

UPPER BOUND OF SECOND HANKEL DETERMINANT FOR *k*-BI-SUBORDINATE FUNCTIONS

Ahmad Motamednezhad¹, Serap Bulut², Ebrahim Analouei Adegani³

In this work, we determine an upper bound of the functional $H_2(2) = a_{24} - a_3^2$ for functions belonging to a subclass of analytic bi-univalent functions which is defined by subordination conditions in the open unit disk \mathbb{D} . In addition, we get a smaller upper bound and more accurate estimation than the previous results and we correct their mistake.

Keywords: Univalent function, *k*-bi-subordinate functions, second Hankel determinant, subordination.

MSC2010: Primary 30C45; Secondary 30C50.

1. Introduction

Let \mathcal{A} be a class of analytic functions in the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (z \in \mathbb{D}). \quad (1)$$

A function $f : \mathbb{D} \rightarrow \mathbb{C}$ is called univalent on \mathbb{D} if $f(z_1) \neq f(z_2)$ all $z_1, z_2 \in \mathbb{D}$ with $z_1 \neq z_2$. Let \mathcal{S} be the class of functions $f \in \mathcal{A}$ which are univalent in \mathbb{D} .

A function $f \in \mathcal{A}$ is said to be *starlike*, if it satisfies the inequality

$$\operatorname{Re} \left(\frac{zf'(z)}{f(z)} \right) > 0 \quad (z \in \mathbb{D}). \quad (2)$$

We denote the class which consists of all functions $f \in \mathcal{A}$ that are starlike by \mathcal{S}^* .

A function $f \in \mathcal{A}$ is said to be *convex*, if it satisfies the inequality

$$\operatorname{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > 0 \quad (z \in \mathbb{D}). \quad (3)$$

We denote the class which consists of all functions $f \in \mathcal{A}$ that are convex by \mathcal{C} .

For two functions f and g which are analytic in \mathbb{D} , we say that the function f is *subordinate* to g , and write $f(z) \prec g(z)$, if there exists a *Schwarz function* w , that is a function w analytic in \mathbb{D} with $w(0) = 0$ and $|w(z)| < 1$ in \mathbb{D} , such that $f(z) = g(w(z))$ for all $z \in \mathbb{D}$.

In particular, if the function g is univalent in \mathbb{D} , then $f \prec g$ if and only if $f(0) = g(0)$ and $f(\mathbb{D}) \subseteq g(\mathbb{D})$, [7].

¹ Faculty of Mathematical Sciences, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran, e-mail: a.motamedne@gmail.com

² Faculty of Aviation and Space Sciences, Kocaeli University, Arslanbey Campus, 41285 Karteppe-Kocaeli, Turkey, e-mail: serap.bulut@kocaeli.edu.tr

³ Faculty of Mathematical Sciences, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran, e-mail: analoei.ebrahim@gmail.com

By means of the subordination, the conditions (2) and (3) are, respectively, equivalent to

$$\frac{zf'(z)}{f(z)} \prec \frac{1+z}{1-z} \quad \text{and} \quad 1 + \frac{zf''(z)}{f'(z)} \prec \frac{1+z}{1-z}.$$

Ma and Minda [11] gave a unified presentation of various subclasses of starlike and convex functions by replacing the subordinate function $\frac{1+z}{1-z}$ by a more general analytic function φ with positive real part in the unit disk \mathbb{D} , symmetric with respect to the real axis and starlike with respect to $\varphi(0) = 1$, and $\varphi'(0) > 0$.

One of the important tools in the theory of univalent functions are the *Hankel determinants* which are used, for example, in showing that a function of bounded characteristic in \mathbb{D} , that is, a function which is a ratio of two bounded analytic functions, with its Laurent series around the origin having integral coefficients, is rational [5].

In 1976, Noonan and Thomas [13] defined the q -th *Hankel determinant* for integers $n \geq 1$ and $q \geq 1$ by

$$H_q(n) = \begin{vmatrix} a_n & a_{n+1} & \dots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \dots & a_{n+q} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n+q-1} & a_{n+q} & \dots & a_{n+2q-2} \end{vmatrix} \quad (a_1 = 1).$$

Note that

$$H_2(1) = \begin{vmatrix} a_1 & a_2 \\ a_2 & a_3 \end{vmatrix} \quad \text{and} \quad H_2(2) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix},$$

where the Hankel determinants $H_2(1) = a_3 - a_2^2$ and $H_2(2) = a_2 a_4 - a_3^2$ are well-known as *Fekete-Szegö* and *second Hankel determinant* functionals, respectively. Further, Fekete and Szegö [8] introduced the generalized functional $a_3 - \lambda a_2^2$, where λ is some real number. Problems in this field has also been argued by several authors (see for example [1, 4, 6, 9, 14, 15, 16, 20]).

In 1983, Sălăgean [17] introduced differential operator $D^k : \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$D^0 f(z) = f(z), \quad D^1 f(z) = Df(z) = zf'(z),$$

and in general

$$D^k f(z) = D(D^{k-1} f(z)), \quad k \in \mathbb{N} = \{1, 2, \dots\}.$$

We easily find that

$$D^k f(z) = z + \sum_{n=2}^{\infty} n^k a_n z^n, \quad k \in \mathbb{N}_0 := \mathbb{N} \cup \{0\},$$

with $D^k f(0) = 0$.

