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PLANE HARMONIC WAVES IN ROTATING MEDIUM
UNDER THE EFFECT OF MICRO-TEMPERATURE AND
DUAL-PHASE-LAG THERMOELASTICITY

Samreen ARIFA!, Baljeet SINGH?, Adnan JAHANGIR?Y,
Nazeer MUHAMMAD?*

The present work is supposed to analyze the propagation of plane harmonic
waves in a homogeneous isotropic medium in the context of generalized dual phase
lag model of thermoelasticity. The concept micro-temperature where the
microelements have different temperatures is considered. Further, the medium is set
on rotation with some specific rotating frequency to examine the wave propagation
in rotating media like Earth. The governing equations for present model are solved
by using Normal mode analysis method. The theoretical results are obtained for
displacement, stress, temperature and micro-temperature distributions, which are
also plotted against vertical and horizontal distances. It is found that rotation
increases the absolute value of amplitude for plane wave propagating through the
medium. By increasing rotation harmonic behavior of wave also increases which in
result reduces the attenuation factor.

Keywords: Time Harmonic waves; Thermo-elasticity; Rotation; Micro-
temperature; Dual phase Lag; Normal Mode Analysis.

1. Introduction

Studies of propagation of elastic waves in a medium have long been
interest to researchers in the field of gophysics, acoustics and nondestructive
evaluation. Eringen [1] introduced a general theory of non-linear micro elastic
continuum in which the balance laws of continuum mechanics are supplemented
and the intrinsic motions of the microelements contained in a macro-volume are
taken into account. Grot [2] extended the thermodynamics of a continuum with
microstructure by assuming that the microelements have different temperatures.
To describe this phenomenon the concept of micro-temperatures is introduced.
Riha [3] presented a study of heat conduction in materials with micro-
temperatures. lesan and Quintanilla [4] developed a linear theory of thermoelastic
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material with micro-temperatures, in which the particles of the material are
subjected to classical displacement and temperature field, and may possess micro-
temperatures. lesan [5] showed that there exists coupling of micro-rotation vectors
fields with the micro-temperatures even for isotropic bodies. Later, lesan and
Quintanilla [6] modified their theory to include macro-temperature and developed
the theory of thermoelastic bodies with inner structure and micro-temperatures,
which permits the transmission of heat as thermal waves at finite speed. Several
experts worked on the extensions of the theory, some notable authors are lesan
and Scalia [7], Svanadze [8], Steeb et al. [9], Singh [10] and Kumar et al. [11].

Fourier law after changing becomes q(P,t+z,)= -[kvT(P,t+z)]. The 7, gives

relaxation time of thermal inertia and «; is the time lag due to micro-structural

interactions. Stability of DPL model was encountered by Quintanilla and Racke
[13]. Some researchers have investigated the problems on elastic deformation by
using dual-phase-lag model as, Othman et al. [14], Mondal et al. [15] and Singh et
al. [16].

Schoenberg and Censor, [17], Clarke and Burdness, [18], Destrade, [19] studied
the effect of rotation on elastic waves. Ting [20] investigated the interfacial waves
in a rotating anisotropic elastic half-space. Singh and Othman [21], Sharma and
Walia [22], Othman et al. [23], presented the effect of rotation in magneto
thermoelastic medium.

Theme of present work is to consider the concept of microstructure which
develops new type of waves that are not in classical theory of elasticity. Metals,
polymers, composites, solids, rocks, and concrete are typical media with
microstructures. More generally, most natural and manmade materials, including
engineering, geological, and biological media, possess a microstructure. In this
paper we encounter the propagation of plane harmonic waves in a homogeneous
and isotropic unbounded medium in the context of generalized DPL thermoelastic
model. We have also considered the effect of micro-temperature and rotation on
waves propagating through the medium. Firstly, we obtained the theoretical
solution of the problem by using Normal mode analysis method. Secondly results
obtained theoretically are computed by using the packages of Matlab and shown
graphically in figures. In graphical structure, we have also compared the results
obtained by dual phase lag model (DPL) with coupled theory of linear thermo-
elasticity (CL).

