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NORM CONVERGENCE ITERATIONS FOR BEST PROXIMITY
POINTS OF NON-SELF NON-EXPANSIVE MAPPINGS

Geno Kadwin Jacob, Mihai Postolache, M. Marudai, V. Raja!

In this paper, we introduce hybrid algorithms for non-self, non-expansive maps
on real Hilbert space and prove that the iterative sequence of the algorithm converges
strongly to the proximity point of any non-expansive mapping with a nonempty proxim-
ity point set. This study is a natural continuation of those of Nakajo and Takahashi
on convergence theorems for nonerpansive mappings and nonexpansive semigroups, [J.
Math. Anal. Appl., 279 (2008), 372-379].
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1. Introduction

In the numerical analysis of fixed point, diverse iterative schemes were introduced for
various purposes such as:

Fast convergence of one over the other for computational purposes.
Some iterative procedures guarantee the convergence while the others may fail.
To obtain strong convergence instead of weak convergence for application aspects.

That is why a great deal of literature on iterative algorithms for numerical reckoning
fixed points of non-expansive mappings has been published: Halpern [8], Nilsrakoo and Sae-
jung [13], Thakur et al. [18, 19], Wittmann [20]. These studies have a variety of applications
in inverse problems, image recovery, variational inequalities and signal processing: please,
see Combettes [4], Mann [9], Xu [21], Yao et al. [22, 23, 24, 25] and Youla [26].

In fixed point theory, Mann iteration process is often used to approximate fixed points
of several classes of operators [9]. But it does provide only weak convergence sometimes:
see Genel and Lindenstrass [6] for example. However, norm convergence is often much more
desirable than weak convergence. So, attempts have been made to modify Mann iteration
process so that norm convergence is guaranteed. In this regard, Nakajo and Takahashi [11]
firstly introduced their hybrid algorithm for non-expansive mappings and proved the strong
convergence of iterate sequence to the fixed point of such kind of mappings. Since then
several authors have studied the norm convergence of iterates of non-expansive mappings
using hybrid algorithms: please, see Opial [14], Sadiq Basha and Veeramani [15], Takahashi
[17], Berinde [2], Martinez-Yanes and Xu [10].
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In this paper, we introduce new algorithms and prove some results which assure the
norm convergence of iterative sequence to the proximity point set of non-self, non-expansive
mappings on Hilbert spaces.

2. Notation and preliminaries

Let H be a real Hilbert space with the inner product < -,- > and the norm || - ||. Let
C be a closed subset of H. Recall that a mapping 7': C' — H is said to be non-expansive if
[|Tz — Ty|| < ||z — yl|| holds for all z,y € C. Denote by F(T) the set of fixed points of T,
ie. F(T) :={zxeC:Tx =z}

Let A and B be two nonempty closed convex subsets of H and T: A — B be a non-
expansive mapping. Denote by P4 (x) the metric projection of some element x onto A and
by P(AT) denote the set of all proximity points of 7' on A, that is

P(AT) ={a € A:d(a,T(a)) = d(A, B)},

and wy,(zn): = {z: I(xpn;) C (,), =n; — v} denotes the weak w-limit set of {x,}. It is
quite natural to see that P(AT) of T is contained in the closed subset of A given by

Ag:={a € A:d(a,b) =d(A,B), for some b € B}.
For details, please see Nashine [12], Shatanawi and Pitea [16].

Definition 2.1 ([16]). Let A and B be closed subsets of a metric space (X,d). Then A
and B are said to satisfy the P-property if for x1,zo € Ay and y1,ys € By the following
implication holds:

d(x1,91) = d(z2,y2) = d(A, B) = d(z1,72) = d(y1,y2)-

Definition 2.2 ([5]). Let A and B be nonempty closed subsets of a metric space (X,d).
Then (A, B) is said to satisfy the UC property if {z,} and {z,} are sequences in A and {y,}
is a sequence in B such that lim,co d(2y, yn) = d(A, B) and lim, o d(zn, yn) = d(A, B),
then lim,_, o d(zy, 2,,) = 0.

Now, consider A and B closed subsets of a metric space (X,d) and T: A — B a
non-expansive mapping. It is known that the assumption of the weakly compactness of Ag
could give only weak convergence of the sequence to the proximity point set of 7. In this
sense, please see Haddadi [7], Chen et al. [3] and Abkar and Gabeleh [1].

The following result is stated in [1].

