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UPPER BOUND OF SECOND HANKEL DETERMINANT FOR
k-BI-SUBORDINATE FUNCTIONS

Ahmad Motamednezhad?!, Serap Bulut?, Ebrahim Analouei Adegani®

In this work, we determine an upper bound of the functional H2(2) =
aga4 — a% for functions belonging to a subclass of analytic bi-univalent functions which
is defined by subordination conditions in the open unit disk D. In addition, we get a
smaller upper bound and more accurate estimation than the previous results and we
correct their mistake.
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1. Introduction

Let A be a class of analytic functions in the open unit disk D = {z € C: |z| < 1}, of
the form

fz)=z2+) ana"  (z€D). (1)

A function f : D — C is called univalent on D if f(21) # f (22) all 21,22 € D with
z1 # 29. Let 8 be the class of functions f € A which are univalent in .
A function f € A is said to be starlike, if it satisfies the inequality

zf ’(Z))
Re >0 zeD). 2
(% =) ?
We denote the class which consists of all functions f € A that are starlike by 8*.
A function f € A is said to be conwvez, if it satisfies the inequality

Zf”(z)
) ) >0 (z €D). (3)
We denote the class which consists of all functions f € A that are convex by C.

For two functions f and g which are analytic in DD, we say that the function f is
subordinate to g, and write f(z) < g(z), if there exists a Schwarz function w, that is a
function w analytic in D with w(0) = 0 and |w(z)| < 1 in D, such that f(z) = g(w(z)) for
all z e D.

In particular, if the function ¢ is univalent in D, then f < ¢ if and only if f(0) = ¢(0) and
f(D) € g(D), [7].

Re <1+
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By means of the subordination, the conditions (2) and (3) are, respectively, equivalent

to
! 1"
zf(z)<1+z and 1+zf (z)<1+z'
flz) 1=z ffz) 11—z
Ma and Minda [11] gave a unified presentation of various subclasses of starlike and convex
functions by replacing the subordinate function %f; by a more general analytic function
 with positive real part in the unit disk D, symmetric with respect to the real axis and
starlike with respect to ¢(0) = 1, and ¢’(0) > 0.

One of the important tools in the theory of univalent functions are the Hankel deter-
minants which are used, for example, in showing that a function of bounded characteristic
in D, that is, a function which is a ratio of two bounded analytic functions, with its Laurent
series around the origin having integral coefficients, is rational [5].

In 1976, Noonan and Thomas [13] defined the g-th Hankel determinant for integers

n>1and g > 1 by

QAnp (ln+1 e an+q_1
Ap+1 Ap+2 ... [
Hy(n) =1 : : : (a1 =1).
Gp4q—1 Qni4q - -- Ap+42q—2
Note that
a a a Qs
Hy(1)=|"+ 72 and  Hy(2) =2 "3,
az as asz a4

where the Hankel determinants Hz(1) = a3 — a3 and Hs(2) = asas — a3 are well-known

as Fekete-Szegé and second Hankel determinant functionals, respectively. Further, Fekete
and Szegd [8] introduced the generalized functional a3 — Aa3, where \ is some real number.
Problems in this field has also been argued by several authors (see for example [1, 4, 6, 9,
14, 15, 16, 20]).

In 1983, Sildgean [17] introduced differential operator D* : A — A defined by

Df(z) = f(z),  D'f(2) = Df(2) = 2f'(2),
and in general
DFf(z) = D(DF"1f(2)), keN={1,2,...}.
We easily find that

D¥f(z) =z—|—2nkanz"7 k € Nyg := NU{0},
n=2

with D¥ f(0) = 0.

The Koebe one-quarter theorem [7] ensures that the image of D under every univalent
function f € § contains a disk of radius 1/4. Thus every function f € 8 has an inverse f~!,
such that

FHf(2) =2 (€D), and f (f_l(w)) =w (|w| <ro(f); ro(f) > i) ,

where the inverse f~! has the power series expansion (see [10])
g(w) = fHw) = w — asw® + (243 — a3) w® — (5a3 — Sasas + as) w + ... (4)

A function f € A is said to be bi-univalent in D if both f and f~! are univalent in I,
in the sense that f~! has a univalent analytic continuation to ID. Let ¥ denote the class of
bi-univalent functions in . For a brief history of functions in the class ¥ and also different
other characteristics of these functions see [2, 10, 18, 19, 21] and the references therein.
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In this work, we assume that the function ¢ is an analytic function with positive real
part in the unit disk D, satisfying ¢(0) = 1, ¢/(0) > 0, such that ¢(D) is symmetric with
respect to the real axis. Such a function has the power series expansion of the form

