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APPROXIMATE K-G-DUALS IN HILBERT SPACES

Jahangir Cheshmavar®, Maryam Rezaei Sarkhaei®

In this paper we provide some characterizations of K-g-frames in Hilbert
spaces and then we give an equivalent condition for the subsequence of a K-g-frame to
make it a K-g-frame. Finally, we obtain some new results of approximate K-g-duals in
B(H,H;), the collection of all bounded linear operators from the Hilbert space J to its
closed subspace 3;.
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1. Introduction and Preliminaries

The concept of frames in Hilbert spaces was introduced by Duffin and Schaeffer [8] to
study some problems in nonharmonic Fourier series and then reintroduced by Daubechies
et al. [7] to study the connection with wavelet and Gabor systems. For special applications,
various generalizations of frames were proposed, such as quasi-affine frames by Hernandez
et. al. [12] to characterize various affine-like and Gabor systems to determine their frame
properties, frame of subspace and fusion frames by Casazza et. al. [2, 4] to deal with
hierarchical data processing, g-frames by Sun [14] as generalization of frames, K-frames by
Gavruta [10] to study the atomic systems with respect to a bounded linear operator K in
Hilbert spaces. The concept of K-g-frames, which is more general than that of K-frames,
was considered in [1, 15, 16]. After that, some properties of K-frames were extended to
K-g-frames by Hua and Huang [13].

One of the main reason for considering frames and any type of generalization of
frames, is that they allow each element in the space to be non-uniquely represented as
a linear combination of the frame elements, by using their duals; however, it is usually
complicated to calculate a dual frame explicitly. For example, in practice, one has to invert
the frame operator, in the canonical dual frames, which is difficult when the space is infinite-
dimensional. One way to avoid this difficulty is to consider approximate duals. The concepts
of approximately dual frames have been studied since the work of Gilbert et al. [11] in the
wavelet setting, see for example Feichtinger et al. [9] for Gabor systems and reintroduced in
a systematic way by Christensen and Laugesen [6] for dual frame pairs, to obtain important
applications of Gabor systems, wavelets and in the general frame theory.

In this paper, the importance of studying K-g-frames is pointed out; with this moti-
vation, we obtain new K-g-frames and approximate K-g-duals and derive some results for
the approximate duality of K-g-frames and their redundancy.

In the rest of this section, we will review some notions related to frames, K-frames
and K-g-frames. Some properties of K-g-frames, such as the advantage of K-g-frames and
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the redundancy are found in Section 2. In Section 3 we define approximate duality of K-
g-frames, notice some important properties of approximate K-g-duals, and extend some
results of approximate duality of frames to K-g-frames. We also use some ideas of [6] to
Propositions 3.1 and 3.2. Section 4 concludes the paper.

Throughout this paper, J is a subset of the integers set Z; H is a separable Hilbert
space; {H;}jes is a sequence of closed subspaces of H; B(H, ;) is the collection of all
bounded linear operators from H into J;, with B(H,H) denoted as B(H); for K € B(H),
R(K) is the range of K, Ig(k) is the identity operator on R(K), the adjoint of K is K*,
and the number of elements in I C J is |I|. The space I ({H;};ecs) is defined by

P ({3} en) = S Uitier o £ €3G, I1{FYieal? = D 1517 < 400 p s (1)

jeJ
with the inner product given by

{iYier {gities) =D (1 9)- (2)

jeJ

Then 12 ({H;},ecs) is a Hilbert space with pointwise operations. In the sequel, some termi-
nology related to Bessel and g-Bessel systems, frames, g-frames and K-frames is recalled.

A sequence {f;};ecs contained in H is called a Bessel system for H, if there exists
a positive constant B such that, for all f € 3, 37, ; [(f, Ii? < BJIf||* ; the constant B
is called a Bessel bound of the system. If, in addition, for K € B(JH), there exists a lower
bound A > 0 such that, for all f € H, A|K*f||*> < > jes IS, fi)|?, the system is called a
K-frame for H. The constants A and B are called K-frame bounds.
Remark 1: If K = I, the K-frames are called ordinary frames.

Recall that if {f;};cs is a frame for 3(, the frame operator S : H — I, defined by
Sf=2>2esf, fi)f; is bounded, invertible and self-adjoint. This provides every element
f € H with the expansions

F=> ST =Y 1S (3)

jeJ jeJ

The frame {S™!f;} ;e is called the canonical dual frame of {f;};cs.

