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NORM CONVERGENCE ITERATIONS FOR BEST PROXIMITY

POINTS OF NON-SELF NON-EXPANSIVE MAPPINGS

Geno Kadwin Jacob, Mihai Postolache, M. Marudai, V. Raja1

In this paper, we introduce hybrid algorithms for non-self, non-expansive maps

on real Hilbert space and prove that the iterative sequence of the algorithm converges

strongly to the proximity point of any non-expansive mapping with a nonempty proxim-

ity point set. This study is a natural continuation of those of Nakajo and Takahashi

on convergence theorems for nonexpansive mappings and nonexpansive semigroups, [J.

Math. Anal. Appl., 279 (2003), 372-379].
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1. Introduction

In the numerical analysis of fixed point, diverse iterative schemes were introduced for

various purposes such as:

Fast convergence of one over the other for computational purposes.

Some iterative procedures guarantee the convergence while the others may fail.

To obtain strong convergence instead of weak convergence for application aspects.

That is why a great deal of literature on iterative algorithms for numerical reckoning

fixed points of non-expansive mappings has been published: Halpern [8], Nilsrakoo and Sae-

jung [13], Thakur et al. [18, 19], Wittmann [20]. These studies have a variety of applications

in inverse problems, image recovery, variational inequalities and signal processing: please,

see Combettes [4], Mann [9], Xu [21], Yao et al. [22, 23, 24, 25] and Youla [26].

In fixed point theory, Mann iteration process is often used to approximate fixed points

of several classes of operators [9]. But it does provide only weak convergence sometimes:

see Genel and Lindenstrass [6] for example. However, norm convergence is often much more

desirable than weak convergence. So, attempts have been made to modify Mann iteration

process so that norm convergence is guaranteed. In this regard, Nakajo and Takahashi [11]

firstly introduced their hybrid algorithm for non-expansive mappings and proved the strong

convergence of iterate sequence to the fixed point of such kind of mappings. Since then

several authors have studied the norm convergence of iterates of non-expansive mappings

using hybrid algorithms: please, see Opial [14], Sadiq Basha and Veeramani [15], Takahashi

[17], Berinde [2], Martinez-Yanes and Xu [10].
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In this paper, we introduce new algorithms and prove some results which assure the

norm convergence of iterative sequence to the proximity point set of non-self, non-expansive

mappings on Hilbert spaces.

2. Notation and preliminaries

Let H be a real Hilbert space with the inner product < ·, · > and the norm || · ||. Let
C be a closed subset of H. Recall that a mapping T : C → H is said to be non-expansive if

||Tx − Ty|| ≤ ||x − y|| holds for all x, y ∈ C. Denote by F (T ) the set of fixed points of T ,

i.e. F (T ) := {x ∈ C : Tx = x}.
Let A and B be two nonempty closed convex subsets of H and T : A → B be a non-

expansive mapping. Denote by PA(x) the metric projection of some element x onto A and

by P (AT ) denote the set of all proximity points of T on A, that is

P (AT ) = {a ∈ A : d(a, T (a)) = d(A,B)},

and wω(xn) : = {x : ∃(xnj ) ⊂ (xn), xnj ⇀ x} denotes the weak ω-limit set of {xn}. It is

quite natural to see that P (AT ) of T is contained in the closed subset of A given by

A0 := {a ∈ A : d(a, b) = d(A,B), for some b ∈ B}.

For details, please see Nashine [12], Shatanawi and Pitea [16].

Definition 2.1 ([16]). Let A and B be closed subsets of a metric space (X, d). Then A

and B are said to satisfy the P -property if for x1, x2 ∈ A0 and y1, y2 ∈ B0 the following

implication holds:

d(x1, y1) = d(x2, y2) = d(A,B) =⇒ d(x1, x2) = d(y1, y2).

Definition 2.2 ([5]). Let A and B be nonempty closed subsets of a metric space (X, d).

Then (A,B) is said to satisfy the UC property if {xn} and {zn} are sequences in A and {yn}
is a sequence in B such that limn→∞ d(xn, yn) = d(A,B) and limn→∞ d(zn, yn) = d(A,B),

then limn→∞ d(xn, zn) = 0.

Now, consider A and B closed subsets of a metric space (X, d) and T : A → B a

non-expansive mapping. It is known that the assumption of the weakly compactness of A0

could give only weak convergence of the sequence to the proximity point set of T . In this

sense, please see Haddadi [7], Chen et al. [3] and Abkar and Gabeleh [1].

The following result is stated in [1].

