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ON A CONJECTURE CONCERNING RESOLVING PAIRS

loan Tomeschand Ayesha Riasat

Tomescu and Imran [Graphs and Combinatorics, 2010] proddke following conjec-
ture : for every connected graph of order n the number of rg@aglpairs (i.e., pairs of vertices
of G having distinct distances to all vertices of G) is bouhd&ove by n?/4| and solved into
affirmative this assertion for graphs with diameter two.

In this paper the conjecture is verified for bipartite graplggsaphs of order n and diameter
n— 2 and for a subclass of graphs of diameter three. It is also shthat for every integers,k
such that > 3 and 2 < k < n— 1 there is a graph of order n and diameter k havipg? /4|
resolving pairs.

Keywords: Resolving pair, bipartite graph, distance, diameter, lgralph,n-dimensional hyper-
cube
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1. Introduction

Let G be a connected graph. The distance between vertieesly is denotedist(x,y)
and the diameter d& is
diam(G) = ma(x )dist(x,y).
€

xyeV (G
N(x) will denote the set of neighbors adgx) the degree ok € V(G).

A subseW of vertices ofG is called a resolving s8] or locating sef9] if every vertex
in G is uniquely determined by its distances to the vertice&/off a resolving set has minimum
size then it is frequently called a metric bafds [5] or just a basis$l], [3] for the graph and the
number of elements in a basis is the metric dimendion(G) of G [3], [5], [8], [9].

A survey of results on the metric dimension and its applos®tiis included in [2]; also see [6].
For a pair{x,y} of distinct vertices ofc we shall denote bRSx,y) the set of verticez € V(G)
such thatdist(z x) # dist(z,y) [10]. Such a set will be called the resolving get the R-sef
relative to the paifx,y}. Itis clear thax,y C RSx,y) C V(G) for any pair{x,y}.

This notion implicitly appeared in [4], whose authors cousted for a given connected
graphG of ordern an associated bipartite graph as follows: Wgtbe the collection of al(g)
pairs of vertices inG. The associated bipartite graph has partite ¥¢) andV,. A vertex
ve V(G) is joined to a vertes € V;, if v has distinct distances to the verticesin
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So the neighborhood &f in this associated bipartite graph is precisely Riset fors
referred to above. Some propertiesgets were described in [10].

A pair {x,y} such thaRSx,y) = V(G) will be called a resolving pair oB. If for a pair
{x,y} of verticesdist(x,y) is even, then the middle vertexof a shortest path betweerandy
has equal distances xand toy and sov ¢ RSx,y).

Lemma 1.1. [10] If {x,y} is a resolving pair o5 thendist(x,y) is odd.

Theorem 1.1. [10] If G hasn vertices and diameter two then the number of resolving iz
is bounded above byn? /4| and this bound is attained only /2], m/2]-

Also in [10] the following conjecture has been proposed :

Conjecture RP. For every connected graph of ordern > 2 the number of resolving pairs
is bounded above byn?/4|.

This conjecture is valid for graphs of diameter two, pathd eycles. Other classes of
graphs verifying conjecture RP will be studied in the nextisas.

2. BIPARTITE GRAPHSAND GRAPHSOF DIAMETER n—2

For bipartite graphs resolving pairs are easy to charaeteri

Theorem 2.1. Let G be a connected bipartite graph of oreiehaving partite set&\ andB.
Resolving pairs o6 are precisely the pairx,y} wherex € A andy € B. The minimum number
of resolving pairs is1— 1 and this holds if and only i is K n—1 and the maximum number
equals|n?/4| and this bound is reached if and only if

—1<|A/-[B[<1

Proof. If x andy belong to the same partite set thetist(x,y) = 0(mod2) and by Lemma 1.
{X,y} is not a resolving pair.

Otherwise, lex € A andy € B. If ze Athendist(x,z) = 0(mod2) anddist(y,z) = 1(mod2); if
ze Bthendist(x,z) = 1(mod2) anddist(y,z) = 0(mod2).