2. Formulation of the problem:

We use a rectangular coordinate system (x, Y, z)having origin on the surfacey =0

and z-axis pointing vertically into the medium. The equations of motion for linear
generalized thermo-elasticity in a rotating frame of reference and without body
force and heat source is given by [21]
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The dual phase heat conduction equation along with influence of micro-
temperature is

0 _ 0 . .
(14‘ TT a) KTJJ + kl (V W) = (1-’- Tq aj(pCeT +ﬂT°ekk ) (2)
The equation of micro-temperature is
ksV2W+ (kg +Ks )V (VW) —kgVT —k,w—bw =0 (3)

Where A, u, &, B,k k; (i =1,2...,6) are constitutive coefficients, p is the density of
the medium, T =T, —T,,u(x,z,t) is the displacement vector and wis the micro-

temperature vector. The constitutive relations for thermoelastic medium with
micro-temperatures are given by [5].

(4)

{O-ij = AGjjCc + 2185 = TS5 | ij o Wr rs, —KsWi j — KWj

Where oy =(i, j=1,2,3) is the force tensor, g is the first heat flux moment

vector, Q; is heat flux vector and g; is the heat flux vector, a comma in the
subscript denotes the spatial derivative, &; is the Kronecker delta and e;; is the

strain tensor given by Zeij:(ui,j+uj,i) , Introducing the following non-
dimensional variables as
(%) v'2 . cl(t,rq,rT) T

(x'i,u'i): 3 ,W‘i=V"i|o'V2=?(t',Tq:T'T)=T!T T ®)

Wherel, is standard length andc, is the standard velocity given byc, = (2 +2u)/p .

Non dimensionalizing the governing equation and dropping primes for
convenience, we get,

au; j +aquj i —HT; =[u;‘+qujQ —(Qz)ui +23ijkﬁjuk} (6)
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Displacement and micro-temperature functions could be converted in terms of
potential function by following expression,

ul:(&a_wj,usz[@_@_w}mw )
ox oz 0z oX

Where Rand v are scalar potentials functions, vector potential y . Rotation is taken
along the y-axis as Q=(0,0,0), Egs. (6-8) gives,

[aVZ—;—22+QZ]R—HT+2(22y),=O (10)
(a.V? —;—22+QZ)W—ZQQV2 R=0 (11)
a, (V2T+ rTVZT) + a3V2v—T(l+ 7 gj—(H 7 gj(aﬁzR) =0 (12)
o—Vzv—,b’zT—(ﬂ3+ﬂ4§]v=O (13)

3. Harmonic Solution of the Problem

Now let us consider that each field variable is propagating through the medium in
terms of harmonic waves as,

{RTV,w}(X, y,t)={R*,T*,v*,x//*}(x)exp(a)t+iax) (14)
Where wis the angular frequency, ais the wave number and R*, T*,v",i"are the
amplitudes. By using equation (14) governing equations can be represented as,

(aD®+A )R —HT + A" =0 (15)

(e.D?+ A )y"~ AR =0 (16)

(D77, + A ) T +(3D* —3” Jv* +(~y D’ + A JR* =0 (17)
(eD°-A W -BT =0 (18)

Where A =—aa®-w* +Q?, A =20,w, A=-gga®-W +Q% A =20w 7 =(1+70),

7 =(0+140°), A =—ad’ (L+710), A =@’ (0+0°),0= B+ B A =08’ — By~ B0

For non trivial solution the determinant of the above equations need to be zero.
[D -AD®+BD®-CD*+ED*~F] =0 (20)

In factorized form,

(D? —k?)(D? —kZ)(D? —kZ)(D? —kZ)(D? —k){v",y",R*, T }z) =0 (21)
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Wherek;, 1=12,..,5gives the roots of equation (21)

A=0,0g:B= (9892 +0:09 — 95911); C= (9398 +0299 + 091910 — 91205 — 96911);
D = (9495 + 9399 + 91092 — 91395 — 97911 — 91296 ) E = (9499 + 91093 — 91396 — 91297 )
F =(94910 —91397), 0, =pa.a; 9 =(A3a0‘2771 +amAa, + Aaa, - Ha47z-2);