Theorem 2.1 ([1]). Let (A,B) be a pair of nonempty, closed and convex subsets of a Banach

space X such that A0 is nonempty. Let T : A → B be a non-expansive mapping such that

T (A0) ⊂ B0. Suppose the pair (A,B) has the P-property and A is weakly compact. Then

T has at least one best proximity point in A provided that one of the following conditions is

satisfied:

1. T is weakly continuous.

2. T satisfies the proximal property.

Since the norm convergence is more desirable, we introduce new algorithms and prove

some results which assure the norm convergence of the iterative sequence to the proximity

point set on Hilbert space.

Lemma 2.1 ([13]). In a Hilbert space the following hold, for u, v ∈ H:

∥u− v∥2 = ∥u∥2 − ∥v∥2 − 2 < u− v, v >, (2.1)
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∥αu+ (1− α)v∥2 = α∥u∥2 + (1− α)∥v∥2 − α(1− α)∥u− v∥2, α ∈ [0, 1]. (2.2)

Lemma 2.2 ([10]). Let K be a closed and convex subset of real Hilbert space H. Then

z = PK(x) if and only if the relation holds:

< x− z, y − z >≤ 0, for all y ∈ K.

Lemma 2.3 ([10]). Let C be a closed convex subset of a real Hilbert space H and let T : C →
C be a nonexpansive mapping such that F (T ) ̸= ∅. If a sequence {xn} in C is such that

xn ⇀ z and ∥xn − Txn∥ → 0, then z = Tz.

Lemma 2.4 ([10]). Let K be a closed convex subset of H. Let {xn} be a sequence in H and

x ∈ H. Let q = PK(x). If {xn} is such that wω(xn) ⊂ K and satisfies the condition

∥xn − x∥ ≤ ∥x− q∥ for all n ∈ N,

then xn → q.

In this paper, we prove the norm convergence of the iterative sequence to the prox-

imity point set of non-expansive map using new hybrid algorithm. Moreover, the sequence

converges to the nearest proximity point of the non-expansive map.

3. Algorithm and norm convergence to proximity pair

In this section, the norm convergence of the iterate sequence to the proximity point

of non-self, non-expansive mappings will be proved using hybrid algorithms.

Algorithm 3.1.

x0 ∈ A0 arbitrarily.

yn = αnxn + (1− αn)PA(T (xn)), n ∈ N ∪ {0}
Cn = {z ∈ A0 : ∥yn − z∥ ≤ ∥xn − z∥}
Qn = {z ∈ A0 :< xn − z, xn − x0 >≤ 0}
xn+1 = P(Cn∩Qn)(x0).

where αn ∈ [0, a] for some a ∈ [0, 1).

Theorem 3.1. Let A and B be nonempty closed and convex subsets of H which satisfy

P -property. Let T : A0 → B0 be a non-expansive mapping such that P (AT ) is a nonempty

convex subset of A0. Then the sequences {xn} and {yn} generated by Algorithm 3.1 converge

to a proximity point in A. In particular, {xn} and {yn} converge to q, where q = PP (AT )(x0).

Proof. Choose x0 ∈ A0 arbitrarily. It is clear that Cn and Qn are closed and convex subsets

of A.

Now we claim that P (AT ) ⊂ Cn.

Let u ∈ P (AT ). Then, we have

∥yn − u∥ = ∥αnxn + (1− αn)PA(T (xn))− u∥
≤ ∥αn(xn − u)∥+ ∥(1− αn)(PA(T (xn))− u)∥
≤ αn∥xn − u∥+ (1− αn)∥PA(T (xn))− u∥

Since ∥PAT (xn) − T (xn)∥ = d(A,B) and ∥u − T (u)∥ = d(A,B), using the P -property we

obtain that ∥PA(T (xn))− u∥ = ∥T (xn)− T (u)∥. Therefore, the above inequality becomes

∥yn − u∥ ≤ αn∥xn − u∥+ (1− αn)∥T (xn)− T (u)∥
≤ αn∥xn − u∥+ (1− αn)∥xn − u∥
= ∥xn − u∥.
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Now, we prove that P (AT ) ⊂ Qn by induction.

It is obvious to note that P (AT ) ⊂ A0. Let Q0 = A0 and we assume that P (AT ) ⊂ Qn

is true. Since xn+1 = PCn∩Qn(x0) (such an element exits since Cn and Qn are closed and

convex), by Lemma 2.2 we have that < xn+1 − z, xn+1 − x0 >≤ 0 for all z ∈ Cn ∩ Qn, in

particular for all P (AT ). Therefore, P (AT ) ⊂ Qn+1. Hence the induction holds true.

Since xn+1 = PCn∩Qn(x0) and P (AT ) ⊂ Cn ∩Qn, we get

∥xn+1 − x0∥ ≤ ∥q − x0∥, where q = PP (AT )(x0). (3.1)

Hence, {xn} is bounded.