A sequence {A; € B(H,H;) : j € J} is called a g-Bessel system for H with respect
to H; if there exists a positive constant B such that, for all f € H

S FI? < BISI (4)

JjeJ
The constant B is called a g-Bessel bound of the system. If, in addition, there exists a
lower bound A > 0 such that, for all f € H, A|f|?* < djed |A; f||?, the system is called a
g-frame for 3 with respect to {3(;},cs. The constants A and B are called g-frame bounds.
If A = B, the g-frame is said to be a tight g-frame. For more information on frame theory,
basic properties of the K-frames and g-frames, we refer to [5, 10, 14]. Now, we introduce
the pseudo-inverse operator and the concept of K-g-frames, which is more general than the
concept of g-frames.

Definition 1.1. [5, p. 56] Let 3 be a Hilbert space. Suppose that U : H — H; is a
bounded linear operator with closed range R(U). Then there exists a bounded linear operator
Ut : Hy — K for which UUTf = f, Yf € R(U). The operator UT is called the pseudo-

inverse operator of U.
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Definition 1.2. [1, Theorem (2.5)] Let K € B(H) and A; € B(H,H;) be given, for any
j € J. A sequence {Aj}jes is called a K-g-frame for H with respect to {H;} ey, if there
exist constants 0 < A < B < oo such that

A FIP < NI FIP < BIFIP, vf €3t (5)
jeJ
The constants A and B are called the lower and upper bounds of the K -g-frame, respectively.
A K-g-frame {A;}jes is said to be tight if there exists a constant A > 0 such that

DA IR = AKTfI, VS €3 (6)
je

Remark 2: If K = Iy, the K-g-frames are just the ordinary g-frames.

Now we introduce some of the main operators associated with a K-g-frame. Suppose
that {A;}jes is a K-g-frame for 3 with respect to {J;},;c;. Obviously, it is a g-Bessel
sequence, so we can define the bounded linear operator T : £2 ({H;}jes) — H as follows:

Ta({g;}ies) = Y Nigs, Hgjties € 2 ({3} jes) - (7)
jeJ
The operator T} is called the synthesis operator (or pre-frame operator) for the K-g-frame
{A;}jes. The adjoint operator

Ty H = P({3}jes),  Taf ={Ajf}Yjes, Vf eI, (8)
is called the analysis operator for the K-g-frame {A;};c;. The frame operator for the
K-g-frame {A;},c is defined as Sy = Tp\TY, therefore

St H = H,  Saf=Y_ NA;f, Vf e (9)
jeJ
2. Some properties of K-g-frames in Hilbert spaces

The importance of studying K-g-frames is that they are more general than g-frames
in the sense that the lower frame bound holds only for the elements in the range of K. Also,
as we will see in the following examples, we can construct a K-g-frame with the help of a
g-Bessel sequence which is not a g-frame.

Example 1: Let {e;}32; be an orthonormal basis for 3 and 3; := span{e;,ej11}, j =
1,2,3,---. Define the operator Aj : H — H; as follows:

Ajf = ([, ej+eja)lej +ejp), VeI
Then,

2> I, €5 +ejn)l?

Jj=1

>l
j=1

(¢f, el +14f, ejead))?

IA
[\
[M]8

.
I
—

uMg

|<f7 e;) |2+4Z\ I, ejn)f?

j=1

IN

8||f||2
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That is, {A;},cs is a g-Bessel sequence. However, {A;};c; does not satisfy the lower g-
frame condition, because if we consider the vectors g, := >, (=1)""te,, m € N, then
lgm > = m, for all m € N. Fix m € N, we see that

0, ji>m
(gmrej +ejp) =9 (D)™, j=m
0, j<m
Therefore,
o0 o0 2
D IAgml* =2 gm €5 +ej41)> =2 = EllngIQ, Vm €N,
j=1 j=1

that is, {A;};jes does not satisfy the lower g-frame condition. Now define

K:H—-H, Kf:Z<f, 6j>(€j+€j+1), Vf e H.
j=1

Then {A,} ey is a K-g-frame for H with respect to {H;};c, because

IK*fII” = (f, KK*f) = <f, > (K, €j>(6j+€j+1)>
=1

oo
= fa €; +e]+1 Ke]a Z f, €j +€]+1 <€j +ejt1, f>
j=1 j=1

8

= I(f, e + e < Z 1A £1I* < 8IIF11%,

j=1

=

<.

as desired.

