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ON A CONJECTURE CONCERNING RESOLVING PAIRS

Ioan Tomescu1 and Ayesha Riasat2

Tomescu and Imran [Graphs and Combinatorics, 2010] proposed the following conjec-
ture : for every connected graph of order n the number of resolving pairs (i.e., pairs of vertices

of G having distinct distances to all vertices of G) is bounded above by⌊n2/4⌋ and solved into
affirmative this assertion for graphs with diameter two.

In this paper the conjecture is verified for bipartite graphs, graphs of order n and diameter

n−2 and for a subclass of graphs of diameter three. It is also shown that for every integers n,k
such that n≥ 3 and 2 ≤ k ≤ n− 1 there is a graph of order n and diameter k having⌊n2/4⌋
resolving pairs.
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1. Introduction

Let G be a connected graph. The distance between verticesx andy is denoteddist(x,y)
and the diameter ofG is

diam(G) = max
x,y∈V(G)

dist(x,y).

N(x) will denote the set of neighbors andd(x) the degree ofx∈V(G).

A subsetW of vertices ofG is called a resolving set[3] or locating set[9] if every vertex
in G is uniquely determined by its distances to the vertices ofW. If a resolving set has minimum
size then it is frequently called a metric basis[2], [5] or just a basis[1], [3] for the graph and the
number of elements in a basis is the metric dimensiondim(G) of G [3], [5], [8], [9].
A survey of results on the metric dimension and its applications is included in [2]; also see [6].
For a pair{x,y} of distinct vertices ofG we shall denote byRS(x,y) the set of verticesz∈V(G)

such thatdist(z,x) 6= dist(z,y) [10]. Such a set will be called the resolving set(or theR-set)
relative to the pair{x,y}. It is clear thatx,y⊆ RS(x,y)⊆V(G) for any pair{x,y}.

This notion implicitly appeared in [4], whose authors constructed for a given connected
graphG of ordern an associated bipartite graph as follows: LetVp be the collection of all

(n
2

)

pairs of vertices inG. The associated bipartite graph has partite setsV(G) andVp. A vertex
v∈V(G) is joined to a vertexs∈Vp if v has distinct distances to the vertices ins.
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So the neighborhood ofs in this associated bipartite graph is precisely theR-set fors
referred to above. Some properties ofR-sets were described in [10].

A pair {x,y} such thatRS(x,y) = V(G) will be called a resolving pair ofG. If for a pair
{x,y} of verticesdist(x,y) is even, then the middle vertexv of a shortest path betweenx andy
has equal distances tox and toy and sov /∈ RS(x,y).

Lemma 1.1. [10] If {x,y} is a resolving pair ofG thendist(x,y) is odd.

Theorem 1.1. [10] If G hasn vertices and diameter two then the number of resolving pairsof G
is bounded above by⌊n2/4⌋ and this bound is attained only forK⌊n/2⌋,⌈n/2⌉.

Also in [10] the following conjecture has been proposed :

Conjecture RP. For every connected graphG of order n ≥ 2 the number of resolving pairs
is bounded above by⌊n2/4⌋.

This conjecture is valid for graphs of diameter two, paths and cycles. Other classes of
graphs verifying conjecture RP will be studied in the next sections.

2. BIPARTITE GRAPHS AND GRAPHS OF DIAMETER n−2

For bipartite graphs resolving pairs are easy to characterize.

Theorem 2.1. Let G be a connected bipartite graph of ordern having partite setsA and B.
Resolving pairs ofG are precisely the pairs{x,y} wherex∈ A andy∈ B. The minimum number
of resolving pairs isn−1 and this holds if and only ifG is K1,n−1 and the maximum number
equals⌊n2/4⌋ and this bound is reached if and only if

−1≤ |A|− |B| ≤ 1

Proof. If x andy belong to the same partite set thendist(x,y) ≡ 0(mod2) and by Lemma 1.1
{x,y} is not a resolving pair.
Otherwise, letx∈ A andy∈ B. If z∈ A thendist(x,z) ≡ 0(mod2) anddist(y,z) ≡ 1(mod2); if
z∈ B thendist(x,z) ≡ 1(mod2) anddist(y,z) ≡ 0(mod2).
It follows thatdist(x,z) 6= dist(y,z) for anyz∈V(G).