Theorem 2.1 ([1]). Let (A, B) be a pair of nonempty, closed and convex subsets of a Banach
space X such that Ag is nonempty. Let T: A — B be a non-expansive mapping such that
T(Ap) C By. Suppose the pair (A, B) has the P-property and A is weakly compact. Then
T has at least one best prozimity point in A provided that one of the following conditions is
satisfied:

1. T is weakly continuous.

2. T satisfies the proximal property.

Since the norm convergence is more desirable, we introduce new algorithms and prove
some results which assure the norm convergence of the iterative sequence to the proximity
point set on Hilbert space.

Lemma 2.1 ([13]). In a Hilbert space the following hold, for u,v € H:

lu =) = flul® = [[v]* = 2 < u—v,0 >, (2.1)
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low + (1 = a)v]* = allul* + (1 = a)[v]* = a1 = a)llu—v]?, o€ 0,1]. (2.2)

Lemma 2.2 ([10]). Let K be a closed and convex subset of real Hilbert space H. Then
z = Pg(x) if and only if the relation holds:

<x—2z,y—2><0, forallyekK.

Lemma 2.3 ([10]). Let C be a closed convex subset of a real Hilbert space H and let T: C' —
C be a nonexpansive mapping such that F(T) # 0. If a sequence {x,} in C is such that
Ty — z and ||zy, — Txy|| — 0, then z =Tz.

Lemma 2.4 ([10]). Let K be a closed convex subset of H. Let {x,} be a sequence in H and
x € H. Let ¢ = Pg(x). If {zn} is such that w,(z,) C K and satisfies the condition

lzn, —z|| < ||z —gq|| forall n €N,

then x, — q.

In this paper, we prove the norm convergence of the iterative sequence to the prox-
imity point set of non-expansive map using new hybrid algorithm. Moreover, the sequence
converges to the nearest proximity point of the non-expansive map.

3. Algorithm and norm convergence to proximity pair

In this section, the norm convergence of the iterate sequence to the proximity point
of non-self, non-expansive mappings will be proved using hybrid algorithms.
Algorithm 3.1.
xg € Agarbitrarily.
Yn = oy + (1 — apn)Pa(T(zy,)), n € NU{0}
Cn={z€40:lyn — 2| < |lzn — 2[I}
Qn={2z€4y:<xy— 2,2, — 29 >< 0}
Tnt1 = Pc,nq.) (o)
where a,, € [0,a] for some a € [0,1).

Theorem 3.1. Let A and B be nonempty closed and convexr subsets of H which satisfy
P-property. Let T: Ay — By be a non-expansive mapping such that P(AT) is a nonempty
converx subset of Ag. Then the sequences {x,} and {y,} generated by Algorithm 3.1 converge
to a proximity point in A. In particular, {x,} and {y,} converge to q, where ¢ = Pp(ar)(0).

Proof. Choose zy € Ay arbitrarily. It is clear that C,, and @,, are closed and convex subsets
of A.

Now we claim that P(AT) C C,,.

Let u € P(AT). Then, we have

yn — ull = lanzn + (1 — an) Pa(T () — ul|
< [lom (@n = w)l| + [|(1 = an) (Pa(T'(2n)) — )|
< anlzn —ull + (1 = an) [ Pa(T(zn)) — ul
Since ||PaT(xy) — T(x,)|| = d(A, B) and ||ju — T'(u)|| = d(A, B), using the P-property we
obtain that ||Pa(T(x,)) —u|| = [|T(z,) — T'(u)||. Therefore, the above inequality becomes
lyn — ull < opllzn — ull + (1 = o) [|T'(2n) = T'(u)
< apllzn —ull + (1 — an)llzn — ul

= [lzn =]
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Now, we prove that P(AT) C Q,, by induction.

It is obvious to note that P(AT) C Ag. Let Qo = A and we assume that P(AT) C Q,,
is true. Since z,+1 = Pc,ng, (o) (such an element exits since C), and @,, are closed and
convex), by Lemma 2.2 we have that < z,4+1 — 2,241 — 29 >< 0 for all z € C,, N Q,,, in
particular for all P(AT). Therefore, P(AT) C Q1. Hence the induction holds true.

