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UPPER BOUND OF SECOND HANKEL DETERMINANT FOR

k-BI-SUBORDINATE FUNCTIONS

Ahmad Motamednezhad1, Serap Bulut2, Ebrahim Analouei Adegani3

In this work, we determine an upper bound of the functional H2(2) =
a2a4 − a23 for functions belonging to a subclass of analytic bi-univalent functions which

is defined by subordination conditions in the open unit disk D. In addition, we get a

smaller upper bound and more accurate estimation than the previous results and we
correct their mistake.
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1. Introduction

Let A be a class of analytic functions in the open unit disk D = {z ∈ C : |z| < 1}, of
the form

f(z) = z +

∞∑
n=2

anz
n (z ∈ D) . (1)

A function f : D→ C is called univalent on D if f (z1) 6= f (z2) all z1, z2 ∈ D with
z1 6= z2. Let S be the class of functions f ∈ A which are univalent in D.

A function f ∈ A is said to be starlike, if it satisfies the inequality

Re

(
zf ′(z)

f(z)

)
> 0 (z ∈ D) . (2)

We denote the class which consists of all functions f ∈ A that are starlike by S∗.
A function f ∈ A is said to be convex, if it satisfies the inequality

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 (z ∈ D) . (3)

We denote the class which consists of all functions f ∈ A that are convex by C.
For two functions f and g which are analytic in D, we say that the function f is

subordinate to g, and write f(z) ≺ g(z), if there exists a Schwarz function w, that is a
function w analytic in D with w(0) = 0 and |w(z)| < 1 in D, such that f(z) = g(w(z)) for
all z ∈ D.
In particular, if the function g is univalent in D, then f ≺ g if and only if f(0) = g(0) and
f(D) ⊆ g(D), [7].
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By means of the subordination, the conditions (2) and (3) are, respectively, equivalent
to

zf ′(z)

f(z)
≺ 1 + z

1− z
and 1 +

zf ′′(z)

f ′(z)
≺ 1 + z

1− z
.

Ma and Minda [11] gave a unified presentation of various subclasses of starlike and convex
functions by replacing the subordinate function 1+z

1−z by a more general analytic function
ϕ with positive real part in the unit disk D, symmetric with respect to the real axis and
starlike with respect to ϕ(0) = 1, and ϕ′(0) > 0.

One of the important tools in the theory of univalent functions are the Hankel deter-
minants which are used, for example, in showing that a function of bounded characteristic
in D, that is, a function which is a ratio of two bounded analytic functions, with its Laurent
series around the origin having integral coefficients, is rational [5].

In 1976, Noonan and Thomas [13] defined the q-th Hankel determinant for integers
n ≥ 1 and q ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q

...
...

...
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ (a1 = 1) .

Note that

H2(1) =

∣∣∣∣a1 a2

a2 a3

∣∣∣∣ and H2(2) =

∣∣∣∣a2 a3

a3 a4

∣∣∣∣ ,
where the Hankel determinants H2(1) = a3 − a2

2 and H2(2) = a2a4 − a2
3 are well-known

as Fekete-Szegö and second Hankel determinant functionals, respectively. Further, Fekete
and Szegö [8] introduced the generalized functional a3 − λa2

2, where λ is some real number.
Problems in this field has also been argued by several authors (see for example [1, 4, 6, 9,
14, 15, 16, 20]).