0(2) =14+ Biz+ B> + B32* +..., €D (B; > 0). (5)

By means of the subordination, Bulut [3] defined the class Bg’k (7; ) of analytic

bi-univalent functions as follows:

Definition 1.1. Let m,k € No;m > k and v € C\ {0}. A function f € ¥ given by (1) is
said to be in the class Bg’k (7; ) if the following conditions are satisfied:

1 (D"} (2)
1+7<D’€f(z) 1)”(” ©)
and
1 (D™g(w)
w3 (gt 1) <o "

where z,w € D and the function g = f~! is defined by (4).

Remark 1.1. For m = k+1, we get the class B;H’k (7:¢) = Bs i (75 @) of k-bi-subordinate
functions of complex order v € C\ {0} .

Remark 1.2. If we set

_1+(0-20)=
B 1—-2

in Definition 1.1, then the class Bg’k( ;) reduces to the class S8sj (8) of k-bi-starlike

o~
functions. In other words, a function f € ¥ is said to be in the class 8y (8), if the
following conditions are satisfied (see [15]):

Dk+1f (z) Dk+1g (z)
(Tt )27 e (Tt ) >
For £k =0 and k = 1, we get the classes

8x,0(8) =85 (B) and Sy 1(8) =K (8),

which are the class of bi-starlike functions of order 8 and bi-convex functions of order 3,
respectively. In particular, we have the classes

8270 (O) = Sg and 82’1 (0) = j{g,

which are the class of bi-starlike functions and bi-convex functions, respectively.

m=k+1, ~=1 and v (2) (0<p<1

1
Example 1.1. If we set f(z) = 7 © and p(z) = ¥ where z € D, then both f(z) and
-z -z

g(w) = f~H(w) = 1-1;) are univalent in D and so f € ¥. On other the hand, conditions
w

(6) and (7) hold for k=1, m =2 and v =1, that is,

2f"(2) 14+2z 1+z2
fl(z) 1—z 1-2

1+

—Zz

1
this is equvalent with Re (1 i Z> >0

and
wg'(w) 1—-w 14w

11—
1+ ) Itw < T this is equvalent with Re (1;:}}) > 0.
1
Therefore f € 322’1 <1; g , in other words f is 1-bi-convex function (bi-convex function).

Since every convex function is a starlike function, so also f is 1-bi-starlike function (bi-
starlike function).



34 Ahmad Motamednezhad, Serap Bulut, Ebrahim Analouei Adegani

Theorem 1.1. [6, Theorem 2.1] Let the function f given by (1) be in the class 8% (B)
(0< B <1). Then

A0 (42 —88+5) , Be |0, 2]

’a2a4 — a§| <

2 (13B82-148-7 —/137
(1-0) (m) ) 56( 1371)-
Corollary 1.1. [6, Corollary 2.2] Let the function f given by (1) be in the class 8. Then
20
’a2a4 - a3| < ?

Theorem 1.2. [6, Theorem 2.3] Let the function f given by (1) be in the class Kx (8)
(0<pB<1). Then

(1-B)* (562+86—32>_

lazaa = a5 < = 5354

Corollary 1.2. [6, Corollary 2.4] Let the function f given by (1) be in the class Ks,. Then
1
‘a2a4 — a§| < 3

The class 8x (8) of k-bi-starlike functions is defined by Orhan et al. [15] and they
obtained an upper bound for the second Hankel determinant of functions f € 8y i (3) (see
[15, Theorem 2.1]). They got for n,u <1

lazas — a3| < Ty + (n+ )T + (0 + 1*)Ts + (n + p)°Ty = G(n, 1),

where
_ 2 k Qk—i.‘l k+1 3
Tl—Tl(p)—(lg(%i; [<(1B)2(3(2 )+222k 733 )+i)p41?2+2p >0
— B)2p? 2 1 1—
Ty = Ty(p) = d ﬁ)22k+(2 —7) [32,@+ (4(3:;)} >0
7, - Tp) = =L 2(4(2_3,3'32)(1’_2) <0
Ty = Ty(p) = (16_(95,6% (4_4p) >0,

They claimed that
T35 +2T, >0 for pc [0,2),

to maximize the function G(n, u) on the closed square [0, 1] x [0, 1]. But there is a mistake
in their proof. Now we give a counterexample that this inequality is not true:
If we choose
B =0, k=10 and p=20,9,
then we have
Ty + 2T, = —3,134800373 x 107! < 0.