The Koebe one-quarter theorem [7] ensures that the image of \mathbb{D} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $1/4$. Thus every function $f \in \mathcal{S}$ has an inverse f^{-1} , such that

$$f^{-1}(f(z)) = z \quad (z \in \mathbb{D}), \quad \text{and} \quad f(f^{-1}(w)) = w \quad \left(|w| < r_0(f); \quad r_0(f) \geq \frac{1}{4} \right),$$

where the inverse f^{-1} has the power series expansion (see [10])

$$g(w) := f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_2^3 - 5a_2 a_3 + a_4) w^4 + \dots \quad (4)$$

A function $f \in \mathcal{A}$ is said to be *bi-univalent* in \mathbb{D} if both f and f^{-1} are univalent in \mathbb{D} , in the sense that f^{-1} has a univalent analytic continuation to \mathbb{D} . Let Σ denote the class of bi-univalent functions in \mathbb{D} . For a brief history of functions in the class Σ and also different other characteristics of these functions see [2, 10, 18, 19, 21] and the references therein.

In this work, we assume that the function φ is an analytic function with positive real part in the unit disk \mathbb{D} , satisfying $\varphi(0) = 1$, $\varphi'(0) > 0$, such that $\varphi(\mathbb{D})$ is symmetric with respect to the real axis. Such a function has the power series expansion of the form

$$\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \dots, \quad z \in \mathbb{D} \quad (B_1 > 0). \quad (5)$$

By means of the subordination, Bulut [3] defined the class $\mathcal{B}_\Sigma^{m,k}(\gamma; \varphi)$ of analytic bi-univalent functions as follows:

Definition 1.1. Let $m, k \in \mathbb{N}_0$; $m > k$ and $\gamma \in \mathbb{C} \setminus \{0\}$. A function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{B}_\Sigma^{m,k}(\gamma; \varphi)$ if the following conditions are satisfied:

$$1 + \frac{1}{\gamma} \left(\frac{D^m f(z)}{D^k f(z)} - 1 \right) \prec \varphi(z) \quad (6)$$

and

$$1 + \frac{1}{\gamma} \left(\frac{D^m g(w)}{D^k g(w)} - 1 \right) \prec \varphi(w), \quad (7)$$

where $z, w \in \mathbb{D}$ and the function $g = f^{-1}$ is defined by (4).

Remark 1.1. For $m = k + 1$, we get the class $\mathcal{B}_\Sigma^{k+1,k}(\gamma; \varphi) = \mathcal{B}_{\Sigma,k}(\gamma; \varphi)$ of k -bi-subordinate functions of complex order $\gamma \in \mathbb{C} \setminus \{0\}$.

Remark 1.2. If we set

$$m = k + 1, \quad \gamma = 1 \quad \text{and} \quad \varphi(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \quad (0 \leq \beta < 1)$$

in Definition 1.1, then the class $\mathcal{B}_\Sigma^{m,k}(\gamma; \varphi)$ reduces to the class $\mathcal{S}_{\Sigma,k}(\beta)$ of k -bi-starlike functions. In other words, a function $f \in \Sigma$ is said to be in the class $\mathcal{S}_{\Sigma,k}(\beta)$, if the following conditions are satisfied (see [15]):

$$\operatorname{Re} \left(\frac{D^{k+1} f(z)}{D^k f(z)} \right) > \beta \quad \text{and} \quad \operatorname{Re} \left(\frac{D^{k+1} g(z)}{D^k g(z)} \right) > \beta.$$

For $k = 0$ and $k = 1$, we get the classes

$$\mathcal{S}_{\Sigma,0}(\beta) = \mathcal{S}_\Sigma^*(\beta) \quad \text{and} \quad \mathcal{S}_{\Sigma,1}(\beta) = \mathcal{K}_\Sigma(\beta),$$

which are the class of bi-starlike functions of order β and bi-convex functions of order β , respectively. In particular, we have the classes

$$\mathcal{S}_{\Sigma,0}(0) = \mathcal{S}_\Sigma^* \quad \text{and} \quad \mathcal{S}_{\Sigma,1}(0) = \mathcal{K}_\Sigma,$$

which are the class of bi-starlike functions and bi-convex functions, respectively.

Example 1.1. If we set $f(z) = \frac{z}{1 - z}$ and $\varphi(z) = \frac{1 + z}{1 - z}$ where $z \in \mathbb{D}$, then both $f(z)$ and $g(w) = f^{-1}(w) = \frac{w}{1 + w}$ are univalent in \mathbb{D} and so $f \in \Sigma$. On other the hand, conditions (6) and (7) hold for $k = 1$, $m = 2$ and $\gamma = 1$, that is,

$$1 + \frac{zf''(z)}{f'(z)} = \frac{1 + z}{1 - z} \prec \frac{1 + z}{1 - z}, \quad \text{this is equivalent with} \quad \operatorname{Re} \left(\frac{1 + z}{1 - z} \right) > 0$$

and

$$1 + \frac{wg''(w)}{g'(w)} = \frac{1 - w}{1 + w} \prec \frac{1 + w}{1 - w}, \quad \text{this is equivalent with} \quad \operatorname{Re} \left(\frac{1 - w}{1 + w} \right) > 0.$$

Therefore $f \in \mathcal{B}_\Sigma^{2,1} \left(1; \frac{1 + z}{1 - z} \right)$, in other words f is 1-bi-convex function (bi-convex function). Since every convex function is a starlike function, so also f is 1-bi-starlike function (bi-starlike function).