In 1983, Sălăgean [17] introduced differential operator Dk : A→ A defined by

D0f(z) = f(z), D1f(z) = Df(z) = zf ′(z),

and in general

Dkf(z) = D(Dk−1f(z)), k ∈ N = {1, 2, . . .} .
We easily find that

Dkf(z) = z +

∞∑
n=2

nkanz
n, k ∈ N0 := N∪{0} ,

with Dkf(0) = 0.
The Koebe one-quarter theorem [7] ensures that the image of D under every univalent

function f ∈ S contains a disk of radius 1/4. Thus every function f ∈ S has an inverse f−1,
such that

f−1 (f(z)) = z (z ∈ D) , and f
(
f−1(w)

)
= w

(
|w| < r0(f); r0(f) ≥ 1

4

)
,

where the inverse f−1 has the power series expansion (see [10])

g(w) := f−1(w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + . . . . (4)

A function f ∈ A is said to be bi-univalent in D if both f and f−1 are univalent in D,
in the sense that f−1 has a univalent analytic continuation to D. Let Σ denote the class of
bi-univalent functions in D. For a brief history of functions in the class Σ and also different
other characteristics of these functions see [2, 10, 18, 19, 21] and the references therein.
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In this work, we assume that the function ϕ is an analytic function with positive real
part in the unit disk D, satisfying ϕ(0) = 1, ϕ′(0) > 0, such that ϕ(D) is symmetric with
respect to the real axis. Such a function has the power series expansion of the form

ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + . . . , z ∈ D (B1 > 0). (5)

By means of the subordination, Bulut [3] defined the class B
m,k
Σ (γ;ϕ) of analytic

bi-univalent functions as follows:

Definition 1.1. Let m, k ∈ N0 ;m > k and γ ∈ C\ {0} . A function f ∈ Σ given by (1) is

said to be in the class B
m,k
Σ (γ;ϕ) if the following conditions are satisfied:

1 +
1

γ

(
Dmf (z)

Dkf (z)
− 1

)
≺ ϕ (z) (6)

and

1 +
1

γ

(
Dmg (w)

Dkg (w)
− 1

)
≺ ϕ (w) , (7)

where z, w ∈ D and the function g = f−1 is defined by (4).

Remark 1.1. For m = k+1, we get the class Bk+1,k
Σ (γ;ϕ) = BΣ,k (γ;ϕ) of k-bi-subordinate

functions of complex order γ ∈ C\ {0} .

Remark 1.2. If we set

m = k + 1, γ = 1 and ϕ (z) =
1 + (1− 2β) z

1− z
(0 ≤ β < 1)

in Definition 1.1, then the class B
m,k
Σ (γ;ϕ) reduces to the class SΣ,k (β) of k-bi-starlike

functions. In other words, a function f ∈ Σ is said to be in the class SΣ,k (β), if the
following conditions are satisfied (see [15]):

Re

(
Dk+1f (z)

Dkf (z)

)
> β and Re

(
Dk+1g (z)

Dkg (z)

)
> β.

For k = 0 and k = 1, we get the classes

SΣ,0 (β) = S∗Σ (β) and SΣ,1 (β) = KΣ (β) ,

which are the class of bi-starlike functions of order β and bi-convex functions of order β,
respectively. In particular, we have the classes

SΣ,0 (0) = S∗Σ and SΣ,1 (0) = KΣ,

which are the class of bi-starlike functions and bi-convex functions, respectively.

Example 1.1. If we set f(z) =
z

1− z
and ϕ (z) =

1 + z

1− z
where z ∈ D, then both f(z) and

g(w) = f−1(w) =
w

1 + w
are univalent in D and so f ∈ Σ. On other the hand, conditions

(6) and (7) hold for k = 1, m = 2 and γ = 1, that is,

1 +
zf ′′(z)

f ′(z)
=

1 + z

1− z
≺ 1 + z

1− z
, this is equvalent with Re

(
1 + z

1− z

)
> 0

and

1 +
wg′′(w)

g′(w)
=

1− w
1 + w

≺ 1 + w

1− w
, this is equvalent with Re

(
1− w
1 + w

)
> 0.

Therefore f ∈ B
2,1
Σ

(
1;

1 + z

1− z

)
, in other words f is 1-bi-convex function (bi-convex function).