9s = (A Psm + AsAsa+ A Ayam + A Asa, —Hoymp A3+ HhAgary ),
0s =(AAA +AMA +HAA) 05 =0a0i0s =(aahy —aa0d”); 0y = Ay,

O =(~Aag +A0); 0 =20, Gio=—AsA 01 =—Soaag; i =—SoAa - A%,
O3 = (—ﬂzAiAs +5AA,),
The solution of equation (21), has the form

k. z

. L Kz _, O -kz , & - . k. z
R*=>Mpe " T =) HMpe ™ p =) HyMpe N V=

ZS: Hy,Mpe 17 (22)
n-1 1 N1 n-1
Where M, are some parameters to be determined,
A mZ[aaokh(%awao)kﬁ+A1A3+A2A4]
(aok,$+A3) [H(a0k§+A3ﬂ
(9uks + 010k + 03
T g5k~ GokZ + 0o
4. The boundary conditions
The boundary conditions on the plane z=0are:
(1) The surface of the half-space obeys,
o,,(%,0,t) = f exp(wt +iax), o, (x,0,t)=0 (23)
(2) The surface is subjected to a thermal shock, 88_12'()( 0,t)=0 (24)
(3) Normal component of heat flux moment isq,, (x,0,t)=0,q, (x,0,t)=0 (25)

By using equation (4) we have obtained the following set of equations,

_ 5 -k z _ 5 k7 0T -k z
Oy :ZYlnMne N Gy :ZYZnMne : EZZYSnMne :
n=1 n=1 n=1
5 —knz 5 —knz
Q, = Z‘,Y4nMne q, = Z‘,YSnMne (26)
n=1 =1

Where



18 Samreen Arifa, Baljeet Singh, Adnan Jahangir, Nazeer Muhammad

Yo =[Aia(ia—kyHyp )+ (4 +22)k, (K, +iaH,, )~ AToH1]
Yon =[ =k, (la—k,Hy, ) —ia(k, +iaH,, ) | Yz, =[-Hyk,]
Yan :[_K4(kr? —az)—kr% (Ks + Ke)]Hsn Yo, =[-Kk,Hy, — gk, Hap ]

Applying the boundary conditions Egs. (23) — (25) and using Egs. (26), we
obtained the following matrix transform,

Yo Y Yig Y4 Yis M, fl*
Y21 Y22 Y23 Y24 Y25 M, 0
Yo Yo Ya3 Yaq Yo5||Ma|=| 0
Yar Yao Yoz Yag Vs || My 0
Y51 Y52 Y53 Y54 Y55 Mg 0

By solving the above matrix we can obtained the values of five
constantsM,, n=12,..,5.

5. Numerical Results and Discussion

The evaluated theoretical results in equations (22) are computed numerically by
using the relevant parameters for the case of magnesium crystal. The relevant
physical values of elastic constants and micro-temperatures are [13]

p=174x10kg m>,1=9.4x10"Nm~?, C; =1.04x10°NmKg K, T, = 0.298,

1=40x10"Nm2,y=7.779x10°N, K =1.7x10*Nsec K b=0.15x10°N
The microtemperature parameters are

k, =0.0035Ns™,k, =0.045Ns ™ k, = 0.055NK 's™,

k, =0.064Ns™'m? k, = 0.075Ns™'m?, Kk, =0.096Ns'm*
The change in amplitude of field variables against vertical component of distance
for generalized thermo-elastic medium is represented graphically. Figs. 1-6 show
variation in waves due to different rotational frequency of the medium. Figs. 7-12
are representing the comparison between dual phase lag equation and coupled
heat conduction equation in presence and absence of rotational frequency.
Fig. 1-2 represents the components of displacement distribution function against
vertical distance from the surface of medium. It is observed that, absolute value of
horizontal component of displacementu, obtains maximum amplitude near surface
and in the first mode along z axis. Highest absolute value of amplitude is found
during 2 =0.02, indicating that rotation is having increasing effects. Similarly for
the case of vertical component of displacementu,, rotation increases the

