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SPECIAL ELEMENTS AND PSEUDO INVERSE FUNCTIONS IN

GROUPOIDS

Y. L. Liu1, H. S. Kim2, J. Neggers3

In this paper, we consider a theory of elements u of a groupoid (X, ∗)
which have associated with them certain functions û : X → X, pseudo-inverse functions,

which are generalizations of the inverses associated with units of groupoids with identity

elements. It turns out that if we classify the elements u as special of one of twelve types,

then it is possible to do a rather detailed analysis of certain cases, leftoids, rightoids and

linear groupoids included, which demonstrates that it is possible to develop a successful

theory and that a good deal of information has already been obtained with much more

possible in the future.
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1. Introduction

R. H. Bruck ([5]) published a book, A survey of binary systems discussed in the theory

of groupoids, loops and quasigroups, and several algebraic structures. O. Boru̇vka ([4])

stated the theory of decompositions of sets and its application to binary systems. Recently,

some interesting results in groupoids were investigated by several researchers [3, 11, 13, 19].

Semigroups are in fact the first and simplest type of algebra to which the methods of universal

algebra must be applied, and any mathematician interested in universal algebra will find

semigroup theory a rewarding study ([10]). The notion of d-algebras which is another useful

generalization of BCK-algebras was introduced by J. Neggers and H. S. Kim ([17]), and some

relations between d-algebras and BCK-algebras as well as several other relations between d-

algebras and oriented digraphs were investigated. Several aspects on d-algebras were studied

([1, 9, 12, 15, 16]). H. S. Kim and J. Neggers [8] introduced the notion of Bin(X) of all binary

systems(groupoids, algebras) defined on a set X, and showed that it becomes a semigroup

under suitable operation.

In this paper, we consider a theory of elements u of a groupoid (X, ∗) which have

associated with them certain functions û : X → X, pseudo-inverse functions, which are

generalizations of the inverses associated with units of groupoids with identity elements.
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It turns out that if we classify the elements u as special of one of twelve types, then it

is possible to do a rather detailed analysis of certain cases, leftoids, rightoids and linear

groupoids included, which demonstrates that it is possible to develop a successful theory

and that a good deal of information has already been obtained with much more possible in

the future.

2. Preliminaries

A d-algebra ([17]) is a non-empty set X with a constant 0 and a binary operation

“∗” satisfying the following axioms: (I) x∗x = 0, (II) 0∗x = 0, (III) x∗y = 0 and y ∗x = 0

imply x = y for all x, y ∈ X. For brevity we also call X a d-algebra. In X we can define a

binary relation “ ≤ ” by x ≤ y if and only if x ∗ y = 0. For general references on d-algebras

we refer to [1, 2, 9, 12, 15, 16]. A BCK-algebra is a d-algebra X satisfying the following

additional axioms: (IV) (x∗y)∗(x∗z))∗(z∗y) = 0, (V) (x∗(x∗y))∗y = 0 for all x, y, z ∈ X.

Given two groupoids (X, ∗) and (X, •), we define a new binary operation � by x�y :=

(x ∗ y) • (y ∗ x) for all x, y ∈ X. Then we obtain a new groupoid (X,�), i.e., (X,�) =

(X, ∗)�(X, •). We denote the collection of all binary systems(groupoid, algebras) defined

on X by Bin(X) [8].

Theorem 2.1. [8] (Bin(X),�) is a semigroup and the left zero semigroup is an

identity.

3. LL-special and pseudo inverse functions

Given a groupoid (X, ∗), i.e., (X, ∗) ∈ Bin(X), an element u ∈ X is said to be LL-

special if there exists a map û : X → X such that (û(x) ∗ u) ∗ x = x for all x ∈ X. Such a

function û is said to be a pseudo inverse function of u and û(x) is called a pseudo inverse

of u with respect to x.

Example 3.1. Let (X, ∗) be a right-zero semigroup. For any u ∈ X, for any û ∈ XX ,

we have (û(x) ∗ u) ∗ x = u ∗ x = x for all x ∈ X. This shows that every element u of a right-

zero semigroup is LL-special and every function û : X → X is a pseudo inverse function of

u.