Since every convex function is a starlike function, so also f is 1-bi-starlike function (bi-
starlike function).
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Theorem 1.1. [6, Theorem 2.1] Let the function f given by (1) be in the class S∗Σ (β)
(0 ≤ β < 1). Then

∣∣a2a4 − a2
3

∣∣ ≤


4(1−β)2

3

(
4β2 − 8β + 5

)
, β ∈

[
0, 29−

√
137

32

]
(1− β)

2
(

13β2−14β−7
16β2−26β+5

)
, β ∈

(
29−
√

137
32 , 1

)
.

Corollary 1.1. [6, Corollary 2.2] Let the function f given by (1) be in the class S∗Σ. Then∣∣a2a4 − a2
3

∣∣ ≤ 20

3
.

Theorem 1.2. [6, Theorem 2.3] Let the function f given by (1) be in the class KΣ (β)
(0 ≤ β < 1). Then ∣∣a2a4 − a23∣∣ ≤ (1− β)2

24

(
5β2 + 8β − 32

3β2 − 3β − 4

)
.

Corollary 1.2. [6, Corollary 2.4] Let the function f given by (1) be in the class KΣ. Then∣∣a2a4 − a23∣∣ ≤ 1

3
.

The class SΣ,k (β) of k-bi-starlike functions is defined by Orhan et al. [15] and they
obtained an upper bound for the second Hankel determinant of functions f ∈ SΣ,k (β) (see
[15, Theorem 2.1]). They got for η, µ ≤ 1∣∣a2a4 − a2

3

∣∣ ≤ T1 + (η + µ)T2 + (η2 + µ2)T3 + (η + µ)2T4 = G(η, µ),

where

T1 = T1(p) =
(1− β)2

3(23k)

[(
(1− β)2 (3(2k) + 22k − ı̈?‘ 1

23k+1)

22k
+

1

4

)
p4 − p3

2
+ 2p

]
≥ 0

T2 = T2(p) =
(1− β)2p2(4− p2)

22k+2

[
1

32k
+

(1− β)

4(3k)

]
≥ 0

T3 = T3(p) =
(1− β)2p(4− p2)(p− 2)

24(23k)
≤ 0

T4 = T4(p) =
(1− β)2

16(9k)

(4− p2)2

4
≥ 0.

They claimed that

T3 + 2T4 > 0 for p ∈ [0, 2) ,

to maximize the function G(η, µ) on the closed square [0, 1]× [0, 1]. But there is a mistake
in their proof. Now we give a counterexample that this inequality is not true:

If we choose

β = 0, k = 10 and p = 0, 9,

then we have

T3 + 2T4 = −3, 134800373× 10−11 < 0.

The main purpose of this paper is that, by using a different method from the one in
[15], to determine the functional H2(2) = a2a4 − a2

3 for functions belonging to the subclass

of analytic bi-univalent functions B
m,k
Σ (γ;ϕ) which is defined by subordination principle in

the open unit disk D. In addition, we get more accurate estimation than the previous results
and we give the correction of [15, Theorem 2.1].

In order to prove our main results, we need the following lemmas.
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Lemma 1.1. [7, p. 190] Let u be analytic function in the unit disk D, with u(0) = 0, and
|u(z)| < 1 for all z ∈ D, with the power series expansion

u(z) =

∞∑
n=1

cnz
n.

Then, |cn| ≤ 1 for all n ∈ N. Furthermore, |cn| = 1 for some n ∈ N if and only if
u(z) = eiθzn, θ ∈ R.

Lemma 1.2. [9] If ψ(z) =
∞∑
n=1

ψnz
n, z ∈ D, is a Schwarz function, then

ψ2 = x
(
1− ψ2

1

)
,

ψ3 =
(
1− ψ2

1

) (
1− |x|2

)
s− ψ1

(
1− ψ2

1

)
x2,

for some x, s, with |x| ≤ 1 and |s| ≤ 1.

2. Main Results

Whilst Lemma 1.1 holds for complex-valued cn (n ∈ N), in this paper we restrict our
attention to the case of real valued c1.