Theorem 1.1. [6, Theorem 2.1] Let the function f given by (1) be in the class $\mathcal{S}_\Sigma^*(\beta)$ ($0 \leq \beta < 1$). Then

$$|a_2a_4 - a_3^2| \leq \begin{cases} \frac{4(1-\beta)^2}{3} (4\beta^2 - 8\beta + 5) & , \quad \beta \in \left[0, \frac{29-\sqrt{137}}{32}\right] \\ (1-\beta)^2 \left(\frac{13\beta^2-14\beta-7}{16\beta^2-26\beta+5}\right) & , \quad \beta \in \left(\frac{29-\sqrt{137}}{32}, 1\right). \end{cases}$$

Corollary 1.1. [6, Corollary 2.2] Let the function f given by (1) be in the class \mathcal{S}_Σ^* . Then

$$|a_2a_4 - a_3^2| \leq \frac{20}{3}.$$

Theorem 1.2. [6, Theorem 2.3] Let the function f given by (1) be in the class $\mathcal{K}_\Sigma(\beta)$ ($0 \leq \beta < 1$). Then

$$|a_2a_4 - a_3^2| \leq \frac{(1-\beta)^2}{24} \left(\frac{5\beta^2 + 8\beta - 32}{3\beta^2 - 3\beta - 4}\right).$$

Corollary 1.2. [6, Corollary 2.4] Let the function f given by (1) be in the class \mathcal{K}_Σ . Then

$$|a_2a_4 - a_3^2| \leq \frac{1}{3}.$$

The class $\mathcal{S}_{\Sigma,k}(\beta)$ of k -bi-starlike functions is defined by Orhan et al. [15] and they obtained an upper bound for the second Hankel determinant of functions $f \in \mathcal{S}_{\Sigma,k}(\beta)$ (see [15, Theorem 2.1]). They got for $\eta, \mu \leq 1$

$$|a_2a_4 - a_3^2| \leq T_1 + (\eta + \mu)T_2 + (\eta^2 + \mu^2)T_3 + (\eta + \mu)^2T_4 = G(\eta, \mu),$$

where

$$\begin{aligned} T_1 &= T_1(p) = \frac{(1-\beta)^2}{3(2^{3k})} \left[\left((1-\beta)^2 \frac{(3(2^k) + 2^{2k} - i? \cdot \frac{1}{2} 3^{k+1})}{2^{2k}} + \frac{1}{4} \right) p^4 - \frac{p^3}{2} + 2p \right] \geq 0 \\ T_2 &= T_2(p) = \frac{(1-\beta)^2 p^2 (4-p^2)}{2^{2k+2}} \left[\frac{1}{3^{2k}} + \frac{(1-\beta)}{4(3^k)} \right] \geq 0 \\ T_3 &= T_3(p) = \frac{(1-\beta)^2 p (4-p^2) (p-2)}{24(2^{3k})} \leq 0 \\ T_4 &= T_4(p) = \frac{(1-\beta)^2 (4-p^2)^2}{16(9^k)} \geq 0. \end{aligned}$$

They claimed that

$$T_3 + 2T_4 > 0 \quad \text{for } p \in [0, 2],$$

to maximize the function $G(\eta, \mu)$ on the closed square $[0, 1] \times [0, 1]$. But there is a mistake in their proof. Now we give a *counterexample* that this inequality is not true:

If we choose

$$\beta = 0, \quad k = 10 \quad \text{and} \quad p = 0, 9,$$

then we have

$$T_3 + 2T_4 = -3,134800373 \times 10^{-11} < 0.$$

The main purpose of this paper is that, by using a different method from the one in [15], to determine the functional $H_2(2) = a_2a_4 - a_3^2$ for functions belonging to the subclass of analytic bi-univalent functions $\mathcal{B}_\Sigma^{m,k}(\gamma; \varphi)$ which is defined by subordination principle in the open unit disk \mathbb{D} . In addition, we get more accurate estimation than the previous results and we give the correction of [15, Theorem 2.1].

In order to prove our main results, we need the following lemmas.

Lemma 1.1. [7, p. 190] Let u be analytic function in the unit disk \mathbb{D} , with $u(0) = 0$, and $|u(z)| < 1$ for all $z \in \mathbb{D}$, with the power series expansion

$$u(z) = \sum_{n=1}^{\infty} c_n z^n.$$

Then, $|c_n| \leq 1$ for all $n \in \mathbb{N}$. Furthermore, $|c_n| = 1$ for some $n \in \mathbb{N}$ if and only if $u(z) = e^{i\theta} z^n$, $\theta \in \mathbb{R}$.

Lemma 1.2. [9] If $\psi(z) = \sum_{n=1}^{\infty} \psi_n z^n$, $z \in \mathbb{D}$, is a Schwarz function, then

$$\begin{aligned} \psi_2 &= x (1 - \psi_1^2), \\ \psi_3 &= (1 - \psi_1^2) (1 - |x|^2) s - \psi_1 (1 - \psi_1^2) x^2, \end{aligned}$$

for some x, s , with $|x| \leq 1$ and $|s| \leq 1$.

2. Main Results

Whilst Lemma 1.1 holds for complex-valued c_n ($n \in \mathbb{N}$), in this paper we restrict our attention to the case of real valued c_1 .