Example 2: Let {e;}72; be an orthonormal basis for } and

H; = span{esj_2,e35-1,€3;}, j=1,2,3,--.
Define the operator A; : 5 — JH; as follows:

A f=(f, er)er + (f, ea)ea + (f, es)ez and A;f =0, for j > 2.

By a simple computation {A;};cs is not a g-frame for JH with respect to H;, because, if we
take f = ey, then

IFI7 =1 and D [IA;f]° = [[Aveal| =

j=1
Define now the operator K : H — H as follows:
Key =€, Key =ey and Ke; =0, for j > 3.

It is easy to see that, K*e; = e;, K¥es = ey and K*e; = 0,for j > 3. We show that
{A;};es is a K-g-frame for H with respect to J(;. In fact, for any f € 3, we have

LK £ = 1D (F e K esl® = [(f, en)” +1(F, e2)l,

j=1
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and

IALFI1? = [[(f, en)er + (f, ex)ea + (f, es)es|?

> oIA )P
j=1

[(f, en)]? + [(f, e2)” +1{f, es)]* = | K*fII
Therefore, for any f € H

o0
2 2 2
I £ < DA FI1P < NP,
j=1
as desired. An obvious natural question is whether there exists a class of operators K which
can guarantee the existence of g-frames for I with respect to {J(;};cs. The following simple
proposition answer this query.

Proposition 2.1. Let {A; € B(H,H;) : j € J} be a K-g-frame for H with respect to
{H;}jcs. Then {A;}jes is a g-frame for H with respect to {H;} ;e if K* is bounded below.
Furthermore, if {A;};es is a tight K-g-frame for 3 with respect to {H;};ecs with K-g-frame
bound A1, then {A;}jcs is a tight g-frame with g-frame bound Ay if and only if the right
inverse of the operator K is %K*.
Proof. Since K* is bounded below, by definition, there exists a constant C' > 0 such that,
IK*fll = ClIfIl, Vf € H.
Therefore, for all f € H,
ACP|IFIP < ANK*FI2 < DI f11 < BIIFIP,
jeJ

that is, {A;}jes is a g-frame for H with respect to {HH;},;cs. Now if {A;}jcs is a tight
g-frame with bound Az, then

DOIAGFI? = Aol fIP, VF € 3

jed
Since {A,} ;e is a tight K-g-frame with bound A1, we have A ||K* f||> = As| f||?, Vf € K,
that is,

A
(KK*f, f) = @fﬂ f), Vf e

Therefore, KK* = ‘g—flg{, i.e., the right inverse of K is %K *. The converse is straightfor-
ward. O

One of the important property of the frame theory is the possibility of redundancy.
For example, in [3, Theorem (3.2)] the authors have provided sufficient conditions on the
weights in a fusion frames to remain a fusion frames, when some elements are removed. The
following proposition is a generalization of [5, Proposition (1.5.6)].

Proposition 2.2. Let K € B(H), such that K* is bounded below with a constant C' > 0
and let {A; € B(H,H;) : j € J} be a normalized K-g-frame with lower bound A > %, i.e.,
|A;]l = 1,Vj € J. Then for each subset I C J with |I| < AC?, the family {A;};e 1 is a
K-g-frame for H with respect to {H;}jes with lower K -g-frame bound AC? — |I|.

Proof. Given f € H,
DA< D NG IPIANZ = A

jerI jeI
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Thus

D AP = ALK F? — )P

jeJN\I
> AC?|IfI” = 11IIF11?
= (AC? — IS

Note that, because of the generality of K-g-frames, the frame operator of a K-g-
frame is not invertible on H in general, but it is invertible on a subspace R(K) C H. In the
following Theorem, we provide an equivalent condition for the subsequence of a K-g-frame
to make it a K-g-frame.

Theorem 2.1. Let I C J be given. Suppose that {A; € B(H,H;) : j € J} is a K-g-
frame with bounds A, B and K-g-frame operator Sy j. Then the following statements are
equivalent:

(i) Irx) — SX’{,SAJ is boundedly invertible on R(K),

(ii) The sequence {A;};jer s a K-g-frame for 3 with respect to {3;};cs with lower
371

[Sx SIRIE= (Tm(xcy—Sx 5 Sa, )~ M2

K-g-frame bound |

Proof. Denote the frame operator of the K-g-frame {A;};c 1 by Sa,\7. Since

Sang = Sas — a1 = Sas(Irx) — Sy Sa.1),

we have that, {A;};cns is a K-g-frame if and only if Sy j\; is boundedly invertible and
hence if and only if Ig(x) — SX,IJS 'a,1 is boundedly invertible.