Since z,,4+1 = Po, g, (o) and P(AT) C C,, N Qy, we get

[zn+1 — 2ol < [lg — woll, where ¢ = Pp(ar)(z0). (3.1)
Hence, {z,} is bounded.
Since z,41 € @, and by using Lemma 2.1, we have

ns1 = nll* < fl@nts — ol — [lzn — zol|*.

which in turn gives that

0
D lwnsr = zall? < lla = zoll? = [lz1 — zoI*.
n=0

By the definition of C,,, we get that
1yn = znll < llyn — Znall + 201 — 2all
< o = Tnga |l + lenr — @al]
Therefore, |y, — z,| — 0. Also,
lyn — nll = llanzn + (1 — o) Pa(T(25)) — @4 ||
= [[(1 = an) (Pa(T(xn)) — xn)|
= (1 =) [|Pa(T(2n)) — zn |
Since {a;,} does not converge to 1, we get |Pa(T(x,)) — 25| — 0 as n — oo.

Now, define S: Ay — Ag as S(z) = Pa(Tx) for all x € Ag. By using P-property,
we get that S is nonexpansive and P(AT) = F(S). Hence, by Lemma 2.3 we obtain that
Wy (zy) C F(S). This, together with (3.1) and Lemma 2.4, guarantees that {x,} converges
strongly to a fixed point of S (say p). Therefore, {x,,} converges to the point p € Ay, which
satisfies d(p, T'(p)) = d(A, B). Therefore, p € P(AT) and hence

lzo = pll = [lzo — qll = d(zo, P(AT)).
Also, using equation (3.1) it follows
lzo = pll = lim_[[zo — 2|
n—00
<llg — ol
<d(zo, P(AT)).

Therefore, ||z —pl|| = d(z0, P(AT)). Hence, p = ¢ and the proof is now complete. [J

Algorithm 3.2.

xg € Agarbitrarily.

Yn = anPp(xn) + (1 — an)T(z,), n € NU{0}
Cn={z€ Ao [lyn — 2| < llon — 2| + d(4, B)}
Qn={z€ Ay :<zp— 2,2, — 19 >< 0}

Tni1 = Pie,ng,) (%o)

where, a, € [0,1], a, — 0.
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Lemma 3.1. C,, generated in Algorithm 3.2 is convex.
Proof. From the definition of C),, we get
lyn = 2112 < 1 — 21 + (d(A, B))* + 2d(A, B)ljan — 2|1 (3.2)
By using Lemma 2.1, relation (2.1), and equation (3.2), we get
lyn = znll* = l(yn — 2) = (@0 — 2)II?
=y — 21 = zn = 2l = 2 <y — xpy 20 — 2>
< & — 2% + (d(A, B))® + 2d(A, B) |z, — 2|
—zn =22 =2 < yp — Tn, Tp — 2 >

— (d(A, B))” 4 2d(A, B) & — 2| =2 < Y — Tpytq — 2> .

Therefore, the relation in C), is equivalent to
yn — 201> — (d(A, B))2 —2d(A, B)||zn — 2| + 2 < yp — Tp, Ty — 2 >< 0.

From the above inequality, it is clear that C,, is convex. ]
Theorem 3.2. Let A and B be nonempty closed and convexr subsets of H which satisfy
P-property. Let T: Ay — By be a non-expansive mapping such that P(AT) is a nonempty
conver subset of Ag. Then the sequence {(n,yn)} generated by Algorithm 3.2 converges

to a proximity pair in A x B. In particular {(z,,yn)} converges to (q,T(q)), where ¢ =
Pp(ary(zo).

Proof. Choose xy € Ag arbitrarily. It is clear that C,, and @,, are closed and convex subsets
of A.

Now we claim that C,, is nonempty subset of Ag.
Let u € P(AT), that is ||u — T'(u)|| = d(A, B).
lyn —ull = llanPp(xn) + (1 = an)T(zn) — ull
< llan(Pp(an) — u)|| + (1 = an)(T(zn) — ||
< o[ Pp(xn) — ull + (1 = an)[T(2n) — ull
< o[ Pp(zn) = T(w)|| + an|[T(u) = ul + (1 — an) | T (zn) = T(u)|
+ (1 = an)[IT (u) — ull
< anl|Pp(zn) — T(u)|| + and(A, B) + (1 — am) [z — ul|
+ (1 —an)d(4, B).
Since ||Pp(xn) — zp]| = ||lu — T(u)|| = d(A, B), using the P-property we obtain that
|1Pg(zn) — T(u)|| = ||xn — u||. Therefore, the above inequality becomes
[yn — ull < anllen —ull + (1 = an)llzn —ull + d(A, B)
= |zn — ull +d(A, B).
Using the induction principle, it is easy to prove that P(AT) C Q,, and hence Q,, is
a nonempty subset of Ayp.
Since Tn4+1 = Pc,ng, (v0) and P(AT) C C, N Q,,, we get
||.Tn+1 - I0|| < ||q - $0||, where q= PP(AT)(IO)- (33)