It follows thatdist(x,z) # dist(y,z) for anyze V(G).

In a bipartite grapHx,y} is a resolving pair if and only iflist(x,y) is odd. Consequently, the
number of resolving pairs d is equal to/A||B|. Since|A| + |B| = nthe minimum value of this
product is equal to — 1, when{|A|, |B|} = {1,n— 1} and the extremal graph & 1, and the
maximum value ign?/4|, which is attained if and only if-1 < |A| — |B| < 1.

O
If x e V(G), by denotingy;(x) the number of verticeg € V(G) havingdist(y,x) =i and
supposink e A, we getlAl= 3  vi(x)and|B|l= Y Vvj(X).
i=0(mod2) j=1(mod2)
It follows that the condition-1 < |A| — |B| < 1 is equivalent to
-1< Y vwi- Yy vl 1)

i=0(mod2) j=1(mod2)
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Note that the number of resolving pairs of a bipartite gr&ahk also equal to

vy v =|AlB|

i=0(mod2) j=1(mod2)
and this product does not depend on the choice of the veiite¥ (G).
If G=P, or Gis an even cycl€, with n= 0(mod2) then condition(1) is obviously satisfied
and these graphs have a maximum number of resolving paira) & n?/4].
Another example of an extremal bipartite graph is th@dimensional hypercub®,, which has
2" vertices representing binarnytuples(xs,...,xn) and where two vertices are adjacent if they
differ in exactly one coordinate.

=}

Qn has partite setd= {(Xq,...,%n) :
one hagA| = |B| = 2""1.

xi=0(mod2)} andB = {(y1,...,¥n): 3 ¥i =1(mod2)};

IM>

Theorem 2.2. All graphsG of ordern > 5 and diameten — 2 have a number of resolving pairs
less than or equal ton?/4|. Equality holds if and only if:n is odd andG consists of?, ; and

a new vertex adjacent to one interior vertex a Bf 1 or to two verticesa, b of R, 1 such that
dist(a,b) = 2 ornis even and in both cases the distance betveemmd an endvertex d#, 1 is
also even.

Proof. Let G be a graph of orderand diameten— 2. G consists of a patR,_1 with endvertices
uandv and a pendant vertexsuch that:

a) d(x) = 1, whenx is adjacent to a vertexof R,_1, different fromu andyv;

b) d(x) = 2 andx is adjacent to two vertices b of P,_1 such thadist(a,b) € {1,2};

c¢) d(x) = 3 andx is adjacent to three consecutive vertiegls, c of P,_1.

We shall consider these cases separately.

a) In this caseG is a tree, hence a bipartite graph.

If vi = vi(u) denotes the number of vertice®f G with dist(u,y) = i, then there exists a unique
indexk, 2 < k < n-— 2 such thatx = 2 andv; = 1 for everyi # k.

If nis odd, then'1) becomes

—1<Vvi+Va+...+Vho— (14+Vo+Va+...+Vy3) <1 (2

Both sums havén— 1)/2 terms and?2) is satisfied for ank.

It follows that all graphs consisting &, 1 and another pendant vertex adjacent to any vertex
a#u,vof P,_; are extremal graphs.

If nis even,(1) can be written as

—1<vit+vz+...+Vo3— (L4+Vvot+vg+...4+Vy2) <1 3)

The sum with odd indices containg2 — 1 terms and another sumi2 terms. It follows that3)

is satisfied if and only if the indei such that = 2 is odd. This means thdist(u, a) is even.

b) In this case ifdist(a,b) = 1 consideiG; = G — xh.

The resolving pairs ifG consisting of vertices belonging #,_; remain resolving foiGs, but
in G; may appear new resolving pairs of verticesRn;. Also the number of resolving pairs
{x,t} in G wheret € P,_1 remains unchanged or increases by onefqd} and{a,b} become
resolving inG;, which is in case).