In a bipartite graph{x,y} is a resolving pair if and only ifdist(x,y) is odd. Consequently, the
number of resolving pairs ofG is equal to|A||B|. Since|A|+ |B| = n the minimum value of this
product is equal ton−1, when{|A|, |B|}= {1,n−1} and the extremal graph isK1,n−1, and the
maximum value is⌊n2/4⌋, which is attained if and only if−1≤ |A|− |B| ≤ 1.

�

If x∈V(G), by denotingvi(x) the number of verticesy∈V(G) havingdist(y,x) = i and
supposingx∈ A, we get|A|= ∑

i≡0(mod2)
vi(x) and|B|= ∑

j≡1(mod2)
v j(x).

It follows that the condition−1≤ |A|− |B| ≤ 1 is equivalent to

−1≤ ∑
i≡0(mod2)

vi(x)− ∑
j≡1(mod2)

v j(x)≤ 1 (1)
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Note that the number of resolving pairs of a bipartite graphG is also equal to

∑
i≡0(mod2)

vi(x) ∑
j≡1(mod2)

v j(x) = |A||B|

and this product does not depend on the choice of the vertexx in V(G).

If G = Pn or G is an even cycleCn with n≡ 0(mod2) then condition(1) is obviously satisfied
and these graphs have a maximum number of resolving pairs, equal to⌊n2/4⌋.
Another example of an extremal bipartite graph is then-dimensional hypercubeQn which has
2n vertices representing binaryn-tuples(x1, . . . ,xn) and where two vertices are adjacent if they
differ in exactly one coordinate.

Qn has partite setsA= {(x1, . . . ,xn) :
n
∑

i=1
xi ≡ 0(mod2)}andB= {(y1, . . . ,yn) :

n
∑

i=1
yi ≡ 1(mod2)};

one has|A|= |B|= 2n−1.

Theorem 2.2. All graphsG of ordern≥ 5 and diametern−2 have a number of resolving pairs
less than or equal to⌊n2/4⌋. Equality holds if and only if:n is odd andG consists ofPn−1 and
a new vertexx adjacent to one interior vertex a ofPn−1 or to two verticesa,b of Pn−1 such that
dist(a,b) = 2 or n is even and in both cases the distance betweena and an endvertex ofPn−1 is
also even.

Proof. Let G be a graph of ordern and diametern−2. G consists of a pathPn−1 with endvertices
u andv and a pendant vertexx such that:
a) d(x) = 1, whenx is adjacent to a vertexa of Pn−1, different fromu andv;
b) d(x) = 2 andx is adjacent to two verticesa,b of Pn−1 such thatdist(a,b) ∈ {1,2};
c) d(x) = 3 andx is adjacent to three consecutive verticesa,b,c of Pn−1.

We shall consider these cases separately.
a) In this caseG is a tree, hence a bipartite graph.
If vi = vi(u) denotes the number of verticesy of G with dist(u,y) = i, then there exists a unique
indexk, 2≤ k≤ n−2 such thatvk = 2 andvi = 1 for everyi 6= k.
If n is odd, then(1) becomes

−1≤ v1+ v3+ . . .+ vn−2− (1+ v2+ v4+ . . .+ vn−3)≤ 1 (2)

Both sums have(n−1)/2 terms and(2) is satisfied for anyk.
It follows that all graphs consisting ofPn−1 and another pendant vertex adjacent to any vertex
a 6= u,v of Pn−1 are extremal graphs.
If n is even,(1) can be written as

−1≤ v1+ v3+ . . .+ vn−3− (1+ v2+ v4+ . . .+ vn−2)≤ 1 (3)

The sum with odd indices containsn/2−1 terms and another sumn/2 terms. It follows that(3)
is satisfied if and only if the indexk such thatvk = 2 is odd. This means thatdist(u,a) is even.
b) In this case ifdist(a,b) = 1 considerG1 = G− xb.
The resolving pairs inG consisting of vertices belonging toPn−1 remain resolving forG1, but
in G1 may appear new resolving pairs of vertices onPn−1. Also the number of resolving pairs
{x, t} in G wheret ∈ Pn−1 remains unchanged or increases by one and{x,a} and{a,b} become
resolving inG1, which is in casea).
This implies that the number of resolving pairs ofG is strictly less than⌊n2/4⌋.
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If dist(a,b) = 2 thenG is bipartite and numbersvi are the same as in casea). It follows thatG is
extremal ifn is odd orn is even anddist(a,u) is even(which implies also thatdist(b,u) is even).
c) In this caseG1 = G− xb has four new resolving pairs relatively toG, namely{x,a},{x,c},
{a,b},{b,c} thus implying thatG is not extremal sinceG1 is in caseb).