Since xn+1 ∈ Qn and by using Lemma 2.1, we have

∥xn+1 − xn∥2 ≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2.

which in turn gives that
∞∑

n=0

∥xn+1 − xn∥2 ≤ ∥q − x0∥2 − ∥x1 − x0∥2.

By the definition of Cn, we get that

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥
≤ ∥xn − xn+1∥+ ∥xn+1 − xn∥

Therefore, ∥yn − xn∥ → 0. Also,

∥yn − xn∥ = ∥αnxn + (1− αn)PA(T (xn))− xn∥
= ∥(1− αn)(PA(T (xn))− xn)∥
= (1− αn)∥PA(T (xn))− xn∥

Since {αn} does not converge to 1, we get ∥PA(T (xn))− xn∥ → 0 as n → ∞.

Now, define S : A0 → A0 as S(x) = PA(Tx) for all x ∈ A0. By using P -property,

we get that S is nonexpansive and P (AT ) = F (S). Hence, by Lemma 2.3 we obtain that

wω(xn) ⊂ F (S). This, together with (3.1) and Lemma 2.4, guarantees that {xn} converges

strongly to a fixed point of S (say p). Therefore, {xn} converges to the point p ∈ A0, which

satisfies d(p, T (p)) = d(A,B). Therefore, p ∈ P (AT ) and hence

∥x0 − p∥ ≥ ∥x0 − q∥ = d(x0, P (AT )).

Also, using equation (3.1) it follows

∥x0 − p∥ = lim
n→∞

∥x0 − xn∥

≤∥q − x0∥

≤d(x0, P (AT )).

Therefore, ∥x0−p∥ = d(x0, P (AT )). Hence, p = q and the proof is now complete. �

Algorithm 3.2.

x0 ∈ A0 arbitrarily.

yn = αnPB(xn) + (1− αn)T (xn), n ∈ N ∪ {0}
Cn = {z ∈ A0 : ∥yn − z∥ ≤ ∥xn − z∥+ d(A,B)}
Qn = {z ∈ A0 :< xn − z, xn − x0 >≤ 0}
xn+1 = P(Cn∩Qn)(x0)

where, αn ∈ [0, 1], αn → 0.
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Lemma 3.1. Cn generated in Algorithm 3.2 is convex.

Proof. From the definition of Cn, we get

∥yn − z∥2 ≤ ∥xn − z∥2 +
(
d(A,B)

)2
+ 2d(A,B)∥xn − z∥. (3.2)

By using Lemma 2.1, relation (2.1), and equation (3.2), we get

∥yn − xn∥2 = ∥(yn − z)− (xn − z)∥2

= ∥yn − z∥2 − ∥xn − z∥2 − 2 < yn − xn, xn − z >

≤ ∥xn − z∥2 +
(
d(A,B)

)2
+ 2d(A,B)∥xn − z∥

− ∥xn − z∥2 − 2 < yn − xn, xn − z >

=
(
d(A,B)

)2
+ 2d(A,B)∥xn − z∥ − 2 < yn − xn, xn − z > .

Therefore, the relation in Cn is equivalent to

∥yn − xn∥2 −
(
d(A,B)

)2 − 2d(A,B)∥xn − z∥+ 2 < yn − xn, xn − z >≤ 0.

From the above inequality, it is clear that Cn is convex. �

Theorem 3.2. Let A and B be nonempty closed and convex subsets of H which satisfy

P -property. Let T : A0 → B0 be a non-expansive mapping such that P (AT ) is a nonempty

convex subset of A0. Then the sequence {(xn, yn)} generated by Algorithm 3.2 converges

to a proximity pair in A × B. In particular {(xn, yn)} converges to (q, T (q)), where q =

PP (AT )(x0).

Proof. Choose x0 ∈ A0 arbitrarily. It is clear that Cn and Qn are closed and convex subsets

of A.

Now we claim that Cn is nonempty subset of A0.

Let u ∈ P (AT ), that is ∥u− T (u)∥ = d(A,B).

∥yn − u∥ = ∥αnPB(xn) + (1− αn)T (xn)− u∥
≤ ∥αn(PB(xn)− u)∥+ ∥(1− αn)(T (xn)− u)∥
≤ αn∥PB(xn)− u∥+ (1− αn)∥T (xn)− u∥
≤ αn∥PB(xn)− T (u)∥+ αn∥T (u)− u∥+ (1− αn)∥T (xn)− T (u)∥

+ (1− αn)∥T (u)− u∥
≤ αn∥PB(xn)− T (u)∥+ αnd(A,B) + (1− αn)∥xn − u∥

+ (1− αn)d(A,B).

