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PLANE HARMONIC WAVES IN ROTATING MEDIUM 

UNDER THE EFFECT OF MICRO-TEMPERATURE AND 

DUAL-PHASE-LAG THERMOELASTICITY  

Samreen ARIFA1, Baljeet SINGH2, Adnan JAHANGIR3*, 
Nazeer MUHAMMAD4 

The present work is supposed to analyze the propagation of plane harmonic 

waves in a homogeneous isotropic medium in the context of generalized dual phase 

lag model of thermoelasticity. The concept micro-temperature where the 

microelements have different temperatures is considered. Further, the medium is set 

on rotation with some specific rotating frequency to examine the wave propagation 

in rotating media like Earth. The governing equations for present model are solved 

by using Normal mode analysis method. The theoretical results are obtained for 

displacement, stress, temperature and micro-temperature distributions, which are 

also plotted against vertical and horizontal distances. It is found that rotation 

increases the absolute value of amplitude for plane wave propagating through the 

medium. By increasing rotation harmonic behavior of wave also increases which in 

result reduces the attenuation factor.  

Keywords: Time Harmonic waves; Thermo-elasticity; Rotation; Micro-

temperature; Dual phase Lag; Normal Mode Analysis. 

1. Introduction 

Studies of propagation of elastic waves in a medium have long been 

interest to researchers in the field of gophysics, acoustics and nondestructive 

evaluation. Eringen [1] introduced a general theory of non-linear micro elastic 

continuum in which the balance laws of continuum mechanics are supplemented 

and the intrinsic motions of the microelements contained in a macro-volume are 

taken into account. Grot [2] extended the thermodynamics of a continuum with 

microstructure by assuming that the microelements have different temperatures. 

To describe this phenomenon the concept of micro-temperatures is introduced. 

Riha [3] presented a study of heat conduction in materials with micro-

temperatures. Iesan and Quintanilla [4] developed a linear theory of thermoelastic 
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material with micro-temperatures, in which the particles of the material are 

subjected to classical displacement and temperature field, and may possess micro-

temperatures. Iesan [5] showed that there exists coupling of micro-rotation vectors 

fields with the micro-temperatures even for isotropic bodies. Later, Iesan and 

Quintanilla [6] modified their theory to include macro-temperature and developed 

the theory of thermoelastic bodies with inner structure and micro-temperatures, 

which permits the transmission of heat as thermal waves at finite speed. Several 

experts worked on the extensions of the theory, some notable authors are Iesan 

and Scalia [7], Svanadze [8], Steeb et al. [9], Singh [10] and Kumar et al. [11]. 

Fourier law after changing becomes  , qq P t     , Tk T P t      . The q gives 

relaxation time of thermal inertia and T is the time lag due to micro-structural 

interactions. Stability of DPL model was encountered by Quintanilla and Racke 

[13]. Some researchers have investigated the problems on elastic deformation by 

using dual-phase-lag model as, Othman et al. [14], Mondal et al. [15] and Singh et 

al. [16]. 

Schoenberg and Censor, [17], Clarke and Burdness, [18], Destrade, [19] studied 

the effect of rotation on elastic waves. Ting [20] investigated the interfacial waves 

in a rotating anisotropic elastic half-space. Singh and Othman [21], Sharma and 

Walia [22], Othman et al. [23], presented the effect of rotation in magneto 

thermoelastic medium. 

Theme of present work is to consider the concept of microstructure which 

develops new type of waves that are not in classical theory of elasticity. Metals, 

polymers, composites, solids, rocks, and concrete are typical media with 

microstructures. More generally, most natural and manmade materials, including 

engineering, geological, and biological media, possess a microstructure. In this 

paper we encounter the propagation of plane harmonic waves in a homogeneous 

and isotropic unbounded medium in the context of generalized DPL thermoelastic 

model. We have also considered the effect of micro-temperature and rotation on 

waves propagating through the medium. Firstly, we obtained the theoretical 

solution of the problem by using Normal mode analysis method. Secondly results 

obtained theoretically are computed by using the packages of Matlab and shown 

graphically in figures. In graphical structure, we have also compared the results 

obtained by dual phase lag model (DPL) with coupled theory of linear thermo-

elasticity (CL).  