Theorem 2.1. Let the function f given by (1) be in the class B
m,k
Σ (γ;ϕ). Then

∣∣a2a4 − a23∣∣ ≤ B1|γ|2 ×


R if Q ≤ 0, P ≤ −Q

P +Q+R if (Q ≥ 0, P ≥ −Q
2
), or, (Q ≤ 0, P ≥ −Q)

4PR−Q2

4P
if Q > 0, P ≤ −Q

2
,

where

P =

∣∣∣∣∣−
[
(2m − 2k)(22k − 3k)− 2k(3m − 3k) + (4m − 4k)

]
γ2B3

1

(4m − 4k)(2m − 2k)4
+

B3

(4m − 4k)(2m − 2k)

∣∣∣∣∣
− 2

(
|γ|B2

1

4(2m − 2k)2(3m − 3k)
+

|B2|
(4m − 4k)(2m − 2k)

)
− B1

(4m − 4k)(2m − 2k)
+

B1

(3m − 3k)2
,

Q = 2

(
|γ|B2

1

4(2m − 2k)2(3m − 3k)
+

|B2|
(4m − 4k)(2m − 2k)

)
+

B1

(4m − 4k)(2m − 2k)
− 2B1

(3m − 3k)2
,

R =
B1

(3m − 3k)2
.

Proof. Let f ∈ B
m,k
Σ (γ;ϕ). Then by definition of subordination and Lemma 1.1, there exist

two Schwarz functions u and v, of the form u(z) =
∞∑
n=1

cnz
n and v(z) =

∞∑
n=1

dnz
n, z ∈ D

such that

1 +
1

γ

(
Dmf (z)

Dkf (z)
− 1

)
= ϕ(u(z)) (8)

and

1 +
1

γ

(
Dmg (w)

Dkg (w)
− 1

)
= ϕ(v(w)), (9)

where

ϕ(u(z)) = 1 +B1c1z + (B1c2 +B2c
2
1)z2 + (B1c3 + 2B2c1c2 +B3c

3
1)z3 + · · · (10)
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and

ϕ(v(w)) = 1 +B1d1w + (B1d2 +B2d
2
1)w2 + (B1d3 + 2B2d1d2 +B3d

3
1)w3 + · · · . (11)

From (8), (10) and (9), (11), we have

(2m − 2k)a2 = γB1c1 (12)

(3m − 3k)a3 − 2k(2m − 2k)a22 = γ(B1c2 +B2c
2
1) (13)

(4m − 4k)a4 −
[
3k(2m − 2k) + 2k(3m − 3k)

]
a2a3 + 22k(2m − 2k)a32

=γ(B1c3 + 2B2c1c2 +B3c
3
1) (14)

and

−(2m − 2k)a2 = γB1d1 (15)

(3m − 3k)(2a22 − a3)− 2k(2m − 2k)a22 = γ(B1d2 +B2d
2
1) (16)

−(4m − 4k)
(
5a32 − 5a2a3 + a4

)
+
[
3k(2m − 2k) + 2k(3m − 3k)

]
a2
(
2a22 − a3

)
−22k(2m − 2k)a32 = γ(B1d3 + 2B2d1d2 +B3d

3
1), (17)

respectively. From (12) and (15), we get that

c1 = −d1 (18)

and

a2 =
γB1c1

2m − 2k
. (19)

Nevertheless, from (13) and (16), we get

a3 =
γ2B2

1c
2
1

(2m − 2k)2
+
γB1(c2 − d2)

2(3m − 3k)
. (20)

Furthermore, from (14) and (17), we obtain

a4 =

[
(2m − 2k)(3k − 22k) + 2k(3m − 3k)

]
γ3B3

1c
3
1

(4m − 4k)(2m − 2k)3
+

5γ2B2
1c1(c2 − d2)

4(2m − 2k)(3m − 3k)