Theorem 2.1. Let the function f given by (1) be in the class $\mathcal{B}_{\Sigma}^{m,k}(\gamma; \varphi)$. Then

$$|a_2 a_4 - a_3^2| \leq B_1 |\gamma|^2 \times \begin{cases} R & \text{if } Q \leq 0, P \leq -Q \\ P + Q + R & \text{if } (Q \geq 0, P \geq -\frac{Q}{2}), \text{ or, } (Q \leq 0, P \geq -Q) \\ \frac{4PR-Q^2}{4P} & \text{if } Q > 0, P \leq -\frac{Q}{2}, \end{cases}$$

where

$$\begin{aligned} P &= \left| \frac{-[(2^m - 2^k)(2^{2k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)] \gamma^2 B_1^3}{(4^m - 4^k)(2^m - 2^k)^4} + \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \right| \\ &\quad - 2 \left(\frac{|\gamma| B_1^2}{4(2^m - 2^k)^2(3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right) - \frac{B_1}{(4^m - 4^k)(2^m - 2^k)} + \frac{B_1}{(3^m - 3^k)^2}, \end{aligned}$$

$$Q = 2 \left(\frac{|\gamma| B_1^2}{4(2^m - 2^k)^2(3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right) + \frac{B_1}{(4^m - 4^k)(2^m - 2^k)} - \frac{2B_1}{(3^m - 3^k)^2},$$

$$R = \frac{B_1}{(3^m - 3^k)^2}.$$

Proof. Let $f \in \mathcal{B}_{\Sigma}^{m,k}(\gamma; \varphi)$. Then by definition of subordination and Lemma 1.1, there exist two Schwarz functions u and v , of the form $u(z) = \sum_{n=1}^{\infty} c_n z^n$ and $v(z) = \sum_{n=1}^{\infty} d_n z^n$, $z \in \mathbb{D}$ such that

$$1 + \frac{1}{\gamma} \left(\frac{D^m f(z)}{D^k f(z)} - 1 \right) = \varphi(u(z)) \quad (8)$$

and

$$1 + \frac{1}{\gamma} \left(\frac{D^m g(w)}{D^k g(w)} - 1 \right) = \varphi(v(w)), \quad (9)$$

where

$$\varphi(u(z)) = 1 + B_1 c_1 z + (B_1 c_2 + B_2 c_1^2) z^2 + (B_1 c_3 + 2B_2 c_1 c_2 + B_3 c_1^3) z^3 + \dots \quad (10)$$

and

$$\varphi(v(w)) = 1 + B_1 d_1 w + (B_1 d_2 + B_2 d_1^2) w^2 + (B_1 d_3 + 2B_2 d_1 d_2 + B_3 d_1^3) w^3 + \dots \quad (11)$$

From (8), (10) and (9), (11), we have

$$(2^m - 2^k) a_2 = \gamma B_1 c_1 \quad (12)$$

$$(3^m - 3^k) a_3 - 2^k (2^m - 2^k) a_2^2 = \gamma (B_1 c_2 + B_2 c_1^2) \quad (13)$$

$$\begin{aligned} (4^m - 4^k) a_4 - & \left[3^k (2^m - 2^k) + 2^k (3^m - 3^k) \right] a_2 a_3 + 2^{2k} (2^m - 2^k) a_2^3 \\ = & \gamma (B_1 c_3 + 2B_2 c_1 c_2 + B_3 c_1^3) \end{aligned} \quad (14)$$

and

$$-(2^m - 2^k) a_2 = \gamma B_1 d_1 \quad (15)$$

$$(3^m - 3^k) (2a_2^2 - a_3) - 2^k (2^m - 2^k) a_2^2 = \gamma (B_1 d_2 + B_2 d_1^2) \quad (16)$$

$$\begin{aligned} -(4^m - 4^k) (5a_2^3 - 5a_2 a_3 + a_4) + & \left[3^k (2^m - 2^k) + 2^k (3^m - 3^k) \right] a_2 (2a_2^2 - a_3) \\ - 2^{2k} (2^m - 2^k) a_2^3 = & \gamma (B_1 d_3 + 2B_2 d_1 d_2 + B_3 d_1^3), \end{aligned} \quad (17)$$

respectively. From (12) and (15), we get that

$$c_1 = -d_1 \quad (18)$$

and

$$a_2 = \frac{\gamma B_1 c_1}{2^m - 2^k}. \quad (19)$$

Nevertheless, from (13) and (16), we get

$$a_3 = \frac{\gamma^2 B_1^2 c_1^2}{(2^m - 2^k)^2} + \frac{\gamma B_1 (c_2 - d_2)}{2(3^m - 3^k)}. \quad (20)$$

Furthermore, from (14) and (17), we obtain

$$\begin{aligned} a_4 = & \frac{[(2^m - 2^k)(3^k - 2^{2k}) + 2^k(3^m - 3^k)] \gamma^3 B_1^3 c_1^3}{(4^m - 4^k)(2^m - 2^k)^3} + \frac{5\gamma^2 B_1^2 c_1 (c_2 - d_2)}{4(2^m - 2^k)(3^m - 3^k)} \\ & + \frac{\gamma B_1 (c_3 - d_3)}{2(4^m - 4^k)} + \frac{\gamma B_2 c_1 (c_2 + d_2)}{(4^m - 4^k)} + \frac{\gamma B_3 c_1^3}{(4^m - 4^k)}. \end{aligned} \quad (21)$$

