U.P.B. Sci. Bull., Series C, Vol.70, Iss. 4, 2008 ISSN 1454-234x

OSSIM: A SWITCHED PACKETS NETWORK SIMULATOR

Elena ULEIA!

Pachetul de programe OSSim reprezintd un mediu software de simulare §i
analiza a retelelor, in special, si a oricaror procese stochastice din sistemele
discrete, in general. Acesta inglobeaza technologii din domeniul calculului
distribuit, arhitecturi client-server, cdt si a programarii orientate obiect. Unul din
punctele cheie ale proiectarii sistemului de fatd, este pefrormanta globala inaltd a
acestuia, ceea ce face posibile modelarea §i simularea unor retele
complexe. Utilitarul OSSim este o implementare complet noud, bazat pe sursd de cod
UNIX ’open-souce’, fard a refolosi sursd de cod al unui alt simulator existent.

The OSSim software package is a development environment created for
supporting network simulation and analysis, in particular, and any stochastic
processes of discrete systems, in general. It makes use of technologies from the area
of distributed computing, client-server architectures and object oriented
programming. One of the key issues of the design is high performance of the overall
system, making possible the modelling and the simulation of complex networks.The
OSSim toolset is a brand new implementation, based on UNIX open source, not
making use of any existent source code from any other simulators.

Keywords: simulation, protocol modelling, queuing systems, performance
analysis, hierarchical models, distributed computing

1. Introduction

The objective of this paper is to present the OSSim (Open Source
Simulator) software package, designed to provide a comprehensive work
environment for the network modeller. It can be used in diverse application areas
of communications networks such as:

e to measure the performances of existing or future conditions networks
under a wide range of conditions;
e to analyse and simulate queuing systems to design,
e to debug and fine-tune discrete-event system models.
The targeted audience is primarily among groups from academic environments.

The OSSim toolset has been entirely designed and implemented by the
author within the PhD thesis scope at the Computer Science Faculty, spread over
several years of study. The PhD thesis dissertation is covering methods for

' PhD student, Faculty of Computer Science, University POLITEHNICA of Bucharest, Romania

88 Elena Uleia

validation and simulation of distributed real-time systems. This tool has been
designed as a discrete events-oriented real-time distributed system in itself.

OSSim has been intended to be an engineering tool capable of simulating
large communications networks with detailed protocol modelling and
performance analysis; However, any system with a hierarchical structure which
admits a discrete time modelling also fits in.

Alternate commercial tools do exist already on the market. Most known
tools are OPNET™ (this stands for Optimised Network Engineering Tools), or
QNAP™ They are sometimes expensive, and almost always require intensive
training.

2. OSSim key features

The follows is a list of the key features of OSSim:
Domain specific: OSSim is designed specifically for the development and
analysis of communications networks.
Hierarchical models: Network models can be hierarchically structured, allowing
the re-use of previously developed models in different simulations
Graphical specification of models: Specifications are entered graphically with
specialized editors. These editors provide an efficient medium for design capture
via a consistent set of modern user-interface methods: mouse-driven menus and
icons.
Automatic generation of executable simulations: OSSim provides an efficient
event-driven Simulation Kernel, libraries of models and service functions (via the
Simulation API). It takes the design specification and automatically generates an
executable simulation.
Simulation debugger: An interactive debugger is implemented for monitoring
the model behaviour. This is event debugging, allowing the user to set up
breakpoints ‘on time’, but not on source code.
Analysis tools: Evaluation and trade-off analysis require a large volume of
simulation results. A set of analysis tools is provided to interpret them in a
graphical form, and visualize these.
Modelling with C++ language: Models processes are described with a hybrid
approach which allows users to embed C++ language code with a graphically
specialized Extended Finite State Machine (EFSM). The specification of
processes in C++ is facilitated by a library of support functions which provide the
most important simulation services.

Ossim: A Switched Packets Network Simulator 89

3. The toolkit design

3.1 OSSim simulation description

Generally speaking, there are two trends in the world of simulators [1]:
One way is to use a custom programming language which reflects at semantic
level the targeted domain. An example in this respect is QNAP, which has a
syntax reassembling Pascal and basic data types such as queues and traffic
sources. In this case, the performance issues are heavily dependent on the
implementation. If the language is interpreted and not compiled, it is likely to
have lousy performance in terms of simulation time for systems in which events
happens very fast (e.g. ATM switches).