+
γB1(c3 − d3)

2(4m − 4k)
+
γB2c1(c2 + d2)

(4m − 4k)
+

γB3c
3
1

(4m − 4k)
. (21)

Therefore, after calculations we have∣∣a2a4 − a2
3

∣∣ =

∣∣∣∣−
[
(2m − 2k)(22k − 3k)− 2k(3m − 3k) + (4m − 4k)

]
γ4B4

1c
4
1

(4m − 4k)(2m − 2k)4

+
γ3B3

1c
2
1(c2 − d2)

4(2m − 2k)2(3m − 3k)
+
γ2B1B2c

2
1(c2 + d2)

(4m − 4k)(2m − 2k)

+
γ2B3B1c

4
1

(4m − 4k)(2m − 2k)
+

γ2B2
1c1(c3 − d3)

2(4m − 4k)(2m − 2k)

− γ2B2
1(c2 − d2)2

4(3m − 3k)2

∣∣∣∣. (22)

According to Lemma 1.2 and (18), we find that

c2 − d2 =
(
1− c21

)
(x− y) and c2 + d2 =

(
1− c21

)
(x+ y) (23)

and

c3 =
(
1− c21

) (
1− |x|2

)
s− c1

(
1− c21

)
x2 and

d3 =
(
1− d2

1

) (
1− |y|2

)
t− d1

(
1− d2

1

)
y2,

where
c3 − d3 = (1− c21)

[
(1− |x|2)s− (1− |y|2)t

]
− c1(1− c21)(x2 + y2), (24)
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for some x, y, s, t with |x| ≤ 1, |y| ≤ 1, |s| ≤ 1 and |t| ≤ 1. Applying (23) and (24) in
(22), it follows that

∣∣a2a4 − a23∣∣
= B1|γ|2

∣∣∣∣∣
[
−
[
(2m − 2k)(22k − 3k)− 2k(3m − 3k) + (4m − 4k)

]
γ2B3

1

(4m − 4k)(2m − 2k)4
+

B3

(4m − 4k)(2m − 2k)

]
c41

+

[
γB2

1(x− y)
4(2m − 2k)2(3m − 3k)

+
B2(x+ y)

(4m − 4k)(2m − 2k)

]
c21
(
1− c21

)
−

B1c
2
1

(
1− c21

)
2(4m − 4k)(2m − 2k)

(
x2 + y2

)
−
B1

(
1− c21

)2
4(3m − 3k)2

(x− y)2 +
B1c1

(
1− c21

)
2(4m − 4k)(2m − 2k)

[(
1− |x|2

)
s−

(
1− |y|2

)
t
] ∣∣∣∣∣.

Since |c1| ≤ 1, we assume that c1 = c ∈ [0, 1]. So we have

∣∣a2a4 − a23∣∣
≤ B1|γ|2

{∣∣∣∣∣−
[
(2m − 2k)(22k − 3k)− 2k(3m − 3k) + (4m − 4k)

]
γ2B3

1

(4m − 4k)(2m − 2k)4
+

B3

(4m − 4k)(2m − 2k)

∣∣∣∣∣ c4
+

[
|γ|B2

1

4(2m − 2k)2(3m − 3k)
+

|B2|
(4m − 4k)(2m − 2k)

]
c2
(
1− c2

)
(|x|+ |y|)

+
B1c

2
(
1− c2

)
2(4m − 4k)(2m − 2k)

(
|x|2 + |y|2

)
+
B1

(
1− c2

)2
4(3m − 3k)2

(|x|+ |y|)2

+
B1c

(
1− c2

)
2(4m − 4k)(2m − 2k)

[(
1− |x|2

)
|s|+

(
1− |y|2

)
|t|
]}

≤ B1|γ|2
{∣∣∣∣∣−

[
(2m − 2k)(22k − 3k)− 2k(3m − 3k) + (4m − 4k)