�

Proposition 2.1. For every integersn,k such thatn≥ 3 and 2≤ k≤ n−1 there exists a connected
graphG of ordern anddiam(G) = k containing⌊n2/4⌋ resolving pairs.

Proof. Fork= 2,n−2,n−1 we have seen that the statement is true. Letn≥ 6 andk be such that
3≤ k≤ n−3 and consider a pathPk+1 : u,a,b, . . . ,v of diameterk. We shall addv2−1 pendant
vertices adjacent toa andv3−1 pendant vertices adjacent tob, by obtaining a caterpillarG of
diameterk. SinceG must haven vertices we getv2+ v3 = n− k+1.
If k is odd(1) is equivalent to−1 ≤ v3 − v2 ≤ 1, which is satisfied for example by choosing
v2 = ⌈(n− k+1)/2⌉ andv3 = ⌊(n− k+1)/2⌋. If k is even(1) yields−1≤ v3− v2−1≤ 1 and
we can choosev2 = ⌈(n− k)/2⌉ andv3 = ⌊(n− k/2)⌋+1.

�

3. GRAPHS OF DIAMETER THREE

If G is a graph of diameter equal to three, every resolving pair{x,y} of G must have
dist(x,y) ∈ {1,3}.
There exist graphs of diameter three without resolving pairs ( e.g. the odd cycleC7) or without
resolving pairs at distance one or at distance three, respectively
( see graphsG1 andG2 from Fig.1).
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FIGURE 1

Theorem 3.1. Let G be a connected graph of order n and diameter three containinga resolving
pair{x,y} such that:
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i) dist(x,y) = 1 andN(x)∪N(y) =V(G) or
ii) dist(x,y) = 3 and there exists a shortest pathx,u,v,y such that

N(x)∪N(y)∪N(u)∪N(v) =V(G).

Then the number of resolving pairs ofG is bounded above by⌊n2/4⌋ and this bound is tight.

Proof. In casei) by denotingA= N(x) andB= N(y) we deduce thatA∩B= /0 since{x,y} is a
resolving pair andA∪B=V(G).

Any pair of vertices fromA or fromB is not resolving having a common neighbor. It follows that
the number of resolving pairs ofG is bounded above by|A||B| ≤ ⌊n2/4⌋. It can be easily seen
that this bound can be reached if and only ifA andB are independent sets of vertices, i.e.,G is
bipartite, and−1≤ |A|− |B| ≤ 1, or−1≤ |N(x)|− |N(y)| ≤ 1. SinceG has diameter three there
exists at least a pair{a,b},a∈ A andb∈ B such thatab /∈ E(G).

Note that this class of extremal graphs contains 4-cycles book graphB4,n [7] consisting ofn≥ 2
copies of the cycleC4 with a common edge; the copies of the cycleC4 are called the pages of
B4,n.

ii) In this case we also haveN(x)∩N(y) = /0 andN(u)∩N(v) = /0; denoteA= N(x)−{u}, B=

N(y)−{v}, C= N(u)− (N(x)∪N(y)∪{x,v}), D = N(v)− (N(x)∪N(y)∪{u,y}) (see Fig.2).
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FIGURE 2

The pairs of distinct vertices fromA cannot be resolving sincex has equal distances to
them; a similar situation occurs for pairs inB, C, D.

Suppose first thatG has the following property: for anya ∈ A we haveau /∈ E(G) or
av∈ E(G) and for anyb∈ B, bv /∈ E(G) or bu∈ E(G) holds.
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In this case any pair{a,d} with a ∈ A and d ∈ D is not resolving sincedist(u,a) =
dist(u,d) = 2 or dist(v,a) = dist(v,d) = 1; similarly any pair{b,c} with b∈ B andc∈C is not
a resolving pair.

Also any pair{a,y}with a∈A is not resolving sincedist(a,u)= dist(y,u)= 2 ordist(a,v)=
dist(y,v) = 1 and in a similar way any pair{x,b} is not resolving.

Another pairs which are not resolving are{x,c} and{y,d}, wherec∈C andd ∈ D.