2. Formulation of the problem: 

We use a rectangular coordinate system  , ,x y z having origin on the surface 0y   

and z-axis pointing vertically into the medium. The equations of motion for linear 

generalized thermo-elasticity in a rotating frame of reference and without body 

force and heat source is given by [21] 
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      2 . 2
i

u u u u u                
 

 (1) 

The dual phase heat conduction equation along with influence of micro-

temperature is 

    , 11 1jj q e kkK T k w c e
t t

   


    
          

    
 (2) 

The equation of micro-temperature is 

    2
6 4 5 3 2 0k w k k w k k w bw           (3) 

Where , , , , , ik k     1, 2...,6i  are constitutive coefficients,  is the density of 

the  medium, 0tT T T  ,  , ,u x z t  is the displacement vector and w is the micro-

temperature vector. The constitutive relations for thermoelastic medium with 

micro-temperatures are given by [5]. 
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Where ( , 1,2,3)ij i j    is the force tensor, ijq is the first heat flux moment 

vector, iQ  is heat flux vector and iq is the heat flux vector, a comma in the 

subscript denotes the spatial  derivative, ij is the Kronecker delta and ije is the 

strain tensor given by  , ,2 ij i j j ie u u  , Introducing the following non-

dimensional variables as 
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Where l is standard length and 1c is the standard velocity given by  1 2 /c     . 

Non dimensionalizing the governing equation and dropping primes for 

convenience, we get, 

  .. 2
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Displacement and micro-temperature functions could be converted in terms of 

potential function by following expression, 

 1 3, ,
R R

u u w
x z z x

 


      
        

      
 (9) 

Where R and are scalar potentials functions, vector potential . Rotation is taken 

along the y-axis as  0, ,0 ,   Eqs. (6-8) gives, 
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    (13) 

3. Harmonic Solution of the Problem 

Now let us consider that each field variable is propagating through the medium in 

terms of harmonic waves as,  

        , , , , , , , , expR v x y t R T v x t iax         (14) 

Where  is the angular frequency, a is the wave number and , , ,R v     are the 

amplitudes. By using equation (14) governing equations can be represented as, 

 2
1 2 0D A R H A             (15) 

     2
3 4 0D A A R          (16) 

      2 2 2 2
2 1 5 3 3 4 2 6 0              D A D a v D A R  (17) 
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2
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 2
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For non trivial solution the determinant of the above equations need to be zero. 

 10 8 6 4 2[D D D D D ] 0A B C E F         (20) 

In factorized form, 
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1 2 3 4 5
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Where ,ik 1,2,..,5i  gives the roots of equation (21) 
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The solution of equation (21), has the form 
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Where nM are some parameters to be determined, 
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 4. The boundary conditions 

The boundary conditions on the plane 0z  are: 

(1) The surface of the half-space obeys, 

   ,0, exp( ), ,0, 0zz zxx t f t iax x t      (23) 

(2) The surface is subjected to a thermal shock,  , 0, 0
T

x t
z





 (24) 

(3) Normal component of heat flux moment is    ,0, 0, ,0, 0zz zq x t q x t   (25) 

By using equation (4) we have obtained the following set of equations, 
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Where 
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Applying the boundary conditions Eqs. (23) – (25) and using Eqs. (26), we 

obtained the following matrix transform, 

11
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  

By solving the above matrix we can obtained the values of five 

constants ,nM  1, 2,..,5n  .  

 5. Numerical Results and Discussion  

The evaluated theoretical results in equations (22) are computed numerically by 

using the relevant parameters for the case of magnesium crystal. The relevant 

physical values of elastic constants and micro-temperatures are [13] 
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The microtemperature parameters are  
1 1 1 1

1 2 30.0035 , 0.045 , 0.055 ,k Ns k Ns k NK s     

1 2 1 2 1 2
4 5 60.064 , 0.075 , 0.096k Ns m k Ns m k Ns m      

The change in amplitude of field variables against vertical component of distance 

for generalized thermo-elastic medium is represented graphically. Figs. 1-6 show 

variation in waves due to different rotational frequency of the medium. Figs. 7-12 

are representing the comparison between dual phase lag equation and coupled 

heat conduction equation in presence and absence of rotational frequency. 

Fig. 1-2 represents the components of displacement distribution function against 

vertical distance from the surface of medium. It is observed that, absolute value of 

horizontal component of displacement 1u obtains maximum amplitude near surface 

and in the first mode along z axis. Highest absolute value of amplitude is found 

during 0.02 , indicating that rotation is having increasing effects. Similarly for 

the case of vertical component of displacement 3u , rotation increases the 

amplitude of wave propagating through the medium. From graphical 
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representation, it can be seen that rotation is also increasing the harmonic nature 

of curves propagating though the medium and reduces the attenuation factor. 
 