The main purpose of this paper is that, by using a different method from the one in
[15], to determine the functional Hy(2 ) = agay — a2 for functions belonging to the subclass
of analytic bi-univalent functions Bg’ (7; ¢) which is defined by subordination principle in
the open unit disk D. In addition, we get more accurate estimation than the previous results
and we give the correction of [15, Theorem 2.1].

In order to prove our main results, we need the following lemmas.
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Lemma 1.1. [7, p. 190] Let u be analytic function in the unit disk D, with u(0) = 0, and
|u(2)| < 1 for all z € D, with the power series expansion

oo
u(z) = Z cn2™.
n=1

Then, |c,| < 1 for all n € N. Furthermore, |c,| = 1 for some n € N if and only if
u(z) = ez, 0 € R.

[ee]
Lemma 1.2. [9] If ¥(2) = > ¥n2", z €D, is a Schwarz function, then
n=1
b2 = (1-97),
Y3 = (1—¢7) (L—|2°) s — ¢ (1 —¢7) 22,
for some x, s, with |x] <1 and |s| < 1.

2. Main Results

Whilst Lemma 1.1 holds for complex-valued ¢,, (n € N), in this paper we restrict our
attention to the case of real valued c;.

Theorem 2.1. Let the function f given by (1) be in the class Bg’k (v; ). Then
R if @<0,P<-Q

lazas —a3| < Bily)* x{ P+Q+R if (Q>0,P>-%) or, (Q<0,P>-Q)

PR-Q* i Q>0,P<-9,
where
P —Kyn—%x?k—3h—2Wyn—#v+Mm—4%yﬁB§+ B
(4m _ 4k)(2m — 2k)4 (4m — 4k)(2m — 2k)

_ 9 v| B n | B2 - By n By
4(2m _ 2k)2(3m _ 3k) (4m _ 4k)(2m _ Qk) (4m _ 4k)(2m _ 2k) (3m _ 3k)2’
4(2m _ 2k)2(3m _ 3k) (4m _ 4k)(2m _ 2k:) (4m _ 4k)(2m _ Qk) (3m _ 3k)2’

B
R= (3m _ 3k)2 :

Proof. Let f € ‘Bg’k (7; ¢). Then by definition of subordination and Lemma 1.1, there exist

o) (o)
two Schwarz functions w and v, of the form u(z) = > ¢,z and v(z) = > d,2", z € D
n=1 n=1

such that D f(2)
1 mf(z
1+ 5 (D’“f(z) - 1) = p(u(2)) (8)
and
1 (D"g(w) _
w3 (Begier =) —oeo) Y
where

o(u(z)) =14 Bicrz + (Biea + BQC%)ZQ + (Bics + 2Bacico + BgC%)ZS 4. (10)
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and
o(w(w)) =1+ Bidyw + (Bydy + Bod?)w? + (Bids + 2Badydy + Bad))w® +--- . (11)
From (8), (10) and (9), (11), we have
(2™ —2")az = vBic (12)
(3™ — Sk)ag ( — Qk)ag =y(Bic2 + Bzc?) (13)
(4™ — 4%)ay — [ (2™ — 2%) 4 2F (3™ — 3’“)] asas + 225 (2™ — 2%)ad
=7(Bics + 2Bacica + Bgc‘;’) (14)
and
—(2™ - 2")az = yBid: (15)
(3™ —3%)(2a3 — az) — 2°(2™ — 2)a3 = v(B1dz + Bad?) (16)
—(4™ — 4%) (543 — Basas + as) + [3’“(2’” — k) 4 2k3m — 3’€)] as (203 — as)
—22%(2™ — 2%Ya§ = v(Bids + 2Badids + Bsdy), (17)
respectively. From (12) and (15), we get that
1 =—dy (18)
and Biey
a2 = oo g (19)

Nevertheless, from (13) and (16), we get
231 1 ’}/Bl (62 — dg)