Example 3.1 shows that a pseudo inverse function û need not be unique.

Example 3.2. Let (X, ∗) be a left-zero semigroup and let u be an LL-special element

of X. Then (û(x) ∗ u) ∗ x = x for all x ∈ X. It follows that û(x) = x for all x ∈ X, which

means that a pseudo inverse function û of u is the identity map on X.

Proposition 3.3. Let (X, ∗, e) be a group. Then

(i) every element of X is LL-special,

(ii) if u is LL-special, then its pseudo inverse function û is a constant map.

Proof. (i) Given u ∈ X, we define a map û : X → X by û(x) := u−1 for all x ∈ X.

Then (û(x)∗u)∗x = (u−1 ∗u)∗x = e∗x = x, which shows that u is LL-special. (ii) Assume

u is LL-special. Then there exists a map û : X → X such that (û(x) ∗ u) ∗ x = x for all

x ∈ X. Since (X, ∗) is a group, we have û(x) ∗ u = e, and hence û(x) = u−1 for all x ∈ X,

which proves that û is a constant map. �
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Remark 3.4. Given (X, ∗) ∈ Bin(X), a conditionX = X∗X is a necessary condition

for the existence of LL-special elements of (X, ∗). In fact, if u is LL-special in (X, ∗), then
there exists a map û : X → X such that (û(x) ∗ u) ∗ x = x for all x ∈ X. If we let

α(x) := û(x) ∗ u, then α(x) ∗ x = x for all x ∈ X, which shows that X ⊆ X ∗X.

Proposition 3.5. Any leftoid (X, ∗), where x∗y := f(x) for all x, y ∈ X, f : X → X

is not onto, is a groupoid which does not contain any LL-special element of (X, ∗).
Proof. Since f : X → X is not onto, there exists x0 ∈ X such that x0 ̸∈ f(X).

Assume u is an LL-special element of X. Then there exists a map û : X → X such that

(û(x) ∗ u) ∗ x = x for all x ∈ X. It follow that (û(x0) ∗ u) ∗ x0 = x0. If we let α := û(x0) ∗ u,
then x0 = α ∗ x0 = f(α) ∈ f(X), since (X, ∗) is a leftoid, which leads to a contradiction.

This proves the proposition. �
Proposition 3.6. Let (X, ∗) be a leftoid for f , i.e., x ∗ y := f(x) for all x, y ∈ X.

Let u ∈ X and û : X → X be a map. Then u is LL-special if and only if f2(û(x)) = x for

all x ∈ X.

Proof. It follows immediately from x = (û(x) ∗ u) ∗ x = f(û(x)) ∗ x = f(f(û(x))). for

all x ∈ X. �
Example 3.7. Let X := R be the set of all real numbers. We define x ∗ y := x2,

i.e., x ∗ y = f(x) = x2 for all x, y ∈ R. Assume u is LL-special. Then, by Proposition 3.6,

we have x = (û(x) ∗ u) ∗ x = f2(û(x)) = (û(x))4 for all x ∈ R. If we let x := −1, then

(û(−1))4 = −1, a contradiction.

Theorem 3.8. Let (X, ∗) be a semigroup and let u, v be LL-special elements of

(X, ∗). Then (û(x)∗u)∗ v̂(x) is another pseudo inverse of v with respect to x for all x ∈ X.

Proof. Assume that u, v are LL-special elements of (X, ∗). Then there exist pseudo

inverse functions û, v̂ respectively. For any x ∈ X, we have x = (û(x) ∗ u) ∗ x = (û(x) ∗ u) ∗
[(v̂(x) ∗ v) ∗ x)] = [(û(x) ∗ u) ∗ (v̂(x) ∗ v)] ∗ x = [{(û(x) ∗ u) ∗ v̂(x)} ∗ v] ∗ x. If we take a map

v̂′(x) := (û(x) ∗ u) ∗ v̂(x) for all x ∈ X, then v̂, v̂′ are pseudo-inverse functions of v with