 

 
Fig. 1 Horizontal components for different              Fig. 2 Vertical components for different   

 

Fig. 3 depict the influence of rotation on micro-temperature vector, amplitude of 

wave is directly proportional to rotational frequency of the medium i.e., maximum 

amplitude is obtained for the case of 0.02 . Harmonic behavior of curve is also 

increasing by increasing the rotational frequency of the medium about y-axis.  
 

 

 
Fig. 3 Microtemperature vector for different            Fig. 4 Temperature for different   
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Fig. 5 Normal stress for different                        Fig. 6 Tangential stress for different  

 

Figs. 4, 5 and 6 are analyzing the behavior of waves for temperature distribution 

functionT , normal stress zz and tangential component of stress xz . Curves in 

each graph shows that, harmonic nature of curve increases as the rotational 

frequency of the medium increases. Rotational frequency of mediums is having 

increasing effects on absolute value of amplitudes for each variable. Curves 

without rotation converge to zero earlier, representing that rotation decreases the 

factor responsible for decaying of wave. 

 
Fig. 7 Comparison of 1u for DPL and CL theory.  Fig. 8 Comparison of 3u for DPL and CL theory. 

Figures 7-12, gives the relation between dual phase lag (DPL) and coupled linear 

theory of heat conduction, and these figures also predict the effect of rotation on 

these two thermo elastic theories. Fig. 7 indicates that the curves obtained in 

context of DPL model are having high amplitudes as compared to CL model. In 

both the theories rotation increases the harmonic behavior of wave propagating 

through the medium and maximum amplitude is obtained for 0.01 . Relation 

between DPL and CL model along with rotation for vertical component of 

displacement is represented in fig. 8. Maximum amplitude is obtained during CL 

model and for 0.01 . Rotation increases the harmonic behavior of curves 
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propagating through the medium and decreases the attenuation factor so the 

curves during 0.01 will converge to zero slower. 

 

    
Fig. 9 Comparison of w for DPL and CL theory.  Fig. 10 Comparison ofT for DPL and CL theory. 

Figure 9 gives analysis of micro-temperature distribution function in which 

rotation increases the harmonic nature of wave propagating through the medium. 

Finally, all curves converge to zero as distance from the surface of the medium 

increases. Temperature distribution function is represented in fig. 10, maximum 

amplitude of curve for both models of elastic theories is obtained during the case 

of 0.01 and maximum value of amplitude is obtained in context of DPL 

model. 
 

   
             Fig.11 zz for DPL and CL theory.                  Fig.12 xz for DPL and CL theory.  

 
Fig. 11 gives detailed analysis of normal component of stress distribution 

function zz . For 0 curves for absolute values of amplitude obtained during 

CL model are having greater values then the curves for DPL model. During the 

case of 0.01 the results are reversed, i.e., curves for DPL model is of high 

amplitude then the curves for CL model. Same as that of normal component of 
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stress, tangential stress is having increasing effect of rotation for DPL model and 

decreasing effects for CL model. In presence of rotational frequency Curves 

obtained in context of DPL model are higher than the curves during CL model. 

3D figures 13-18 are very important in depicting the response of curves along 

horizontal and vertical components of distance. The curves move harmonically in 

the form of normal modes along x-axis and in terms of decaying waves along z-

axis. 
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Fig. 13, 3D curves, Horizontal component of          Fig. 14, 3D curves, Vertical component of 

displacement                                                             displacement            
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                  Fig. 15,  3D curves Micro-temperature                                          Fig. 16,  3D curves  Temperature distribution 

 



Plane harmonic waves in rotating medium […] temperature and dual-phase-lag thermoelasticity23 
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          Fig. 17,  3D curves  Normal Component of Stress                     Fig. 18,  3D curves, Tangential component of stress 

 

 6. Conclusions 

 Following are some main points which could be concluded after 

considering the solutions of the problem: 

1) All curves obtained converge to zero as depth from the surface of the medium 

increases. 

2) Rotation is having increasing effect on each field variable for DPL while 

decreasing effect in context of CL model. 

3) Rotational effect increases the harmonic behavior of waves propagating 

through the medium i.e., it increases the dispersive nature of medium. 

4) Attenuation factor for vertical component of displacement, micro-temperature 

and temperature distribution function for CL model is stronger than that of DPL 

model. Rotation is responsible for reduction in attenuation factor for waves in 

both the theories of heat conduction.  

5) All the curves obtained in context of DPL model are having high amplitude as 

compared to the curves studied by considering CL model. 

6) 3D curves predicts that the curves are moving in the form of normal modes 

along horizontal and moves in the form of decaying waves along vertical 

component of distance. 
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