —x1) < 0.
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Applying this to (3), we deduce
lzn = Znr1ll? = lznts — 211 = llon — 21]|* + 2{zp — Tngr, 0 — 1)
< psr = z]® = o — 2]
This implies that

nh_{Iolo [#n — @pia| = 0. (8)

From {6, } is bounded sequence and by (8), we have
lxrn — znll = 10nll|Tn — Tn_1|| < Ol||2n — 2n-1]] — 0 as n — oo.
Claim 4. lim ||z, — Sizp|| = lm [|(I —T;)Az,|| =0for all i € I and j € I,.
n—oo n—oo
From z,,+1 € C,,, we obtain
wn = znll < llwn = Tpga |l + [[Tn+1 — 2|
< 2HZ77 - In-&-lH + Mn
<2lzn = || + 2|70 — Tpgal| + 90— 0 as n— oo,
which implies that
lim l2n — Sinzn”Q + (I = Tjn)Azn||2 _

n—+00 [[ynl

0. (9)
However, we observe that

2 2
(”Zn - Sinz7L||2 =+ ”(I - Tjn)AZHHQ) (”Zn - SinZn”Q =+ ”(I - Tjn)AZn”Q)

llyn 1 20 = Si, 2 + A*(I = T}, ) Azn[|?
2
(lzn = Si,znll® + 11 = Tj,) Aza|?)
T 2([lzn = Sinznll? + AP = T5,) Az 1)
|20 — SinZn”Q + (I - Tjn)AZn”Q

10
- 2max{1, ||A|*} (10)
Combining (9) and (10), we immediately obtain
lm [lz — i, zall =l (I~ T5,) Az | = 0.
By the definitions of i, and j,, we get Claim 4.
Claim 5. z,, — z, where Z = Pox1. Indeed, from (6) and (7), we get
lzn —z1]] <||Z—z1]] YR eN. (11)

We next show that every weak cluster point of the sequence {x,} belongs to Q. Let ¢ €
ww(zy), that is, it has a subsequence {z,, } fulfilling z,,, — ¢ as k — oo. By Claim 3, we
get z,, — q as k — 0o. Since A is bounded linear operator, we obtain that Az,, — Aq as
k — oo. By the demiclosedness at zero of I —S; and I — Tj, together with Claim 4, we
have ¢ € . Applying Lemma 2.3 to the inequality (11), we can conclude that the sequence
{z,} converges strongly to z € Q, where z = Pox;. O

4. Multiple-sets split feasibility problem
Multiple-sets split feasibility problem (MSSFP) is to find a point € H; such that

xeﬂUiandAxE (WV]7 (12)
i€l jel
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where {U; }icr, and {V;};er, are two finite families of closed convex subsets of {; and Hs,
respectively. Assume that

b:=Qx:z€ ﬂUiandAJ:E ﬂVj #0.
i€l jED

Next, we present the following algorithm to solve MSSFP (12).

Algorithm 4.1

Initialization: given initial points zo,z1 € H; be arbitrary, {n,} C [0,00) such that
N — 0 as n — oo, {0,} is a real sequence such that |0,] < @ for some 6, and set
01:Q1:}C1 and n = 1.

Iterative Steps: Counstruct {z,} by using the following steps:

Step 1. Select i, € I1 and j,, € I3 such that

l|2n — PUin zy|| = max||z, — Py,z,| and (I — PVM JAzy || = max ||(I - P\/;)AZnH,
i€l j€Els
where z, = 2, + 0 (Tn — Tp_1).
Step 2. Compute
Yn = Zn — PUinZn —|— A*(I — P\/Jn)Azn

If y, = 0, then stop and z, € ®. Otherwise,
Step 3. Compute

Wn = Zn — TnYn,

llzn—Pu, znl>+I(I-Pv, YAz, |? .
T with v € (0,1).

where 7, =y
Step 4. Compute

Tn+1 = Po,ng, %1,

where C,, = {v € Hy : |Jw, —v| < ||zn, — v|| + 75} and

Qn = {U € Qn—l : <Z‘1 — Tp, Ty — 1}> > O}
Replace n by n + 1 and then repeat Step 1.

By setting S; = Py, and T; = Py,, then the following results are consequences of
Lemma 3.1 and Theorem 3.1, respectively.

Lemma 4.1. z, € ® if and only if y, = 0 for some n € N.
Theorem 4.1. The sequence {x,} generated by Algorithm 4.1 converges strongly to a so-
lution z of problem (12), where Z = Pypx1.

5. Conclusions

A new type of hybrid projection method by using inertial effects and selection tech-
niques, Algorithm 3.1, is proven to solve the SCFPP (1). The suggested method’s conver-
gence study shows that the sequence generated by Algorithm 3.1 converges strongly to a
solution of the problem under some basic control conditions.
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