respect to x. �

4. Several special elements

Let (X, ∗) ∈ Bin(X). An element u of X is said to be

• LL-special : (û(x) ∗ u) ∗ x = x, • RL′-special : (x ∗ û(x)) ∗ u = x,

• LR-special : û(x) ∗ (u ∗ x) = x, • RR′-special : x ∗ (û(x) ∗ u) = x,

• RL-special : u ∗ (û(x) ∗ x) = x, • LL′′-special : (û(x) ∗ x) ∗ u = x,

• RR-special : (u ∗ û(x)) ∗ x = x, • LR′′-special : û(x) ∗ (x ∗ u) = x,

• LL′-special : x ∗ (u ∗ û(x)) = x, • RL′′-special : u ∗ (x ∗ û(x)) = x,

• LR′-special : (x ∗ u) ∗ û(x) = x, • RR′′-special : (u ∗ x) ∗ û(x) = x

for all x ∈ X, where û : X → X is a map.

We note that if (X, ∗) is a semigroup, then (x ∗ y) ∗ z = x ∗ (y ∗ z) and thus we

find that (û(x) ∗ u) ∗ x = û(x) ∗ (u ∗ x), and “LL-special = LR-special”. Similarly, we find

that “RL-special = RR-special”, “LR′-special = LL′-special”, “RL′-special = RR′-special”,

“LL′′-special = LR′′-special” and “RL′′-special = RR′′-special”. Next, suppose that (X, ∗)
is a commutative groupoid, i.e., x ∗ y = y ∗ x for all x, y ∈ X. Then (û(x) ∗ u) ∗ x =
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(u ∗ û(x)) ∗ x = x ∗ (u ∗ û(x)) = x ∗ (û(x) ∗ u), and hence “LL-special = RR-special =

LL′-special = RR′-special”. Since û(x) ∗ (u ∗ x) = û(x) ∗ (x ∗ u) = (x ∗ u) ∗ û(x)) =

(u∗x)∗ û(x), we have “LR-special = LR′′-special = LR′-special = RR′′-special”. Moreover,

since u ∗ (û(x) ∗ x) = u ∗ (x ∗ û(x)) = (x ∗ û(x)) ∗ u = (û(x) ∗ x) ∗ u, we have “RL-special =

RL′′-special = RL′-special = LL′′-special”. If (X, ∗) is a commutative semigroup, then all

12 types of special elements into a single type. In this case, we call u a special element of

(X, ∗).
Example 4.1. Let X := [0,∞) and let x ∗ y := x + y for all x, y ∈ X where “+” is

the usual addition in real numbers. Assume û(x) + u + x = x. Then û(x) + u = 0 for all

x ∈ X. It follows that û(x) = u = 0 for all x ∈ X. Hence u = 0 is the only special element

of (X, ∗) and û(x) = 0 for all x ∈ X, i.e., the zero map on X.

Example 4.2. Let X := (0,∞) and let x ∗ y := x+ y for all x, y ∈ X where “+” is

the usual addition in real numbers. Assume û(x) + u + x = x. Then û(x) + u = 0 for all

x ∈ X. It follows that û(x) = u = 0 ̸∈ X. Hence (X, ∗) has no special elements whatsoever.

Proposition 4.3. If (X, ∗, 0) is a BCK-algebra, then “LL-special = LL′′-special”,

“RR-special = RR′′-special” and “LL′-special = RL′-special”.

Proof. If (X, ∗, 0) is a BCK-algebra, then (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y, z ∈ X,

and the proposition can be proved. �
Theorem 4.4. Let K be a field and let α, β, γ ∈ K. Define x ∗ y := α + βx + γy

for all x, y ∈ K. If (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y, z ∈ K, then either x ∗ y = α+ βx or

x ∗ y = α+ x+ γy for all x, y ∈ K.

Proof. Given x, y, z ∈ K, we have (x∗y)∗z = α+β(x∗y)+γz = α+β(α+βx+γy)+

γz = α(1+β)+β2x+βγy+γz. Similarly, we obtain (x∗z)∗y = α(1+β)+β2x+βγz+γy.