Hence, {x,} is bounded.
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Since, z,41 € @, and by using Lemma 2.1, we have
[Znt1 = @nl® < llznts — 2ol* = llan — ol

which in turn gives that

(o)
Dl = zall? < lla = zoll? = |21 — zolI*.

n=0

By the definition of C,,, we get that

yn — Zoll < MlYn — Tt | + [|Tn41 — 24|
<N Zng1 — 2nll + d(A, B) + [[2n41 — oa|-

Therefore as n — 0o, we obtain that ||y, — z,| — d(A4, B).
Also,

Yn — Tpn = anPB(xn) + (1 - an)T(-Tn) — Tn
= an(Pp(zn) — T(zn)) + (T(20) — 740).

From the above equality, we obtain

1T (zn) — znll < llyn — 2ol + | Pe(ws) — T'(2n)]|-

Therefore, || T (zy) —2n| — d(A, B) as n — oo. Since every Hilbert space satisfies UC
property and ||Ppxy, — x| = d(A, B), we get |Ppxy, — T(x,)|| = 0 as n — oco. Therefore,
|Pa(T(x)) — zn|| = 0 as n — 0.

Now, define S: Ag — Ag as S(z) = Pa(Tz) for all z € Ag. By using P-property, we
get S is nonexpansive and P(AT) = F(S). Hence, by Lemma 2.3 we obtain the inclusion
Wy (zy) C F(S). This, together with (3.1) and Lemma 2.4, guarantees that {x,} converges
strongly to a fixed point of S (say p). Therefore, {x,,} converges to the point p € Ay, which
satisfies d(p, T'(p)) = d(A, B). Hence,

20 = pll > [lzo — gl| = d(wo, P(AT)).
Also, using equation (3.3), we get
lzo —pll = lim_|[zo — zn |
n—oo

<llg — ol
<d(zo, P(AT)).

Therefore, ||zo — p|| = d(zo, P(AT)), hence p = ¢, and this completes the proof. a

4. Numerical Computation
Consider A = {(0,a)la € [2,3]} and B = {(1,a)|a € [3,2]}. Define T: A — B by
the rule T'(0,2) = (1,4 — x). It is clear that T is a nonexpansive mapping and (0,2) is the

best proximity point of T. Let us choose an arbitrary element 2y = (0, g) For different
selection of {«,} the tabular column at rows 1,2,3,4 gives the values of x5, xa5, T50, T100

terms of the generated sequence {x, } respectively.
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zn | Aon) = {77} {on} = {3} {an} = {0.95}

x5 | (0,2.000694¢ + 00) | (0,2.000000e + 00) | (0,2.000000e + 00)
x95 | (0,2.015625¢ + 00) | (0,2.000000e + 00) | (0,2.000000e + 00)
x50 | (0,2.118652¢ + 00) | (0,2.000000e + 00) | (0,2.000000e + 00)
Z100 | (0,2.386890¢e + 00) | (0,2.038472¢ + 00) | (0,2.002960¢ + 00)
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FIGURE 1. Convergence of sequence for zy = (0, g) and oy, = H%H

FIGURE 2. Convergence of sequence for zo = (0

FIGURE 3. Convergence of sequence for zo = (0

From the figures it is clear that the convergence rate is fast as {a, } goes near 0.

2.4

2.35

2.3

2.25

= =2z

215

za

2.05

2

2.5

—o0.z

XOMBHHE £+ —4— — — —k— — — +

,5) and a,, = 0.75

2.45

2.4

2.as

2.3

2.25

2.2

2as

2.1

2.08

2

X O JMIAHHEER KRR oF 8 0k 4%

—o.z

,5) and a;, = 0.95

Our future work will give results comparing the fast convergence of sequence {x,}

obtained using our hybrid algorithm.
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5. Conclusion

In this paper, we introduced hybrid algorithms for non-self, non-expansive maps on

real Hilbert space and prove that the iterative sequence of algorithm converges strongly to

the proximity point of any mapping in this class with nonempty proximity point set. This
study is a natural continuation of those of Nakajo and Takahashi [11], and also of Opial [14],
Sadiq Basha and Veeramani [15], Takahashi [17], Berinde [2].
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