Since ∥PB(xn) − xn∥ = ∥u − T (u)∥ = d(A,B), using the P -property we obtain that

∥PB(xn)− T (u)∥ = ∥xn − u∥. Therefore, the above inequality becomes

∥yn − u∥ ≤ αn∥xn − u∥+ (1− αn)∥xn − u∥+ d(A,B)

= ∥xn − u∥+ d(A,B).

Using the induction principle, it is easy to prove that P (AT ) ⊂ Qn and hence Qn is

a nonempty subset of A0.

Since xn+1 = PCn∩Qn(x0) and P (AT ) ⊂ Cn ∩Qn, we get

∥xn+1 − x0∥ ≤ ∥q − x0∥, where q = PP (AT )(x0). (3.3)

Hence, {xn} is bounded.
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Since, xn+1 ∈ Qn and by using Lemma 2.1, we have

∥xn+1 − xn∥2 ≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2,

which in turn gives that

∞∑
n=0

∥xn+1 − xn∥2 ≤ ∥q − x0∥2 − ∥x1 − x0∥2.

By the definition of Cn, we get that

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥
≤ ∥xn+1 − xn∥+ d(A,B) + ∥xn+1 − xn∥.

Therefore as n → ∞, we obtain that ∥yn − xn∥ → d(A,B).

Also,

yn − xn = αnPB(xn) + (1− αn)T (xn)− xn

= αn(PB(xn)− T (xn)) + (T (xn)− xn).

From the above equality, we obtain

∥T (xn)− xn∥ ≤ ∥yn − xn∥+ αn∥PB(xn)− T (xn)∥.

Therefore, ∥T (xn)−xn∥ → d(A,B) as n → ∞. Since every Hilbert space satisfies UC

property and ∥PBxn − xn∥ → d(A,B), we get ∥PBxn − T (xn)∥ → 0 as n → ∞. Therefore,

∥PA(T (xn))− xn∥ → 0 as n → ∞.

Now, define S : A0 → A0 as S(x) = PA(Tx) for all x ∈ A0. By using P -property, we

get S is nonexpansive and P (AT ) = F (S). Hence, by Lemma 2.3 we obtain the inclusion

wω(xn) ⊂ F (S). This, together with (3.1) and Lemma 2.4, guarantees that {xn} converges

strongly to a fixed point of S (say p). Therefore, {xn} converges to the point p ∈ A0, which

satisfies d(p, T (p)) = d(A,B). Hence,

∥x0 − p∥ ≥ ∥x0 − q∥ = d(x0, P (AT )).

Also, using equation (3.3), we get

∥x0 − p∥ = lim
n→∞

∥x0 − xn∥

≤∥q − x0∥

≤d(x0, P (AT )).

Therefore, ∥x0 − p∥ = d(x0, P (AT )), hence p = q, and this completes the proof. �

4. Numerical Computation

Consider A =
{
(0, a)|a ∈

[
3
2 ,

5
2

]}
and B =

{
(1, a)|a ∈

[
3
2 ,

5
2

]}
. Define T : A → B by

the rule T (0, x) = (1, 4− x). It is clear that T is a nonexpansive mapping and (0, 2) is the

best proximity point of T . Let us choose an arbitrary element x0 = (0, 5
2 ). For different

selection of {αn} the tabular column at rows 1, 2, 3, 4 gives the values of x5, x25, x50, x100

terms of the generated sequence {xn} respectively.
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xn {αn} = { 1
n+1} {αn} = { 3

4} {αn} = {0.95}
x5 (0, 2.000694e+ 00) (0, 2.000000e+ 00) (0, 2.000000e+ 00)

x25 (0, 2.015625e+ 00) (0, 2.000000e+ 00) (0, 2.000000e+ 00)

x50 (0, 2.118652e+ 00) (0, 2.000000e+ 00) (0, 2.000000e+ 00)

x100 (0, 2.386890e+ 00) (0, 2.038472e+ 00) (0, 2.002960e+ 00)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
2

2.05

2.1

2.15

2.2

2.25

x

y

Figure 1. Convergence of sequence for x0 = (0, 5
2 ) and αn = 1

n+1
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Figure 2. Convergence of sequence for x0 = (0, 5
2 ) and αn = 0.75
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Figure 3. Convergence of sequence for x0 = (0, 5
2 ) and αn = 0.95

From the figures it is clear that the convergence rate is fast as {αn} goes near 0.

Our future work will give results comparing the fast convergence of sequence {xn}
obtained using our hybrid algorithm.
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5. Conclusion

In this paper, we introduced hybrid algorithms for non-self, non-expansive maps on

real Hilbert space and prove that the iterative sequence of algorithm converges strongly to

the proximity point of any mapping in this class with nonempty proximity point set. This

study is a natural continuation of those of Nakajo and Takahashi [11], and also of Opial [14],

Sadiq Basha and Veeramani [15], Takahashi [17], Berinde [2].
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