Therefore, after calculations we have

$$\begin{aligned} |a_2 a_4 - a_3^2| = & \left| \frac{[-[(2^m - 2^k)(2^{2k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)] \gamma^4 B_1^4 c_1^4}{(4^m - 4^k)(2^m - 2^k)^4} \right. \\ & + \frac{\gamma^3 B_1^3 c_1^2 (c_2 - d_2)}{4(2^m - 2^k)^2 (3^m - 3^k)} + \frac{\gamma^2 B_1 B_2 c_1^2 (c_2 + d_2)}{(4^m - 4^k)(2^m - 2^k)} \\ & + \frac{\gamma^2 B_3 B_1 c_1^4}{(4^m - 4^k)(2^m - 2^k)} + \frac{\gamma^2 B_1^2 c_1 (c_3 - d_3)}{2(4^m - 4^k)(2^m - 2^k)} \\ & \left. - \frac{\gamma^2 B_1^2 (c_2 - d_2)^2}{4(3^m - 3^k)^2} \right|. \end{aligned} \quad (22)$$

According to Lemma 1.2 and (18), we find that

$$c_2 - d_2 = (1 - c_1^2) (x - y) \quad \text{and} \quad c_2 + d_2 = (1 - c_1^2) (x + y) \quad (23)$$

and

$$\begin{aligned} c_3 &= (1 - c_1^2) (1 - |x|^2) s - c_1 (1 - c_1^2) x^2 \quad \text{and} \\ d_3 &= (1 - d_1^2) (1 - |y|^2) t - d_1 (1 - d_1^2) y^2, \end{aligned}$$

where

$$c_3 - d_3 = (1 - c_1^2) [(1 - |x|^2)s - (1 - |y|^2)t] - c_1 (1 - c_1^2) (x^2 + y^2), \quad (24)$$

for some x, y, s, t with $|x| \leq 1, |y| \leq 1, |s| \leq 1$ and $|t| \leq 1$. Applying (23) and (24) in (22), it follows that

$$\begin{aligned} & |a_2 a_4 - a_3^2| \\ = & B_1 |\gamma|^2 \left| \left[\frac{-[(2^m - 2^k)(2^{2k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)] \gamma^2 B_1^3}{(4^m - 4^k)(2^m - 2^k)^4} + \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \right] c_1^4 \right. \\ & + \left[\frac{\gamma B_1^2 (x - y)}{4(2^m - 2^k)^2 (3^m - 3^k)} + \frac{B_2 (x + y)}{(4^m - 4^k)(2^m - 2^k)} \right] c_1^2 (1 - c_1^2) - \frac{B_1 c_1^2 (1 - c_1^2)}{2(4^m - 4^k)(2^m - 2^k)} (x^2 + y^2) \\ & \left. - \frac{B_1 (1 - c_1^2)^2}{4(3^m - 3^k)^2} (x - y)^2 + \frac{B_1 c_1 (1 - c_1^2)}{2(4^m - 4^k)(2^m - 2^k)} [(1 - |x|^2) s - (1 - |y|^2) t] \right|. \end{aligned}$$

Since $|c_1| \leq 1$, we assume that $c_1 = c \in [0, 1]$. So we have

$$\begin{aligned} & |a_2 a_4 - a_3^2| \\ \leq & B_1 |\gamma|^2 \left\{ \left| \frac{-[(2^m - 2^k)(2^{2k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)] \gamma^2 B_1^3}{(4^m - 4^k)(2^m - 2^k)^4} + \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \right| c^4 \right. \\ & + \left[\frac{|\gamma| B_1^2}{4(2^m - 2^k)^2 (3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right] c^2 (1 - c^2) (|x| + |y|) \\ & + \frac{B_1 c^2 (1 - c^2)}{2(4^m - 4^k)(2^m - 2^k)} (|x|^2 + |y|^2) + \frac{B_1 (1 - c^2)^2}{4(3^m - 3^k)^2} (|x| + |y|)^2 \\ & \left. + \frac{B_1 c (1 - c^2)}{2(4^m - 4^k)(2^m - 2^k)} [(1 - |x|^2) |s| + (1 - |y|^2) |t|] \right\} \\ \leq & B_1 |\gamma|^2 \left\{ \left| \frac{-[(2^m - 2^k)(2^{2k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)] \gamma^2 B_1^3}{(4^m - 4^k)(2^m - 2^k)^4} + \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \right| c^4 \right. \\ & + \left[\frac{|\gamma| B_1^2}{4(2^m - 2^k)^2 (3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right] c^2 (1 - c^2) (|x| + |y|) \\ & + \frac{B_1 c^2 (1 - c^2)}{2(4^m - 4^k)(2^m - 2^k)} (|x|^2 + |y|^2) + \frac{B_1 (1 - c^2)^2}{4(3^m - 3^k)^2} (|x| + |y|)^2 \\ & \left. + \frac{B_1 c (1 - c^2)}{2(4^m - 4^k)(2^m - 2^k)} [(1 - |x|^2) + (1 - |y|^2)] \right\} \\ = & B_1 |\gamma|^2 \left\{ \left| \frac{-[(2^m - 2^k)(2^{2k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)] \gamma^2 B_1^3}{(4^m - 4^k)(2^m - 2^k)^4} + \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \right| c^4 \right. \\ & + \frac{2B_1 c (1 - c^2)}{2(4^m - 4^k)(2^m - 2^k)} + \left[\frac{|\gamma| B_1^2}{4(2^m - 2^k)^2 (3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right] c^2 (1 - c^2) (|x| + |y|) \\ & \left. + \left[\frac{B_1 c^2 (1 - c^2)}{2(4^m - 4^k)(2^m - 2^k)} - \frac{B_1 c (1 - c^2)}{2(4^m - 4^k)(2^m - 2^k)} \right] (|x|^2 + |y|^2) + \frac{B_1 (1 - c^2)^2}{4(3^m - 3^k)^2} (|x| + |y|)^2 \right\}. \end{aligned}$$