Another way is to build a simulation environment around a classic
compiled language, consisting at least in a library of user-capable routines and, in
commercial products, in a graphical interface which hides the nonessential
programming details and provides to the user the ability to visualise the structure
of his/her target application. An example of such a tool is OPNET, which builds
around the C language a high performance simulation environment used in many
mission-critical applications [2].

OSSim follows the second approach, embedding C++ code in its core and
thus allowing the user to enjoy the power and expressiveness of today's most
successful programming language. Its basic simulation engine is designed as a
C++ class hierarchy packaged as a class library; the simulation engine makes use
of advanced features of the C++ language, as polymorphism and multiple
inheritance. However, the average user needs not to know any of this: Only a
basic knowledge of C++ (and of course the Simulation API) is required in order to
be productive, as the graphical interface (which will be introduced later on the
client side) is responsible for the generation of the C++ code which implements
the structure of the target application. Besides the simulation engine (also known
as the Simulation Kernel), the server side features the Base Models Library, an
extensible set of building blocks available to all registered users. The Base
Models Library is developed within the same framework as the user model, but it
cannot be altered by ordinary users.

Important to note is that both user code and the automatically generated
code by the client side do inherit the OSSim Simulation Kernel class. In the final
linking step, a combination of base and user models can be used to produce the
simulation executable.

3.2 Graphical user interface
OSSim package implements a Graphical User Interface (GUI) which up to
some extent is independent of the underlying OS, and windowing technology.

90 Elena Uleia

The current implementation is available for UNIX / X Window System
platforms. A feature of the GUI is that it can be run in a client-server architecture,
remotely from the simulator side, on completely different hardware architecture.
Of course, it can be also run on the same computer with the simulator side if this
architecture is preferred. In practice, we used both PCs and workstations for
running the GUI.

4. OSSim simulation model framework

Here below, are given some remarks about the theoretical framework upon
which the entire system is built, in order to allow the reader to better understand
the functionality of the user interface.

Besides running on a single host architecture, as most programs do,
OSSim can optionally be run in a distributed client-server architecture, in which
the client is the graphical user interface (GUI) and the compilation and simulation
services are provided by a remote server.

(GUI side Simulation side \

Process Editor EFSM models User Models,

; ase Models Simulation
Block Editor Block models T ibrar

Network Editor

etwork modely— — — — — ’I Compile & Link |

Simulation Manager

| Simulation |

Results logs
Graphic
output

Fig. 1. OSSim internal interactions

Analyzer @ | —

o J

The theory behind the OSSim design is the Extended Finite State Machine
(EFSM) model. The EFSM model can be thought as an entity which represents
protocols, algorithms, or in general, decision making processes. We will not go in
further details on EFSM as this is well covered in literature [3].

Ossim: A Switched Packets Network Simulator 91

There are many simulation languages or environments which use the
EFSM approach. EFSM instances are usually known as processes and can be
thought as the "active" part of the modelled system. However, in order to express
its structure, some hierarchical grouping rules and communication between the
basic building blocks must be present. This is usually done at semantic level in the
case of simulation languages and by graphical means for simulation
environments.

What is also common to all EFSM based approaches is the parallel
simulation of the processes, with regards to a fictive execution time axis called the
simulation time. Fictive time means behaviour of the simulated systems studied,
as opposed to the actual time needed for such a simulation to take place.

It is important to note that the simulation time is not a linear function of
the real time, because the simulation is event-driven and not incremental with a
constant pace. That is, the periods of time for which nothing happens in the
simulated system are skipped.

5. OSSim toolkit implementation

In order to build an executable simulation program, one first needs to
translate the GUI user interface modules files into C++, using the internal parser.
After this step, the process is the same as building any C/C++ program from
source: all C++ sources need to be compiled into object files (.o files on
Unix/Linux), and all object files need to be linked with the necessary libraries to
get an executable. The attributes file is loaded dynamically at execution time.

The models processes are described with a hybrid approach which allows
users to embed C++ language code with a graphically specialized EFSM. The
specification of processes in C++ is facilitated by a library of support functions
which provide the most important simulation services.

A simulation system is made up of blocks, which can have ‘infinite’ level
of hierarchy, and processes on top of the simulation kernel. The blocks
encapsulation starts from bottom up, based on a BaseBlock class.