= ) 20
957 (gm k)2 T Ta(3m _ 3k) (20)
Furthermore, from (14) and (17), we obtain
o [(2m — 2F)(3k — 22F) + 2~ (3™ — 3K)] 13 Bic} N 5v2B2ci(cy — do)
4 (4m _ 4k)(2m _ 2k)3 4(2m _ 2k)(3m _ 3k)
vBi(c3 —d3) | yBaci(ca +da) yBsc} (21)
2(4m — 4%) (4™ — 4F) (4m — 4k’
Therefore, after calculations we have
o | [(2m —2F)(2%F — 3F) — 2R (3™ — 3F) 4 (4™ — 4F)] v Bict
azas — a3| = m _ 4k (om _ 9k)4
(4m — 4k)(2m — 2k)
+ 33101(62 — dg) + ’YQBlBQC%(CQ + dg)
4(2m — 2k)2(3m — 3k) (4 — 4F)(2m — 2Fk)
’}/2333161l ’723%01(63 — d3)
(4m — 4F)(2m — 2k) © 2(4m — 4k)(2m — 2Fk)
_ ’YZB%(CQ _ d2)2 (22)
4(3m _ 3k)2
According to Lemma 1.2 and (18), we find that
co — dy = (1 — c%) (x—vy) and Co +dy = (1 — c%) (x +y) (23)
and
cs=(1-¢c)(1—|z*)s—c1 (1 —cf)a* and
dy = (1—d7) (1=|yf)t —dy (1 —dP)o*
where

3 —dy=(1—¢f) [(1—|z[*)s — (1= [y*)t] —er(1 = f)(@® + 7). (24)
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for some z, y, s, t with |z] <1, |y] <1, |s|] <1 and [¢t| < 1. Applying (23) and (24) in
(22), it follows that

lazas — o]
i ] 40D - g @ )
O e+ g ) s () |
Since |e1] < 1, we assume that ¢; = ¢ € [0, 1]. So we have
|azas — a
i+ e | =) Gl
L R i L WML
g T [0l ol + (1~ ) ] }
s T
* {4(2*% - 2|Z|)f(%3m —35 T - ALLB2 — ok } ) (2l + 1))
oL (el + ) + 3 (o] + )®
s T [0 k) + (1= ) }
_ BW{ — [ —24)(@* -3 - i’“@:: SRACET) Cie S - S I
(@~ )@~ @)@ )
2(477215111'5)1(;:2—) 20y T [a(2m — 2|Z‘)f(%3m —30) T am - 4L§;(22|m —2F) ¢ (1= ¢) (| + lyl)
+ s~ ) Qk)} (st + o) + =) o }

Now, for A = |z| <1 and pu = |y| < 1, we obtain

|azas — a3| < Bily[* [T1 + A+ ) To + (A + p*) T3 + (A + p)°Tu] = Biy [P F(A, ),
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where
B @™ =222k - 3F) — 283 — 3F) 4 (4™ — 4F)] 4° B} Bs
h="ni)= ‘ (@n — 4F)(2m —28) T e —am|°
2Bic (1 — 02) >0

2(4m — 4k)(2m — 2k) =

_ _ |’Y|B% | Ba| 2 2
Ty =Ts(c) = [4(2m —2k)3(3m — 3F) + (@m — 4%y (2m — 2) c (1 —c ) >0

_ _ Bicle—1)(1—¢?)
1 =10 = 3gm —gry@m =20y =°
Ty = Tu(c) = % > 0.

We now need to maximize the function F'(\, p) on the closed square [0, 1] x [0, 1] for ¢ € [0, 1].
With regards to F'(A, ) = F(u, A), it is sufficient that we investigate the maximum of

G(N\) = F(\ ) = T1 + 2T + 20 (T + 2TY),

on A € [0,1] according to ¢ € (0,1), c=0 and ¢ = 1.
Firstly, if we let ¢ = 1, then we obtain

_ [(2m _ 2k)(22k _ 3k) _ 2k(3m _ 3k> 4 (4m _ 414:)] ’YQB%

max {G(\) : A € [0,1]} = (4m — 4k)(2m — 2F)4

Bs
@ —ah =2
Secondly, letting ¢ = 0, so we get

+

4B,

N =i

)\2
hence we can see that
B,

max {G(\) : A € [0,1]} = G(1) = EeaEt

Finally, we let ¢ € (0,1). Considering equation (25) for 0 < XA <1 we get

(i) If T5 + 2Ty > 0, it is clear that
G/(A) = 4(T3 + 2T4)>\ + 215 >0

for 0 < A < 1 and any fixed ¢ € (0,1), that is G(\) is an increasing function. Hence

max {G(A): A €[0,1]} = G(1) =Ty + 2T, + 213 + 4T).
(ii) If T5 4+ 2T4 < 0, then we consider for critical point
Ao = ()
2(T5 +2Ty) 2k
for any fixed ¢ € (0,1), where k = —(T5 + 2T4) > 0, the following two cases:

T: T
Case 1. For \g = =2 1, it follows that k < 72 < Ts, and so Ty + T5 + 2T, > 0.