Now, for $\lambda = |x| \leq 1$ and $\mu = |y| \leq 1$, we obtain

$$|a_2 a_4 - a_3^2| \leq B_1 |\gamma|^2 [T_1 + (\lambda + \mu)T_2 + (\lambda^2 + \mu^2)T_3 + (\lambda + \mu)^2 T_4] = B_1 |\gamma|^2 F(\lambda, \mu),$$

where

$$\begin{aligned}
T_1 &= T_1(c) = \left| \frac{-[(2^m - 2^k)(2^{2k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)] \gamma^2 B_1^3}{(4^m - 4^k)(2^m - 2^k)^4} + \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \right| c^4 \\
&\quad + \frac{2B_1 c (1 - c^2)}{2(4^m - 4^k)(2^m - 2^k)} \geq 0 \\
T_2 &= T_2(c) = \left[\frac{|\gamma| B_1^2}{4(2^m - 2^k)^2(3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right] c^2 (1 - c^2) \geq 0 \\
T_3 &= T_3(c) = \frac{B_1 c (c - 1)(1 - c^2)}{2(4^m - 4^k)(2^m - 2^k)} \leq 0 \\
T_4 &= T_4(c) = \frac{B_1 (1 - c^2)^2}{4(3^m - 3^k)^2} \geq 0.
\end{aligned}$$

We now need to maximize the function $F(\lambda, \mu)$ on the closed square $[0, 1] \times [0, 1]$ for $c \in [0, 1]$. With regards to $F(\lambda, \mu) = F(\mu, \lambda)$, it is sufficient that we investigate the maximum of

$$G(\lambda) = F(\lambda, \lambda) = T_1 + 2\lambda T_2 + 2\lambda^2(T_3 + 2T_4), \quad (25)$$

on $\lambda \in [0, 1]$ according to $c \in (0, 1)$, $c = 0$ and $c = 1$.

Firstly, if we let $c = 1$, then we obtain

$$\begin{aligned}
\max \{G(\lambda) : \lambda \in [0, 1]\} &= \left| \frac{-[(2^m - 2^k)(2^{2k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)] \gamma^2 B_1^3}{(4^m - 4^k)(2^m - 2^k)^4} \right. \\
&\quad \left. + \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \right|.
\end{aligned}$$

Secondly, letting $c = 0$, so we get

$$G(\lambda) = \frac{4B_1}{4(3^m - 3^k)^2} \lambda^2,$$

hence we can see that

$$\max \{G(\lambda) : \lambda \in [0, 1]\} = G(1) = \frac{B_1}{(3^m - 3^k)^2}.$$

Finally, we let $c \in (0, 1)$. Considering equation (25) for $0 \leq \lambda \leq 1$ we get

(i) If $T_3 + 2T_4 \geq 0$, it is clear that

$$G'(\lambda) = 4(T_3 + 2T_4)\lambda + 2T_2 > 0$$

for $0 < \lambda < 1$ and any fixed $c \in (0, 1)$, that is $G(\lambda)$ is an increasing function. Hence

$$\max \{G(\lambda) : \lambda \in [0, 1]\} = G(1) = T_1 + 2T_2 + 2T_3 + 4T_4.$$

(ii) If $T_3 + 2T_4 < 0$, then we consider for critical point

$$\lambda_0 = \frac{-(T_2)}{2(T_3 + 2T_4)} = \frac{T_2}{2k}$$

for any fixed $c \in (0, 1)$, where $k = -(T_3 + 2T_4) > 0$, the following two cases:

Case 1. For $\lambda_0 = \frac{T_2}{2k} > 1$, it follows that $k < \frac{T_2}{2} \leq T_2$, and so $T_2 + T_3 + 2T_4 \geq 0$. Therefore,

$$G(0) = T_1 \leq T_1 + 2(T_2 + T_3 + 2T_4) = G(1).$$

Case 2. For $\lambda_0 = \frac{T_2}{2k} \leq 1$, since $T_2 \geq 0$, we get that $\frac{T_2^2}{2k} \leq T_2$. Therefore,

$$G(0) = T_1 \leq T_1 + \frac{T_2^2}{2k} = G(\lambda_0) \leq T_1 + T_2.$$

Considering the above cases for point of c , it follows that the function $G(\lambda)$ gets its maximum when $T_3 + 2T_4 \geq 0$, it means

$$\max \{G(\lambda) : \lambda \in [0, 1]\} = G(1) = T_1 + 2T_2 + 2T_3 + 4T_4.$$

Therefore, $\max F(\lambda, \mu) = F(1, 1)$ on the boundary of the square.