It follows that 0 = (x ∗ y) ∗ z − (x ∗ z) ∗ y = βγ(y − z) + γ(z − y) = γ(β − 1)(y − z) for all

y, z ∈ K. This implies that either γ = 0 or β = 1, proving the theorem. �
Corollary 4.5. Let K be a field and let α, β, γ ∈ K. Define x ∗ y := α + βx + γy

for all x, y ∈ K. If (x ∗ y) ∗ z = (x ∗ z) ∗ y and x ∗ y = y ∗ x for all x, y, z ∈ K, then either

x ∗ y = α or x ∗ y = α+ x+ y for all x, y ∈ K.

Proof. In the case of x∗y = α+βx, if x∗y = y∗x for all x, y ∈ K, then α+βx = α+βy

and hence β(x− y) = 0 for all x, y ∈ K. This shows that β = 0, proving that x ∗ y = α. In

the case of x ∗ y = α+ x+ γy, if x ∗ y = y ∗ x for all x, y ∈ K, then α+ x+ γy = α+ y+ γx

and hence (1 − γ)(x − y) = 0 for all x, y ∈ K. This shows that γ = 1, proving that

x ∗ y = α+ x+ y. �
Proposition 4.6. If (X, ∗, 0) is a groupoid satisfying the conditions:

(i) x ∗ y = y ∗ x for all x, y ∈ X,

(ii) (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y, z ∈ X,

then it is a commutative semigroup and has a unique special element in (X, ∗) if it exists.
Proof. Given x, y, z ∈ X, we have (x ∗ y) ∗ z = (x ∗ z) ∗ y = (z ∗ x) ∗ y = (z ∗ y) ∗ x =

x ∗ (z ∗ y) = x ∗ (y ∗ z), proving that (X, ∗) is a commutative semigroup. Assume u1, u2

are special elements of (X, ∗). Let ûi(x) := α(∈ X) for all x ∈ X (i = 1, 2). Then

u1 = (û1(u1) ∗ u2) ∗ u1 and u2 = (û2(u2) ∗ u1) ∗ u2. It follows that u1 = (û1(u1) ∗ u2) ∗ u1 =

(α ∗ u2) ∗ u1 = (α ∗ u1) ∗ u2 = (û2(u2) ∗ u1) ∗ u2 = u2, proving the proposition. �
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Corollary 4.7. Let K be a field and let α ∈ K. A groupoid (K, ∗), where x ∗ y := α

or x ∗ y := α+ x+ y for all x, y ∈ K, has a special element if it exists.

Proof. It follows from Corollary 4.5 and Proposition 4.6. �
Proposition 4.8. Let K be a field and let α, β, γ ∈ K. Define x ∗ y := α+ βx+ γy

for all x, y ∈ K. If (K, ∗) is a semigroup, then x ∗ y = α, x ∗ y = α + x, x ∗ y = α + y or

x ∗ y = α+ x+ y for all x, y ∈ K.

Proof. It was proved that (x∗y)∗ z = α(1+β)+β2x+βγy+γz. Similarly we obtain

x ∗ (y ∗ z) = α(1 + γ) + βx + γβy + γ2z. It follows that α(1 + β) = α(1 + γ), β2 = β and

γ2 = γ, which proves the proposition. �
Remark. The property (x∗y)∗z = (x∗z)∗y also holds for BCK-algebras and hence

there is no guarantee in general for either commutativity or associativity as is the setting of

the corollaries of the theorem.

5. Universally completely special elements

A groupoid (X, ∗) is said to be completely LL-special if u is LL-special for all u ∈ X.

A groupoid (X, ∗) is said to be universally completely special if (X, ∗) is completely α-special

for any α ∈ {LL,LR,RL,RR,LL′, LR′, RL′, RR′, LL′′, LR′′, RL′′, RR′′}.
Example 5.1. Define a binary operation “∗” by x∗y := x2 for all x, y ∈ X := [0,∞),

i.e., (X, ∗) is a leftoid for f(x) = x2. If u is LL-special inX, then x = (û(x)∗u)∗x = f2(û(x))

for all x ∈ X. It follows that û(x) = 4
√
x for all x ∈ X. Hence (X, ∗) is completely LL-special.