]
γ2B3

1

(4m − 4k)(2m − 2k)4
+

B3

(4m − 4k)(2m − 2k)

∣∣∣∣∣ c4
+

[
|γ|B2

1

4(2m − 2k)2(3m − 3k)
+

|B2|
(4m − 4k)(2m − 2k)

]
c2
(
1− c2

)
(|x|+ |y|)

+
B1c

2
(
1− c2

)
2(4m − 4k)(2m − 2k)

(
|x|2 + |y|2

)
+
B1

(
1− c2

)2
4(3m − 3k)2

(|x|+ |y|)2

+
B1c

(
1− c2

)
2(4m − 4k)(2m − 2k)

[(
1− |x|2

)
+
(
1− |y|2

)]}

= B1|γ|2
{∣∣∣∣∣−

[
(2m − 2k)(22k − 3k)− 2k(3m − 3k) + (4m − 4k)

]
γ2B3

1

(4m − 4k)(2m − 2k)4
+

B3

(4m − 4k)(2m − 2k)

∣∣∣∣∣ c4
+

2B1c
(
1− c2

)
2(4m − 4k)(2m − 2k)

+

[
|γ|B2

1

4(2m − 2k)2(3m − 3k)
+

|B2|
(4m − 4k)(2m − 2k)

]
c2
(
1− c2

)
(|x|+ |y|)

+

[
B1c

2
(
1− c2

)
2(4m − 4k)(2m − 2k)

−
B1c

(
1− c2

)
2(4m − 4k)(2m − 2k)

] (
|x|2 + |y|2

)
+
B1

(
1− c2

)2
4(3m − 3k)2

(|x|+ |y|)2
}
.

Now, for λ = |x| ≤ 1 and µ = |y| ≤ 1, we obtain

∣∣a2a4 − a2
3

∣∣ ≤ B1|γ|2
[
T1 + (λ+ µ)T2 + (λ2 + µ2)T3 + (λ+ µ)2T4

]
= B1|γ|2F (λ, µ),
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where

T1 = T1(c) =

∣∣∣∣∣−
[
(2m − 2k)(22k − 3k)− 2k(3m − 3k) + (4m − 4k)

]
γ2B3

1

(4m − 4k)(2m − 2k)4
+

B3

(4m − 4k)(2m − 2k)

∣∣∣∣∣ c4
+

2B1c
(
1− c2

)
2(4m − 4k)(2m − 2k)

≥ 0

T2 = T2(c) =

[
|γ|B2

1

4(2m − 2k)2(3m − 3k)
+

|B2|
(4m − 4k)(2m − 2k)

]
c2
(
1− c2

)
≥ 0

T3 = T3(c) =
B1c(c− 1)(1− c2)

2(4m − 4k)(2m − 2k)
≤ 0

T4 = T4(c) =
B1

(
1− c2

)2
4(3m − 3k)2

≥ 0.

We now need to maximize the function F (λ, µ) on the closed square [0, 1]×[0, 1] for c ∈ [0, 1].
With regards to F (λ, µ) = F (µ, λ), it is sufficient that we investigate the maximum of

G(λ) = F (λ, λ) = T1 + 2λT2 + 2λ2(T3 + 2T4), (25)

on λ ∈ [0, 1] according to c ∈ (0, 1), c = 0 and c = 1.
Firstly, if we let c = 1, then we obtain

max {G(λ) : λ ∈ [0, 1]} =

∣∣∣∣−
[
(2m − 2k)(22k − 3k)− 2k(3m − 3k) + (4m − 4k)

]
γ2B3

1

(4m − 4k)(2m − 2k)4

+
B3

(4m − 4k)(2m − 2k)

∣∣∣∣.
Secondly, letting c = 0, so we get

G(λ) =
4B1

4(3m − 3k)2
λ2,

hence we can see that

max {G(λ) : λ ∈ [0, 1]} = G(1) =
B1

(3m − 3k)2
.