Let $K : [0, 1] \rightarrow \mathbb{R}$,

$$\begin{aligned} K(c) &= B_1|\gamma|^2 \max F(\lambda, \mu) = B_1|\gamma|^2 F(1, 1) \\ &= B_1|\gamma|^2(T_1 + 2T_2 + 2T_3 + 4T_4). \end{aligned} \quad (26)$$

By replacing the values of T_1, T_2, T_3 and T_4 in the above function K , we have

$$\begin{aligned} K(c) &= B_1|\gamma|^2 \left\{ \left[\left| \frac{[(2^m - 2^k)(2^{2k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)] \gamma^2 B_1^3}{(4^m - 4^k)(2^m - 2^k)^4} + \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \right| \right. \right. \\ &\quad - 2 \left(\frac{|\gamma| B_1^2}{4(2^m - 2^k)^2(3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right) - \frac{B_1}{(4^m - 4^k)(2^m - 2^k)} + \frac{B_1}{(3^m - 3^k)^2} \left. \right] c^4 \\ &\quad + \left[2 \left(\frac{|\gamma| B_1^2}{4(2^m - 2^k)^2(3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right) + \frac{B_1}{(4^m - 4^k)(2^m - 2^k)} - \frac{2B_1}{(3^m - 3^k)^2} \right] c^2 \\ &\quad \left. \left. + \frac{B_1}{(3^m - 3^k)^2} \right\}. \right. \end{aligned}$$

Suppose $c^2 = u$ and for the simplicity, set

$$\begin{aligned} P &= \left| \frac{[(2^m - 2^k)(2^{2k} - 3^k) - 2^k(3^m - 3^k) + (4^m - 4^k)] \gamma^2 B_1^3}{(4^m - 4^k)(2^m - 2^k)^4} + \frac{B_3}{(4^m - 4^k)(2^m - 2^k)} \right| \\ &\quad - 2 \left(\frac{|\gamma| B_1^2}{4(2^m - 2^k)^2(3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right) - \frac{B_1}{(4^m - 4^k)(2^m - 2^k)} + \frac{B_1}{(3^m - 3^k)^2}, \end{aligned} \quad (27)$$

$$Q = 2 \left(\frac{|\gamma| B_1^2}{4(2^m - 2^k)^2(3^m - 3^k)} + \frac{|B_2|}{(4^m - 4^k)(2^m - 2^k)} \right) + \frac{B_1}{(4^m - 4^k)(2^m - 2^k)} - \frac{2B_1}{(3^m - 3^k)^2},$$

$$R = \frac{B_1}{(3^m - 3^k)^2}.$$

According to

$$\max_{0 \leq u \leq 1} (Pu^2 + Qu + R) = \begin{cases} R & \text{if } Q \leq 0, P \leq -Q \\ P + Q + R & \text{if } (Q \geq 0, P \geq -\frac{Q}{2}), \text{ or, } (Q \leq 0, P \geq -Q) \\ \frac{4PR - Q^2}{4P} & \text{if } Q > 0, P \leq -\frac{Q}{2} \end{cases},$$

it follows that

$$|a_2 a_4 - a_3^2| \leq B_1|\gamma|^2 \times \begin{cases} R & \text{if } Q \leq 0, P \leq -Q \\ P + Q + R & \text{if } (Q \geq 0, P \geq -\frac{Q}{2}), \text{ or, } (Q \leq 0, P \geq -Q) \\ \frac{4PR - Q^2}{4P} & \text{if } Q > 0, P \leq -\frac{Q}{2} \end{cases},$$

where P, Q and R are given by (27). This completes the proof. \square

For

$$m = k + 1, \quad \gamma = 1 \quad \text{and} \quad \varphi(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \quad (0 \leq \beta < 1)$$

in Theorem 2.1, we get the following correction of the estimates in [15, Theorem 2.1]:

Corollary 2.1. *Let the function f given by (1) be in the class $\mathcal{S}_{\Sigma,k}(\beta)$ ($0 \leq \beta < 1$). Then*

$$|a_2a_4 - a_3^2| \leq 2(1 - \beta) \times \begin{cases} R & \text{if } Q \leq 0, P \leq -Q \\ P + Q + R & \text{if } (Q \geq 0, P \geq -\frac{Q}{2}), \text{ or, } (Q \leq 0, P \geq -Q) \\ \frac{4PR - Q^2}{4P} & \text{if } Q > 0, P \leq -\frac{Q}{2}, \end{cases}$$

where

$$P = (1 - \beta) \left\{ \left| \frac{-[2^{2k} + 3(2^k) - 3^{k+1}] (1 - \beta)^2}{3(2^{5k-3})} + \frac{1}{3(2^{3k-1})} \right| - \frac{1 - \beta}{(2^{2k})(3^k)} \right. \\ \left. - \frac{1}{2^{3k-1}} + \frac{1}{2(3^{2k})} \right\},$$

$$Q = (1 - \beta) \left[\frac{1 - \beta}{(2^{2k})(3^k)} + \frac{1}{2^{3k-1}} - \frac{1}{3^{2k}} \right],$$

$$R = \frac{1 - \beta}{2(3^{2k})}.$$

For $k = 0$ in Corollary 2.1, we get the following result that is an improvement of the estimates which in Theorem 1.1.

Corollary 2.2. *Let the function f given by (1) be in the class $\mathcal{S}_{\Sigma}^*(\beta)$ ($0 \leq \beta < 1$). Then*

$$|a_2a_4 - a_3^2| \leq 2(1 - \beta)^2 \begin{cases} \frac{2}{3} (4\beta^2 - 8\beta + 3) & , \quad 0 \leq \beta \leq \frac{29 - \sqrt{649}}{32} \\ \frac{13\beta^2 - 14\beta - 15}{32\beta^2 - 52\beta - 6} & , \quad \frac{29 - \sqrt{649}}{32} \leq \beta \leq \frac{1}{2} \\ \frac{19\beta^2 - 50\beta + 39}{32\beta^2 - 76\beta + 54} & , \quad \frac{1}{2} \leq \beta < 1 \end{cases}$$

For $\beta = 0$, Corollary 2.2 yields the following coefficient estimates for bi-starlike functions. This result is an improvement of the estimates obtained in Corollary 1.1.