The blocks describe the structure of the system, and the processes the
execution engines. Not all blocks have attached processes. Once a process is
attached to a block, the user block will have multiple inheritance, inheriting from
the process class too.

The BaseBlock class creates actually the startup framework. By adding
blocks at the same level of encapsulation, or at higher level, one defines the
simulation framework structure, creating a block template for the entire system.
The blocks are instantiated using a mechanism of ‘templates’ based on pre-
processor. The pre-processor directives are used to allow re-use of block classes

92 Elena Uleia

and to create specific block instances. They are also used for inclusion of
automatically generated code from the GUI interface.

In{lpl.lof Simulatioﬂ? llitjinf I Library UML User Interface
simple 1ib/*. Il User [t
modules *.cc and BML (Base Model Libraries *lib/*.a
Lib:
e.g. torary) e.g.:
ibN libmy_us_queue_lo.
libNS.ERF.a _Us_ _
libNSDEBUG.a P};EBUG.a 1
libgen.PERF.a ;Ergz_US_queue_ o.
‘--------------'--. ------- . llbgenDEBUGa, a
s, Crfcompiling & |libsink.PERF.a l
: Linking :

Attributes file

Output files
* log

Fig. 2. Building and running an OSSim simulation

The applied encapsulation rule is to create a class based on a base class,
with members of block types that instantiate other object types. These classes
inclusion is such as structures variables. Classes are this way automatically
generated based on the template class.

6. OSSim experimental results

Methodologies for establishing model credibility, statistical analysis and
experimental designs are currently largely unsupported by simulation software.
More guidance could be given, particularly in interactive environments. A small
body of well-established techniques is available, although mostly scattered
through journals and conference proceedings. It is to be hoped that some of the
more robust of these will be integrated with new simulation systems, possibly
augmented by some 'intelligent' assistance [4].

In [5], Lang has designed and developed a library for resource based
conceptual models. This approach is implemented by most non object-oriented
simulation frameworks such as Arena, and a few object-oriented frameworks such

Ossim: A Switched Packets Network Simulator 93

as SimKit and DSOL. In this approach one designs the model as a chain of
stations.

OSSim is using the simulation kernel as the main class in the hierarchy,
whereby the simulation model classes, for both blocks and processes (EFSMs) do
inherit from.

6.1 Queueing network model example
A queueing network model has been designed using the OSSim toolkit by
means of a top level system block.

The main components of the system model are the:

- three uni-servers (ql2, q22, q32. First index is the inputs line number,
and the second index is the outputs line number, respectively)

- one traffic generator (gen), with two output lines (‘0°, ‘1),

- one real channel with delays (‘real ch’), and

- two sink blocks (sinkl, sink2), with one entry gate each (‘0°).

d] =

Left : Nothing Center : Nothing Right: | Nothing

Fig. 3. Queueing model using OSSim

Network models can be hierarchically structured. Each model entity is
represented by a block with specific input and output gates. Every block is an
object instance of a specific block type. E.g. the uni-server q32 is an object
instance of US_ QUEUE 3 2 block type, which defines a two-entry and three-exit
uni-server type.

94 Elena Uleia

Each entity block is an EFSM, denoted by an attached process. A real
channel (‘real ch’) does exist between gate 2 of q22 and gate 0 of sinkl. This
has an attached process that manages, in its EFSM, the channel properties.

6.2 Queueing network model simulation results

In order to prove the stability of the whole system, the following
convergence equation should hold for each queue in the system: inter-arrival
mean time value at queue i, multiplied by the ratio of the number of packets
received at current queue i ports and total number of the generated packets should

equal the mean value of the generated packets in the system.

/1:/11'&
L

where, A — mean arrival time of the generated packets;
Ai— inter-arrival mean time at queue i ;
L — total number of generated packets injected in the system during

simulated time T;

(1

L; — number of packets arriving at queue i input ports, during simulated

time T.

The queues inter-arrival mean times parameters are proved both
graphically and analytically by means of the equation (1) calculations, given in

table 1 below.