It follows that at most the following pairs of vertices can beresolving: {a,b}, a ∈ A; b ∈ B;
{c,d}, c∈C; d ∈ D; {u,c},c∈C; {v,d},d∈ D; {a,c}, a∈ A; c∈C; {b,d}, b∈ B; d ∈ D; {u,b},
b∈B; {v,a}, a∈ A; {y,b}, b∈B; {x,a}, a∈A; {x,y}, {x,u}, {u,v}, {v,y}. By denoting|A|= α,
|B|= β , |C|= p and|D|= q, the number of these possible resolving pairs is equal to

E = αβ + pq+α p+βq+2(α+β + p+q)+4= αβ + pq+α p+βq+2n−4

sinceα +β + p+q= n−4.
Substitutionα = n−4−β − p−q yields

E = (p+β )(n−4− p−β)+2n−4≤ ⌊(n−4)2/4⌋+2n−4= ⌊n2/4⌋.

Suppose now that there exist subsets of verticesA1 ⊆A andB1 ⊆ B, |A1|= s, |B1|= t, 0≤ s≤ α,
0≤ t ≤ β , s+ t ≥ 1 such that every vertexa∈ A1 and every vertexb∈ B1 verifiesau∈ E(G)

andav /∈ E(G) andbv∈ E(G) andbu /∈ E(G), respectively. We will prove that the number of
resolving pairs in this case is strictly less than⌊n2/4⌋.
It follows that the following modifications have been produced relatively to the case whens=
t = 0:
All pairs {a,c} with a ∈ A1 andc ∈ C, {a,b} with a ∈ A1 andb ∈ B−B1, {a,v} with a ∈ A1,
{a,x} with a∈ A1 and the pair{x,u} if s> 0 are not resolving( they are counted as resolving
ones in expressionE).
All pairs {a,d} with a∈ A1 andd ∈ D and{a,y} with a∈ A1 may become resolving.

A similar situation holds for the pairs containing verticesb∈ B1. We get that the number
of resolving pairs is at most equal to

E1 = E+ sq+ t p− s(p+β − t)− t(q+α− s)− s− t−1=

(p+β )(n−4− p−β)+2n−5+sq−s(p+β )+ t p− t(q+α)+2st− s− t.

By denotingp+β = k we deduceq= n−4− k−α ≤ n−4− k− s; p= k−β ≤ k− t, which
implies

E1 ≤ k(n−4− k)+2n−5+s(n−4−k−s)−ks+kt− t2− t(n−4− k)+2st− s− t =
(k+ s)(n−4− k− s)+2n−5+ϕ(t)−s,

whereϕ(t) =−t2− t(n−4−2k−2s+1).
Suppose thatn is even and denoteγ = (n− 4)/2− (k+ s). We get(k+ s)(n− 4− k− s) =
(n−4)2/4− γ2 andϕ(t) =−t2− t(2γ +1). If 2γ +1≥ 0 thenϕ(t)≤ 0 andE1 ≤ ⌊(n−4)2/4⌋+
2n−5< ⌊n2/4⌋. Otherwiseγ < − 1

2. The maximum value ofϕ(t) is ϕ(−γ − 1
2) = γ2+ γ − 1

4,

which implies

E ≤ (n−4)2/4+2n−5+ γ− 1
4 − s< ⌊n2/4⌋.
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A similar situation occurs forn odd by denotingγ = (n−5)/2− (k+ s), when(k+ s)(n−4−
k− s) = ⌊(n−4)2/4⌋− γ2− γ.

To see that this bound can also be reached in this case it is sufficient to considerC= D =

/0 (p= q= 0),−1≤ |A|− |B| ≤ 1 and any vertexa∈ A is adjacent tov or to a vertexb∈ B and
any vertexb∈ B is adjacent tou or to a vertexa∈ A. All these graphs are bipartite and by The-
orem 2.1 the number of resolving pairs equals⌊n2/4⌋ since partite sets have|A|+2 and|B|+2
vertices, respectively.

�

4. Conclusions

All extremal graphs found in this paper are bipartite. Thus,the following conjecture
seems to be plausible:
All non-bipartite graphs of ordern have a number of resolving pairs less than⌊n2/4⌋. The most
striking example is the odd cycle which has no resolving pair.



206 Ioan Tomescu, Ayesha Riasat

R E F E R E N C E S

[1] P. S. Buczkowski, G. Chartrand, C. Poisson, P. Zhang, On k-dimensional graphs and their bases, Periodica Math.

Hung.,46(1) (2003), 9-15.
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