Finally, we let c ∈ (0, 1). Considering equation (25) for 0 ≤ λ ≤ 1 we get
(i) If T3 + 2T4 ≥ 0, it is clear that

G′(λ) = 4(T3 + 2T4)λ+ 2T2 > 0

for 0 < λ < 1 and any fixed c ∈ (0, 1), that is G(λ) is an increasing function. Hence

max {G(λ) : λ ∈ [0, 1]} = G(1) = T1 + 2T2 + 2T3 + 4T4.

(ii) If T3 + 2T4 < 0, then we consider for critical point

λ0 =
−(T2)

2(T3 + 2T4)
=
T2

2k

for any fixed c ∈ (0, 1), where k = −(T3 + 2T4) > 0, the following two cases:

Case 1. For λ0 =
T2

2k
> 1, it follows that k <

T2

2
≤ T2, and so T2 + T3 + 2T4 ≥ 0.

Therefore,

G(0) = T1 ≤ T1 + 2(T2 + T3 + 2T4) = G(1).

Case 2. For λ0 =
T2

2k
≤ 1, since T2 ≥ 0, we get that

T 2
2

2k ≤ T2. Therefore,

G(0) = T1 ≤ T1 +
T 2

2

2k
= G (λ0) ≤ T1 + T2.
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Considering the above cases for point of c, it follows that the function G(λ) gets its
maximum when T3 + 2T4 ≥ 0, it means

max {G(λ) : λ ∈ [0, 1]} = G(1) = T1 + 2T2 + 2T3 + 4T4.

Therefore, maxF (λ, µ) = F (1, 1) on the boundary of the square.
Let K : [0, 1]→ R,

K(c) = B1|γ|2 maxF (λ, µ) = B1|γ|2F (1, 1)

= B1|γ|2(T1 + 2T2 + 2T3 + 4T4). (26)

By replacing the values of T1, T2, T3 and T4 in the above function K, we have

K(c) =B1|γ|2
{[ ∣∣∣∣∣−

[
(2m − 2k)(22k − 3k)− 2k(3m − 3k) + (4m − 4k)

]
γ2B3

1

(4m − 4k)(2m − 2k)4
+

B3

(4m − 4k)(2m − 2k)

∣∣∣∣∣
− 2

(
|γ|B2

1

4(2m − 2k)2(3m − 3k)
+

|B2|
(4m − 4k)(2m − 2k)

)
− B1

(4m − 4k)(2m − 2k)
+

B1

(3m − 3k)2

]
c4

+

[
2

(
|γ|B2

1

4(2m − 2k)2(3m − 3k)
+

|B2|
(4m − 4k)(2m − 2k)

)
+

B1

(4m − 4k)(2m − 2k)
− 2B1

(3m − 3k)2

]
c2

+
B1

(3m − 3k)2

}
.

Suppose c2 = u and for the simplicity, set

P =

∣∣∣∣∣−
[
(2m − 2k)(22k − 3k)− 2k(3m − 3k) + (4m − 4k)

]
γ2B3

1

(4m − 4k)(2m − 2k)4
+

B3

(4m − 4k)(2m − 2k)

∣∣∣∣∣
− 2

(
|γ|B2

1

4(2m − 2k)2(3m − 3k)
+

|B2|
(4m − 4k)(2m − 2k)

)
− B1

(4m − 4k)(2m − 2k)
+

B1

(3m − 3k)2
,

(27)

Q = 2

(
|γ|B2

1

4(2m − 2k)2(3m − 3k)
+

|B2|
(4m − 4k)(2m − 2k)

)
+

B1

(4m − 4k)(2m − 2k)
− 2B1

(3m − 3k)2
,

R =
B1

(3m − 3k)2
.