Corollary 2.3. *Let the function f given by (1) be in the class \mathcal{S}_{Σ}^* . Then*

$$|a_2a_4 - a_3^2| \leq 4.$$

For $k = 1$ in Corollary 2.1, we get the following result that is an improvement of the estimates in Theorem 1.2.

Corollary 2.4. *Let the function f given by (1) be in the class $\mathcal{K}_{\Sigma}(\beta)$ ($0 \leq \beta < 1$). Then*

$$|a_2a_4 - a_3^2| \leq \frac{(1 - \beta)^2}{24} \cdot \frac{11\beta^2 - 40\beta + 48}{3\beta^2 - 9\beta + 10}.$$

For $\beta = 0$, Corollary 2.4 yields the following coefficient estimates for bi-convex functions. This result is an improvement of the estimates obtained in Corollary 1.2.

Corollary 2.5. *Let the function f given by (1) be in the class \mathcal{K}_{Σ} . Then*

$$|a_2a_4 - a_3^2| \leq \frac{1}{5}.$$

3. Conclusion

In the final section, we found improved upper bounds for the functional $|H_2(2)|$ for functions in the class $\mathcal{B}_\Sigma^{m,k}(\gamma; \varphi)$. The technique of proof for Theorem 2.1 can be extended to other classes of functions similar to $\mathcal{B}_\Sigma^{m,k}(\gamma; \varphi)$ as for example $M_\Sigma(\varphi, \beta)$ introduced in Definition 1.1 of [12], in order to improve previous estimates by their Theorem 2.1. Sharp estimates for $|H_2(2)|$ are for now open problems.

Acknowledgement

The authors thank to the referee for her/his valuable comments and suggestions.

REFERENCES

- [1] *S. Altinkaya and S. Yalçın*, Upper bound of second Hankel determinant for bi-Bazilević functions, *Mediterr. J. Math.*, **13** (2016), 4081-4090.
- [2] *S. Bulut*, Coefficient estimates for a new subclass of analytic and bi-univalent functions defined by Hadamard product, *J. Complex Anal.*, Art. ID 302019 (2014), 1-7.
- [3] *S. Bulut*, Fekete-Szegő inequalities for a subclass of analytic bi-univalent functions defined by Sălăgean operator, *Honam Math. J.*, **39** (2017), No. 4, 591-601.
- [4] *M. Çağlar, E. Deniz and H. M. Srivastava*, Second Hankel determinant for certain subclasses of bi-univalent functions, *Turk. J. Math.*, **41** (2017), 694-706.
- [5] *D. G. Cantor*, Power series with integral coefficients, *Bull. Amer. Math. Soc.*, **69** (1963), 362-366.
- [6] *E. Deniz, M. Çağlar and H. Orhan*, Second Hankel determinant for bi-starlike and bi-convex functions of order β , *Appl. Math. Comput.*, **271** (2015), 301-307.
- [7] *P. L. Duren*, *Univalent Functions*, Grundlehren der mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
- [8] *M. Fekete and G. Szegő*, Eine Bemerkung Über Ungerade Schlichte Funktionen, *J. London Math. Soc.*, **8** (1933), 85-89.
- [9] *S. Kanas, E. Analouei Adegani and A. Zireh*, An unified approach to second Hankel determinant of bi-subordinate functions, *Mediterr. J. Math.*, (2017), 14:233.
- [10] *M. Lewin*, On a coefficient problem for bi-univalent functions, *Proc. Amer. Math. Soc.*, **18** (1967), 63-68.
- [11] *W.C. Ma and D. Minda*, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Conf. Proc. Lecture Notes Anal., I, pp. 157169. Int. Press, Cambridge.
- [12] *N. Mustafa, G. Murugusundaramoorthy and T. Janani*, Second Hankel determinant for a certain subclass of bi-univalent functions, *Mediterr. J. Math.*, (2018) 15:119.
- [13] *J. W. Noonan and D. K. Thomas*, On the second Hankel determinant of areally mean p -valent functions, *Trans. Amer. Math. Soc.*, **223** (1976), 337-346.
- [14] *H. Orhan, N. Magesh and J. Yamini*, Bounds for the second Hankel determinant of certain bi-univalent functions, *Turk. J. Math.*, **40** (2016), 679-687.
- [15] *H. Orhan, E. Toklu and E. Kadiğlu*, Second Hankel Determinant Problem for k -bi-starlike Functions, *Filomat*, **31** (2017), 3897-3904.
- [16] *V. Radhika, S. Sivasubramanian, G. Murugusundaramoorthy and J. M. Jahangiri*, Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation, *J. Complex. Anal.*, Art. ID 4960704 (2016), 1-4.
- [17] *G. S. Sălăgean*, Subclasses of univalent functions, in: Complex Analysis–Fifth Romanian-Finnish Seminar, Bucharest, (1983), 362-372.

- [18] *H. M. Srivastava, S. Gaboury and F. Ghanim*, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, RACSAM, (2017) (DOI10.1007/s13398-017-0416-5).
- [19] *Q. H. Xu, H. G. Xiao and H. M. Srivastava*, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, *Appl. Math. Comput.*, **218** (2012), 11461-11465.
- [20] *P. Zaprawa*, On the Fekete-Szegö problem for classes of bi-univalent functions, *Bull. Belg. Math. Soc. Simon Stevin*, **21** (2014), 169-178.
- [21] *A. Zireh, E. Analouei Adegani and S. Bulut*, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, *Bull. Belg. Math. Soc. Simon Stevin*, **23** (2016), 487-504.