amplitude of wave propagating through the medium. From graphical
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representation, it can be seen that rotation is also increasing the harmonic nature
of curves propagating though the medium and reduces the attenuation factor.
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Fig. 1 Horizontal components for different €3 Fig. 2 Vertical components for different QQ
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Fig. 3 depict the influence of rotation on micro-temperature vector, amplitude of
wave is directly proportional to rotational frequency of the medium i.e., maximum
amplitude is obtained for the case of 2 =0.02. Harmonic behavior of curve is also
increasing by increasing the rotational frequency of the medium about y-axis.
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Fig. 5 Normal stress for different Q Fig. 6 Tangential stress for different (3

Figs. 4, 5 and 6 are analyzing the behavior of waves for temperature distribution
functionT , normal stresso,, and tangential component of stresso,,. Curves in

each graph shows that, harmonic nature of curve increases as the rotational
frequency of the medium increases. Rotational frequency of mediums is having
increasing effects on absolute value of amplitudes for each variable. Curves
without rotation converge to zero earlier, representing that rotation decreases the
factor responsible for decaying of wave.
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Fig. 7 Comparison of U, for DPL and CL theory. Fig. 8 Comparison of U, for DPL and CL theory.

Figures 7-12, gives the relation between dual phase lag (DPL) and coupled linear
theory of heat conduction, and these figures also predict the effect of rotation on
these two thermo elastic theories. Fig. 7 indicates that the curves obtained in
context of DPL model are having high amplitudes as compared to CL model. In
both the theories rotation increases the harmonic behavior of wave propagating
through the medium and maximum amplitude is obtained for2=0.01. Relation
between DPL and CL model along with rotation for vertical component of
displacement is represented in fig. 8. Maximum amplitude is obtained during CL
model and forQ2=0.01. Rotation increases the harmonic behavior of curves
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propagating through the medium and decreases the attenuation factor so the
curves during 2 =0.01will converge to zero slower.
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Fig. 9 Comparison of W for DPL and CL theory. Fig. 10 Comparison of T for DPL and CL theory.

Figure 9 gives analysis of micro-temperature distribution function in which
rotation increases the harmonic nature of wave propagating through the medium.
Finally, all curves converge to zero as distance from the surface of the medium
increases. Temperature distribution function is represented in fig. 10, maximum
amplitude of curve for both models of elastic theories is obtained during the case
ofQ=0.01and maximum value of amplitude is obtained in context of DPL

model.
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Fig.11 o, for DPL and CL theory. Fig.12 o, for DPL and CL theory.

Fig. 11 gives detailed analysis of normal component of stress distribution
functiono,, . ForQQ=0curves for absolute values of amplitude obtained during
CL model are having greater values then the curves for DPL model. During the
case of Q=0.01the results are reversed, i.e., curves for DPL model is of high
amplitude then the curves for CL model. Same as that of normal component of
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stress, tangential stress is having increasing effect of rotation for DPL model and

decreasing effects for CL model. In presence of rotational frequency Curves

obtained in context of DPL model are higher than the curves during CL model.
3D figures 13-18 are very important in depicting the response of curves along
horizontal and vertical components of distance. The curves move harmonically in
the form of normal modes along x-axis and in terms of decaying waves along z-

axis.
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6. Conclusions

Following are some main points which could be concluded after
considering the solutions of the problem:
1) All curves obtained converge to zero as depth from the surface of the medium
Increases.
2) Rotation is having increasing effect on each field variable for DPL while
decreasing effect in context of CL model.
3) Rotational effect increases the harmonic behavior of waves propagating
through the medium i.e., it increases the dispersive nature of medium.
4) Attenuation factor for vertical component of displacement, micro-temperature
and temperature distribution function for CL model is stronger than that of DPL
model. Rotation is responsible for reduction in attenuation factor for waves in
both the theories of heat conduction.
5) All the curves obtained in context of DPL model are having high amplitude as
compared to the curves studied by considering CL model.
6) 3D curves predicts that the curves are moving in the form of normal modes
along horizontal and moves in the form of decaying waves along vertical
component of distance.
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