Now, assume that Ip(x) — SX}]SAJ is invertible. Since {A;} e is a K-g-frame for H with
respect to {3(;},es with bounds A and B, for any f € 3,

f=858nf

=SSN DoMAF+ D AAf

jel JEINI

=Sy ySaaf+ Y SALAA L
jeJIN\I

Hence we have, (In(x) — Sy Y Sa0)f =Y ¢ i, SUNIA;f.
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Therefore we obtain

I(Ixcrey = SxySan) fl =1 D SyLAGAf]|
JEINI
= swp (Y SyLATASL g)l
gGJ—C,HgH:l jGJ\I
= sup | Y (Af, AS )l
gEj’C,HgH:l jGJ\I

A

< swp Y A FIIASK Sl

g€, |lg|l=1 jeJ\I

[N

1
2

< sup > Il > 11885 hal’?

geX,|lgll=1 jEINI jEINI

<VBISHI Yo 1M

JjeJN\I

where the last inequality is deduced by (5). Therefore,

I(Ixcrey = Sa5San) FIl < BY2ISKLICY S A £1%)2. (10)
JEINT

Nl=

It follows that I k) — SX}JSAJ is well defined in H. If Ix(x) — SX,%JSAJ is invertible on I,
then for any f € H we have

I I < 1K™ (Irgrey = Sx 5880 - ey = Sy s Sa fl- (11)
From (10) and (11) it follows that

Bfl
ISx S PIE* Ty — Sy oy San) I

I FI12 < D A FIP, VF € 3,

JEJINI

which completes the proof. O

One of the main problem in the K-g-frame theory is that the interchangeability of
two g-Bessel sequence with respect to a K-g-frame is different from a g-frame. The following
characterization of K-g-frames is given [1, Theorem (2.5)].

Proposition 2.3. Let K € B(H). Then the following are equivalent:
(1) {A,}jes is a K-g-frame for H with respect to {H;}jecs;
(i) {A;}jes is a g-Bessel sequence for 3 with respect to {3(;};c; and there exists a g-
Bessel sequence {I';};cg for I3 with respect to {3(;};cs such that

Kf=Y AT;f, VfeH. (12)

jeJ

The positions of the two g-Bessel sequence {A;},;c; and {I';};es in (12) are not
interchangeable in general. However, there exists another type of dual such that {A;};cs
and a sequence derived by {I';};c; are interchangeable in the subspace R(K) of H. For
K € B(H), if R(K) is closed, then the pseudo-inverse KT of K exists.



118 Jahangir Cheshmavar, Maryam Rezaei Sarkhaei

Theorem 2.2. [13, Theorem (3.3)] Suppose that {A;}jec; and {I';}jec; are g-Bessel se-
quences as in (12). Then there exists a sequence {O;}jc; = {T;(K" |x(x))}jes derived by
{T'j}jes such that

F=Y_N0;f, VfeRK). (13)
jeJ

Moreover, {A;}jes and {O;};cs are interchangeable for any f € R(K).

3. Approximate K-g-duals

Motivated by the concept of approximate dual of frames in [6], we define approximate
dual of K-g-frames for I with respect to {3;};cs.

By Theorem 2.2, since KT |g(r): R(K) — 3, we obtain ©; : R(K) — H;. For any
f € R(K), we have

DolOf1P =Y IT K I < BIKTFI? < BIKTP) £ (14)
JjeJ jeJ
That is, {©;};ecs is a g-Bessel sequence for R(K) with respect to {H;};ecs. Let To be the

synthesis operator of {©;};cs. Consider two mixed operators TyT¢ and ToT'{ as follows:

TATG : R(K) — 3, TATSf =Y Aj©;f, Vf € R(K),

ToT; : H — R(K), ToTsf =Y OiA;f, Vf € H.
J

Based on Theorem 2.2 and on the definition of dual and approximate duality of frames
stated in [6], we introduce the following notions:

Definition 3.1. Consider two g-Bessel sequences {A; € B(H,H;) : j € J} and {©; €
B(IH, ;) je T}
(i) The sequences {A;}jcs and {©;} cs are said to be K-g-dual frames if TATE = Ix (k)
or ToTy|r(x) = Ix(k)- In this case, we say that {©;},cs is a K-g-dual of {A;} e,
(ii) The sequences {A;};cs and {©;};cs are said to be approzimately K-g-dual frames if
[ Hr(xy = TATS| < 1 or [[Ix(xy — ToTx|x(x)|l < 1. In this case, we say that {©;}cs
is an approzimate K-g-dual of {A;};cs.