Example 5.2. Let X := R, the set of all real numbers. Define a binary operation

“∗” on X by x ∗ y := 1
2 (x+ y) for all x, y ∈ X. Given any u ∈ X, if we define û(x) := 2x−u

for all x ∈ X, then (û(x) ∗ u) ∗ x = 1
2 [

1
2 (2x− u+ u) + x] = x, proving that u is LL-special.

Hence (X, ∗) is completely LL-special.

Note that every abelian group is universally completely special. Let (X, ∗, e) be an

abelian group. Then all 12 types of special elements coincide into a single type. Given

u ∈ X, we let (û(x) ∗ u) ∗ x = x for all x ∈ X. It follows that û(x) ∗ u = e, i.e., û(x) = u−1

for all x ∈ X. Hence u is completely LL-special for all u ∈ X.

Proposition 5.3. Let (X, ∗) be a leftoid for f , i.e., x ∗ y := f(x) for all x, y ∈ X.

Let u ∈ X and û : X → X be a map. Then u is LR-special if and only if f(û(x)) = x for

all x ∈ X.

Proof. It follows immediately from x = û(x) ∗ (u ∗ x) = f(û(x)) for all x ∈ X. �
Example 5.4. Let X := R be the set of all real numbers. We define x ∗ y := x3, i.e.,

x ∗ y = f(x) = x3 for all x, y ∈ R. Assume u is LR-special. Then, by Proposition 5.3, we

have x = f(û(x)) = (û(x))3 for all x ∈ R. Hence û(x) = 3
√
x for all x ∈ X. This shows that

(R, ∗, 0) is completely LR-special.

Proposition 5.5. Let (X, ∗) be a leftoid for f , i.e., x ∗ y := f(x) for all x, y ∈ X.

Let u ∈ X and û : X → X be a map. Then u is LR′-special if and only if f2(x) = x for all

x ∈ X.

Proof. It follows immediately from x = (x ∗ u) ∗ û(x) = f(x) ∗ û(x) = f(f(x)) for all

x ∈ X. �
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Example 5.6. Let (X, ·) be a group. We define a binary operation “∗” on X by

x ∗ y := x−1, i.e., f(x) = x−1, for all x, y ∈ X. It follows that f(f(x)) = (x−1)−1 = x for

any x ∈ X, showing that (X, ∗) is a leftoid for f and it is completely LR′-special.

Let K be a field and let α, β, γ ∈ K. A groupoid (K, ∗) is said to be a linear groupoid

if x ∗ y := α+ βx+ γy for all x, y ∈ K. If β = 0, then x ∗ y = α+ γy determines a rightoid,

and if γ = 0, then x∗y = α+βx determines a leftoid. Let (X, ∗) be a groupoid. A mapping

û : X → X is said to have a fixed point x ∈ X if û(x) = x.

Theorem 5.7. Let (K, ∗) be a linear groupoid, i.e., x ∗ y := βx+ γy for all x, y ∈ K

where β, γ ∈ K. Let u be an LL-special element of (K, ∗) and û be a pseudo inverse of u.

If û has a fixed point of u, then either

(i) x ∗ y = −x+ γy, γ ̸= 0 and û(x) = (1− γ)x+ γu, for all x, y ∈ K, or

(ii) x ∗ y = βx+ (1− β)y, β ̸= 0 and û(x) = 1
β (x− (1− β)u), for all x, y ∈ K.

Proof. Let (K, ∗) be a linear groupoid, i.e., x ∗ y := βx + γy for all x, y ∈ K where

β, γ ∈ K. Let u be an LL-special element of (K, ∗). Then x = (û(x) ∗ u) ∗ x for all x ∈ K.