According to

max(Pu2 +Qu+R
0≤u≤1

) =


R if Q ≤ 0, P ≤ −Q

P +Q+R if (Q ≥ 0, P ≥ −Q2 ), or, (Q ≤ 0, P ≥ −Q)

4PR−Q2

4P if Q > 0, P ≤ −Q2

,

it follows that

∣∣a2a4 − a2
3

∣∣ ≤ B1|γ|2 ×


R if Q ≤ 0, P ≤ −Q

P +Q+R if (Q ≥ 0, P ≥ −Q2 ), or, (Q ≤ 0, P ≥ −Q)

4PR−Q2

4P if Q > 0, P ≤ −Q2

,

where P, Q and R are given by (27). This completes the proof. �
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For

m = k + 1, γ = 1 and ϕ (z) =
1 + (1− 2β) z

1− z
(0 ≤ β < 1)

in Theorem 2.1, we get the following correction of the estimates in [15, Theorem 2.1 ]:

Corollary 2.1. Let the function f given by (1) be in the class SΣ,k (β) (0 ≤ β < 1). Then

∣∣a2a4 − a23∣∣ ≤ 2(1− β)×


R if Q ≤ 0, P ≤ −Q

P +Q+R if (Q ≥ 0, P ≥ −Q
2
), or, (Q ≤ 0, P ≥ −Q)

4PR−Q2

4P
if Q > 0, P ≤ −Q

2
,

where

P =(1− β)

{∣∣∣∣∣−
[
22k + 3(2k)− 3k+1

]
(1− β)2

3(25k−3)
+

1

3(23k−1)

∣∣∣∣∣− 1− β
(22k)(3k)

− 1

23k−1
+

1

2(32k)

}
,

Q =(1− β)
[

1− β
(22k)(3k)

+
1

23k−1
− 1

32k

]
,

R =
1− β
2(32k)

.

For k = 0 in Corollary 2.1, we get the following result that is an improvement of the
estimates which in Theorem 1.1.

Corollary 2.2. Let the function f given by (1) be in the class S∗Σ (β) (0 ≤ β < 1). Then

∣∣a2a4 − a2
3

∣∣ ≤ 2 (1− β)
2



2
3

(
4β2 − 8β + 3

)
, 0 ≤ β ≤ 29−

√
649

32

13β2−14β−15
32β2−52β−6 , 29−

√
649

32 ≤ β ≤ 1
2

19β2−50β+39
32β2−76β+54 , 1

2 ≤ β < 1

.

For β = 0, Corollary 2.2 yields the following coefficient estimates for bi-starlike func-
tions. This result is an improvement of the estimates obtained in Corollary 1.1.

Corollary 2.3. Let the function f given by (1) be in the class S∗Σ. Then∣∣a2a4 − a2
3

∣∣ ≤ 4.

For k = 1 in Corollary 2.1, we get the following result that is an improvement of the
estimates in Theorem 1.2.

Corollary 2.4. Let the function f given by (1) be in the class KΣ (β) (0 ≤ β < 1). Then∣∣a2a4 − a23∣∣ ≤ (1− β)2

24
· 11β

2 − 40β + 48

3β2 − 9β + 10
.

For β = 0, Corollary 2.4 yields the following coefficient estimates for bi-convex func-
tions. This result is an improvement of the estimates obtained in Corollary 1.2.

Corollary 2.5. Let the function f given by (1) be in the class KΣ. Then∣∣a2a4 − a23∣∣ ≤ 1

5
.
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3. Conclusion

In the final section, we found improved upper bounds for the functional |H2(2)| for

functions in the class B
m,k
Σ (γ;ϕ). The technique of proof for Theorem 2.1 can be extended

to other classes of functions similar to B
m,k
Σ (γ;ϕ) as for example MΣ (ϕ, β) introduced in

Definition 1.1 of [12], in order to improve previous estimates by their Theorem 2.1. Sharp
estimates for |H2(2)| are for now open problems.

Acknowledgement

The authors thank to the referee for her/his valuable comments and suggestions.

R E F E R E N C E S
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