A well-known algorithm to find the inverse of an operator is the Neumann series
algorithm. Since [[Ix(x) — TaTg|| < 1, TaATg is invertible with

o
(TATS) ™" = (Uxx) — (In(x) — TaTe)) ™' = Z(LR(K) — TATE)".
n=0
Therefore, every f € R(K) can be reconstruct as
oo
F=> x) = TaTS)"TATS f. (15)

n=0
The following Propositions is the analogon of Prop. 3.4 and Prop. 4.1 in [6] to obtain new
natural and approximate K-g-duals.

Proposition 3.1. If {O;},c; is an approzimate K-g-dual of {A;};es, then {©;(TaTE)~'}
is a K-g-dual of {A;}jes.
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Proof. 1t is easy to see that {©;(TATg) ' }jes is a g-Bessel sequence and

oo

[ = (IT)NTE) N = 3 A76,(1nTe) "' f

7=0
= Y A0, (Ir) — TaTS)"f)-
j=0 n=0

Therefore, {0;(TATg) '} = {6; ZZO:O(IR(K) —TATE)"}jes is a K-g-dual of {A;}je;. O

Now, for each N € N, define 'y](-N) = ZT]:]:O O;(Ix(xy — TaTg)™ and Ty : H — H by

Ty = N o(Ix) — TaTg)". Then 7" = ©,Ty, Vj € J. The sequence {7\")};c; is
obtained from the g-Bessel sequence {O;};c; by means of a bounded operator, therefore, it
is a g-Bessel sequence. For each f € R(K),

[ee] oo
TATZTNS =Y AjO,Tnf = Ay [ = TaTyf,
§=0 j=0
where TT is the synthesis operator of {'Y](N)}je 7. Thus,
TATE f =TATSTN f

N
= Irxy) — Ur(x)y — TaATS)] Z(I.“R(K) = TATE)" f

n=0
= [Inx) — Urx) — TaTS) V£,
by telescoping. Therefore,
Hxex) = TATE = (I () — TaTE) V! (16)
< | Inerey = TATS) |V (17)
If {©;};es is an approximate K-g-dual of {A;};c s, then
[Lxr(r)y — TATS)| < 1. (18)

By (16) and (18), we obtain |[Igx) — TaTT)|| < 1, that is, {'yj(-N)}jeJ is an approximate
K—g-dual of {Aj}je].

We summarize what we have proved:

Proposition 3.2. Let {©;}cs be an approzimate K-g-dual of {A;};cs. Then

N
{Z 0, (Ix(x) — TATé)”}
jed

n=0
is an approzimate K-g-dual of {A;}jes.
Next we state and prove the following theorem.

Theorem 3.1. Let {A; € B(H,H;):j € J} be a K-g-frame and {©; € B(H,H;):j€ J}
be a g-Bessel sequence. Let also {f; j}icr; be a frame for 3(; with bounds A; and Bj for
every j € J such that, 0 < A = infje; Aj < sup;c; Bj = B < co. Then {©,}jes is an
approzimate K -g-dual of {A;}jer if and only if E = {@;fi,j}ielj jeJ s an approximate dual

of F = {A;ﬁvj}iejjhje.], where {ﬁ,j}ielj is the canonical dual of {fi j}ier, -
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Proof. For each f € H we have

SOX WL O NP = D IO, fin)P <D Bl fIF < BY (16,11

jeJiel, jeJicl; jeJ jeJ

This implies that F is a Bessel sequence for H. Similarly, F' is also Bessel sequence for .
Moreover, for each f € H we have

So,

ToTif =Y OiAf=> 01> (N, fii)fis

jeJ jeJ i€l
= Y (. A fi)6; fij = TeThf.
JjEJIEL;

II — TeTx|| <1 if and only if |

I —TgT}|| < 1. This concludes the proof. O

4. Conclusions

We characterized K-g-frames in Hilbert spaces (as some type of frame generalization)

and provided two examples. We have given a condition that turns a subsequence of K-g-
frame into a K-g-frame. A method to obtain new natural and approximate K-g-duals of a
K-g-frame is pointed out. The relation between an approximate K-g-dual of a K-g-frame
and an approximate dual of a frame is also discussed. Our future goal is to look into those
properties of K-g-orthonormal bases that help us to study the behavior of K-g-frames.
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