It follows that x = β(û(x) ∗u)+ γx = β(βû(x)+ γu)+ γx = β2û(x)+βγu+ γx. This shows

that

û(x) =
1− γ

β2
x− uβγ

β2
(1)

If we let x := u in (1), then

û(u) =
1

β2
[1− γ(1 + β)]u (2)

Since u is a fixed point of û, i.e., û(u) = u, we have 1 − γ(1 + β) = β2. It follows that

γ(1 + β) = (1− β)(1 + β), and hence we have either β = −1 or γ = 1− β. If β = −1, i.e.,

x ∗ y = −x + γy, γ ̸= 0, then (1) leads to û(x) = (1 − γ)x + γu for all x ∈ K, which is the

case (i). If γ = 1− β, i.e., x ∗ y = βx+(1− β)y, β ̸= 0, then (1) leads to û(x) = 1
βx−

1−β
β u,

which is the case (ii). This completes the proof. �
Proposition 5.8. Let (K, ∗) be a linear groupoid with x ∗ y := βx + γy for all

x, y ∈ K where β ̸= 0, γ ∈ K. Let u be an LR-special element of (K, ∗) and û be a pseudo

inverse of u. If û has a fixed point of u, then x ∗ y = βx + (1 − β)y for all x, y ∈ K and

û(x) = (2− β)x+ (β − 1)u for all x ∈ K.

Proof. Let (K, ∗) be a linear groupoid with x ∗ y := βx + γy for all x, y ∈ K where

β ̸= 0, γ ∈ K. Let u be an LR-special element of (K, ∗). Then x = û(x) ∗ (u ∗ x) for all

x ∈ K. It follows that x = βû(x) + γ(u ∗ x) = βû(x) + γ(βu + γx) = βû(x) + βγu + γ2x.

From this equation we obtain

û(x) =
1

β
(1− γ2)x− γu (3)

If we let û(u) = u, then β + γ = 1, i.e., x ∗ y = βx + (1 − β)y for all x, y ∈ K and

û(x) = 1
β [(1− (1− β)2)x− β(1− β)u] = (2− β)x+ (β − 1)u for all x ∈ K. �

Example 5.9. Let β = γ = 1
2 in Proposition 5.8. Then x ∗ y = 1

2 (x + y) for all

x, y ∈ K and û(x) = 2
3x−

1
2u is the pseudo inverse function of u for all x ∈ K. Hence (K, ∗)

is completely LR-special.

Remark 5.10. In Theorem 5.7, assume (K, ∗) has an RL-special element u ∈ K.

Then there exists a map û : K → K such that u ∗ (û(x) ∗ x) = x for all x ∈ K. It
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follows that x = u ∗ (û(x) ∗ x) = α + βu + γ(û(x) + x) = α + βu + γ(α + βû(x) + γx) =

α+ βu+ αγ + βγû(x) + γ2x and

û(x) =
1

βγ
[(1− γ2)x− α(1 + γ)− βu] (4)

Assume m be a fixed element of û, i.e., û(m) = m. Then, by (4), we obtain m = û(m) =
1
βγ [(1− γ2)m− α(1 + γ)− βu]. It follows that

m =
α(1 + γ) + βu

1− γ2 − βγ
(5)

when 1 − γ2 − βγ ̸= 0, i.e., 1 ̸= γ(β + γ). If α = 0, β = γ = 1
2 in (5), then m = u, i.e.,

û(u) = u and x ∗ y = 1
2 (x+ y). If α = 0, β = γ = 1 in (5), then m = −u, i.e., û(u) = u and

x ∗ y = x+ y.

Conclusion.

Although the idea of what an inverse of an element means in restricted circumstances,

where these are often unique, or unique “on the left” or “on the right”, such as in the theory

of groups, or the multiplicative semigroups of rings, for example, there has not been a

detailed study of “inverse types” that may exist for arbitrary binary systems. Again, it is

true that the idea of “inverses” has been touched upon in more general circumstances ([5])

even in the ancestral age of such studies, but it has been limited by the abstractions caused

by excess universality, which has not promoted the progress one desires in a more detailed

development such as attempted here. In particular, we have dealt with a number of classes

of binary systems beyond the standard ones, which generate subsemigroups of (Bin(X),�)

or which are otherwise of significance, e.g., groups. The methods developed in this paper

can easily be applied to other classes of binary systems, and if necessary to other systems

of “higher” universal algebra classified types as well.
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