Tabel 1
Mean inter-arrival times - computed and experimental values
Convergence No of samples of | Mean of interarrival | Mean of interarrival
results queue i time of queue i time of queue i
[Ni] [Ai]- computed [A]- experimental
us_queue _ql2 833155 1.200590 1.200241
us_queue_qg22 1066881 0.937572 0.937311
us_queue q32 931978 1.0732849 1.0729815
us_queue_obsl 1000278 1 0.9997155
us_queue_obs2 1000278 1 0.9997155

From the above table, the q12 received packets are 833155+1, the total
generated packets number is 1000278+1, and the generated packets distribution
mean value is 1. By applying equation (1) we get the queues inter-arrival mean

time as:

a=at =
z

L
Ai=1—
Li

2)

Ossim: A Switched Packets Network Simulator 95

Al = /IL£= 1 * 1000279 /833156 = 1.200590
1

A2 = /1L£= 1 * 1000279 / 1066882 = 0.937572
2

A3 = /1£= 1 *1000279/931979 =1.073284

Ly

The experimental results are very close to the computed results, which
prove the convergence of the system. For the current simulation time, that is 10°,
the convergence deviation is about 2.8 10 for all computed inter-arrival mean
times. A null convergence deviation is to be obtained for very long simulation
time. For example, a simulation run of 10°-10° is considered sufficient for the
current queueing system.

7. Performance report

The model used for evaluation is an ATM statistical multiplexer
(ATM_Stat Mux), which does very little I/O at the end of the simulation. This is
particularly important if one wishes to evaluate the raw performance of the
simulation kernel, because mixing significant I/O activity with computations
degrades the overall performance.

Each event processed by the simulation kernel implies the invocation of an
extended finite state machine.

Tabel 2
Simulations time for an ATM statistical multiplexer
Computer CPU RAM Events/sec. | ET/1E10*
PC Desktop Core Duo E6400 / 2Gb / cache 3.087E6 54min
2.13GHz L2 2Mb
Dell Laptop 6400 Core Duo T7200 / 2Gb / cache 3.366E6 49.5min
2.0GHz L2 4Mb

* estimated time necessary to simulate 10'° events.

It appears that the amount of available RAM has a limited impact on performance;
what are really decisive are the processor, and the clock frequency.

8. Conclusions

Most importantly, the easy building of the target application allows
focusing on problem and not on implementation details. The built-in support .for

96 Elena Uleia

an easy to extend library of base models will surely boost productivity for the
network modeller.

The simulation executable is practically statically generated with little
dynamic information (the parameters in the configuration files, seed, and
simulation time), which makes it very fast. The use of the model template class
eliminates any dynamic lookups in a hash table for the EFSM states as it happens
in most C++ simulations, or other application tools.

An interactive simulation debugger has been developed to monitor model
behaviour in detail. The simulation debugger is actually a process that has traces
attached to it. This is automatically attached to the simulation system, when the
simulation executable is generated.

Another idea applied in this implementation, was to allow actions to occur
on transitions, not only in the process states. This is a design decision to improve
the model internal behaviour.

The high performance network simulation environment is capable of
simulating, on usual hardware, 1.2E10 events within one hour, based on several
implementation optimisations [6].

The current development release is 1.0alpha6. The current body of code is
relatively small — about 5,000 lines of C++ code for the Simulation Kernel, and
about 8,000 lines of Tcl code for the GUI part. However, the size of a program is
by no means the right measure for its performance: in a benchmark involving a
statistical FIFO queue system, OSSim outperformed OMNeT++ by a factor of 15
in terms of simulation time.

REFERENCES

[1]. D.C.Schmidt, Model-Driven Engineering, in [IEEE Computer Magazine, pp.25-31, Feb.2006.

[2]. W.Kreutzer, System Simulation: Programming Styles and Languages, Addison-Wesley, 1986.

[3] G.J.Holzmann, Design and Validation of Computer Protocols, Prentice Hall, 1991.

[4]. J. Banks, J.S.Carson II, B.L. Nelson, Discrete-Event System Simulation, Prentice Hall, 1999.

[5]. Lang, Neils A. & all, ‘Distributed open simulation model development with DSOL services’.
In: ESS’2003, Proceedings 15th European Simulation Symposium 2003 — Simulation in
Industry, (Delft, The Netherlands, October 2003), SCS European Publishing House,
Germany, (ISBN 3-936150-28-1), pp. 210-218., 2003.

[6]. Elena Uleia, Simona Halunga, O.Fratu, Techniques for Implementing Real-Time, Protocols

for Mobile Communications Systems, IEEE TELSIKS 2005 Conference, September 27-30,

2005, Nis, Serbia and Muntenegro, published in Proc. of TELSIKS 2005, pp. 85-88, ISBN

85-85195-28-4.