This implies that the number of resolving pairs®fs strictly less thann?/4|.
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If dist(a,b) = 2 thenG is bipartite and numbens are the same as in caag It follows thatG is
extremal ifnis odd omn s even andlist(a, u) is even(which implies also thadist(b, u) is even).
¢) In this caseG; = G — xb has four new resolving pairs relatively @ namely{x,a}, {x,c},
{a,b}, {b,c} thus implying thaiG is not extremal sinc&; is in caseb).

O

Proposition 2.1. For every integers, k such thah > 3 and 2< k < n— 1 there exists a connected
graphG of ordern anddiam(G) = k containing|n®/4/ resolving pairs.

Proof. Fork=2,n—2,n—1 we have seen that the statement is true net andk be such that
3<k<n-3and consider a path.; : u,a,b,...,vof diametek. We shall adds, — 1 pendant
vertices adjacent ta andvz — 1 pendant vertices adjacentlioby obtaining a caterpillaG of
diametek. SinceG must haven vertices we get, +v3 =n—k+ 1.
If kis odd(1) is equivalent to—1 < vz — v, < 1, which is satisfied for example by choosing
v2 = [(n—k+1)/2] andvs = [(n—k+1)/2]. If kis even(1) yields—1 <vz—vp,—1<1and
we can choos® = [(n—k)/2] andvs = | (n—k/2)| + 1.

O

3. GRAPHSOF DIAMETER THREE

If Gis a graph of diameter equal to three, every resolving faiy} of G must have
dist(x,y) € {1,3}.
There exist graphs of diameter three without resolvingg{aér.g. the odd cycl€;) or without
resolving pairs at distance one or at distance three, régplgc
( see graph&; andG; from Fig.1).

e
/ )
Gl GZ

FIGURE 1

Theorem 3.1. Let G be a connected graph of order n and diameter three contaimesplving
pair {x,y} such that:
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i) dist(x,y) = 1 andN(x) UN(y) =V(G) or
ii) dist(x,y) = 3 and there exists a shortest path, v,y such that

N(x) UN(y) UN(u) UN(v) =V(G).

Then the number of resolving pairs Gfis bounded above byn? /4| and this bound is tight.

Proof. In casei) by denotingA = N(x) andB = N(y) we deduce thadAnN B = 0 since{x,y} is a
resolving pair andhUB =V (G).

Any pair of vertices fromA or fromB is not resolving having a common neighbor. It follows that
the number of resolving pairs @ is bounded above bjA||B| < |n?/4]. It can be easily seen
that this bound can be reached if and onhAi&indB are independent sets of vertices, i@.is
bipartite, and-1 < |A| — |B| < 1, or—1 < |N(x)| — IN(y)| < 1. SinceG has diameter three there
exists at least a pafa,b},a € Aandb € B such thaab ¢ E(G).

Note that this class of extremal graphs contains 4-cycle& oaphBa » [7] consisting ofn > 2
copies of the cycl€, with a common edge; the copies of the cyCleare called the pages of
B4.n-

ii) In this case we also haw(x) "N(y) = 0 andN(u) NN(v) = 0; denoteA = N(x) — {u}, B=
N(y) — {v},C = N(u) ~ (N() UN(y) U{x,v}), D = N(v) - (N(X) UN(y) U{u,y}) (see Fig2).

FIGURE 2

The pairs of distinct vertices froA cannot be resolving sincehas equal distances to
them; a similar situation occurs for pairsBC, D.

Suppose first thaG has the following property: for ang € A we haveau ¢ E(G) or
ave E(G) and for anyb € B, bv¢ E(G) orbu e E(G) holds.
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In this case any paifa,d} with a€ A andd € D is not resolving sincalist(u,a) =
dist(u,d) = 2 ordist(v,a) = dist(v,d) = 1; similarly any pair{b,c} with b € B andc € Cis not
a resolving pair.

Also any paif{a,y} with a € Ais not resolving sincdist(a, u) = dist(y,u) = 2 ordist(a,v) =
dist(y,v) = 1 and in a similar way any paix, b} is not resolving.

Another pairs which are not resolving ajpe c} and{y,d}, wherec € C andd € D.

It follows that at most the following pairs of vertices can f@solving: {a,b}, a€ A; b € B;
{c,d},ceC;deD; {uc}ceC;{vd},deD;{ac},acA ceC; {bd},beB;decD; {u,b},
beB; {v,a},ac A {y,b},beB; {x,a},acA; {x,y}, {x,u}, {u,v}, {v,y}. By denotingA| = a,
|B| = B, |C| = p and|D| = g, the number of these possible resolving pairs is equal to

E=aB+pqg+ap+Bg+2(a+pB+p+q) +4=af+pg+ap+Bg+2n—4

sincea + B+ p+qg=n—4.
Substitutiona =n—4— — p—qyields

E=(p+B)(n—4—p—B)+2n—4<|(n—4)?/4] +2n—4= |n?/4].

Suppose now that there exist subsets of vertdigeS AandB; C B, |A;| =s, |B1| =t,0<s<a,
0<t <, s+t >1such that every vertexe A; and every verteb € B; verifiesau € E(G)
andav ¢ E(G) andbv e E(G) andbu ¢ E(G), respectively. We will prove that the number of
resolving pairs in this case is strictly less tham /4.
It follows that the following modifications have been proddaelatively to the case when=
t=0:
All pairs {a,c} with ae A; andc € C, {a,b} with ae A3 andb € B— By, {a,v} with a € Ay,
{a,x} with a € A; and the paifx,u} if s> 0 are not resolving they are counted as resolving
ones in expressioR).
All pairs {a,d} with a € Ay andd € D and{a,y} with a € A; may become resolving.

A similar situation holds for the pairs containing vertides B;. We get that the number
of resolving pairs is at most equal to

E;=E+sq+tp—s(p+B-t)—t(qg+a—s)—s—t—1=
(p+B)(N—4—p—PB)+2n—5+sq—s(p+B) +tp—t(q+a)+2st—s—t.

By denotingp+ 3 = kwe deducgg=n—4—k—a <n—4—-k—s, p=k— 3 <k-—t, which
implies

Er <k(Nn—4-Kk)+2n—5+s(n—4—k—s) —ks+kt—t?—t(n—4—Kk)+2st—s—t=
(k+s)(n—4—k—9)+2n—-5+¢(t)—s,

where¢ (t) = —t2 —t(n—4—2k—2s+1).

Suppose thah is even and denotg = (n—4)/2— (k+5s). We get(k+s)(n—4—-k—s) =
(n—4)2/4—y?andg (t) = —t2—t(2y+1).1f2y+1>0theng(t) < 0andE; < |(n—4)%/4] +
2n—5< |n?/4]. Otherwisey < — 1. The maximum value o (t) is ¢(—y—3) = 2 +y— 1,
which implies

E<(n-4)?/4+2n—5+y—1-s<[n?/4].



on a conjecture concerning resolving pairs 205

A similar situation occurs fon odd by denoting/ = (n—5)/2 — (k+s), when(k+s)(n—4—
k—s)=[(n—4)2/4] -y —y.

To see that this bound can also be reached in this case ifiisientfto conside€C =D =
0 (p=9g=0),-1<|Al—|B] < 1andany vertea € Ais adjacent tos or to a vertexb € B and
any vertexb € B is adjacent tai or to a vertexa € A. All these graphs are bipartite and by The-
orem 2.1 the number of resolving pairs equai$/4| since partite sets haya| +2 and|B| + 2
vertices, respectively.

4. Conclusions

All extremal graphs found in this paper are bipartite. Thihe following conjecture
seems to be plausible:
All non-bipartite graphs of order have a number of resolving pairs less tHah/4|. The most
striking example is the odd cycle which has no resolving. pair
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