2k

Therefore,
G(O) =T <Ti+ Q(Tg + T3 + 2T4) = G(l)

T -
Case 2. For \g = i < 1, since T3 > 0, we get that g—i < Ty. Therefore,

2

T.
G0)=T, §T1+i:G()\O) <Ty+Ts.

4
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Considering the above cases for point of ¢, it follows that the function G(\) gets its
maximum when T3 + 274 > 0, it means

maX{G()\) A E [O, 1]} = G(l) = T1 + 2T2 =+ 2T3 + 4T4

Therefore, max F'(A, z) = F(1,1) on the boundary of the square.
Let K : [0,1] = R,

K(c) = By max F(\, ) = By J7/2F(1,1)

= Bi|y|A(Ty + 2T + 2T + 4Ty). (26)
By replacing the values of Ty, T5, 15 and T in the above function K, we have
(2™ — 2F)(22k _ 3k} _ ok (3™ _ 3k} 4 (4™ — 4F)] 42 B3
P (€ e D it R Gt )R B,
(4m _ 4k)(2m _ 2k)4 (4m _ 4k)(2nL _ Qk)
L B3 . |B| B By LB
|’Y|B% |B2| Bi _ 2B, 2
+ 2(4(2m_2k)2(3m_3k) + (4m_4k)(2m_2k) + (4m_4k)(2m_2k) (3m_3k)2 ¢

B,
+m .

Suppose ¢ = u and for the simplicity, set
p_ |- [(2m — 2F)(22k — 3F) — 2k(3™ — 3F) + (4™ — 4%)] 42 B} N B
- (4m _ 4k)(2m _ 2k)4 (4m _ 4k)(2’rn _ 2k:>
_9 v|BE n | B2 _ B, L By
4(2m _ 2k)2(3m _ 3k) (4m _ 4k:)(2m _ 21@) (4m _ 4k)(2m _ 2k) (3m _ 3k)27
(27)
B? B B 2B
Q=2 |Z\21 — L2| )+ kl —_ 11@2’
A(2m —2K)2(3m —3F) T (4m —4F)(2m —2F) ) T (4m —4F)(2m —2F)  (3m — 3F)
By
R=——"—.
(3m — 3k)2
According to
R if Q<0,P<-Q
max(Pu?+ Qu+R)={ P+Q+R if (Q>0,P>-%) or, (Q<0,P>-Q) ,
0<u<l1
PRQ” i Q>0,P<-%
it follows that
R if @<0,P<-Q
’a2a4_a§|§31|7‘2x P+Q+R if (QZO,PZ—%),OT, (QSO7P2_Q) )
PRoQ it Q>0,P< -9

where P, @ and R are given by (27). This completes the proof. |
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For
1+(1-28)z
- 1—-=2
in Theorem 2.1, we get the following correction of the estimates in [15, Theorem 2.1 |:
Corollary 2.1. Let the function f given by (1) be in the class 8s 1 (8) (0 < S < 1). Then
R if Q<0,P<—-Q

m=k+1, ~v=1 and v (2) (0<p<1

lazas —a3| <21 —-B) x{ P+Q+R if (Q>0,P>-%),0r, (Q<0,P>-Q)

PR-QY it Q> 0,P< -9,
where
_ —[2 4325 -3 (1 - B)? ! 1—5
P=(1- /B){ ‘ 3(25K-3) + 3(23k-1) B (22k)(3%)

1 1
T 93k—1 + 2(32%) [

1-— 1 1
Q=(01-78) |:(22k)(§k) + 23k—1 3@] ’
_1-5
T 2(3%k)

For k = 0 in Corollary 2.1, we get the following result that is an improvement of the
estimates which in Theorem 1.1.

Corollary 2.2. Let the function f given by (1) be in the class 8% (8) (0 < B < 1). Then
2(48% -85 +3) , 0<pB< 296D

2 2 138%2—-148—15 29—+/649 1
|azas — a3 <2(1-6) 3287 —525—6 ’ s =P<3
1982508439 1
3237 —763454 ) 3 <B<1

For 8 =0, Corollary 2.2 yields the following coefficient estimates for bi-starlike func-
tions. This result is an improvement of the estimates obtained in Corollary 1.1.

Corollary 2.3. Let the function f given by (1) be in the class 8%. Then
|a2a4 — ag{ < 4.
For k =1 in Corollary 2.1, we get the following result that is an improvement of the
estimates in Theorem 1.2.

Corollary 2.4. Let the function f given by (1) be in the class Xs (8) (0 < < 1). Then

(1—-p8)% 118% — 408+ 48
24 382-98+10 °

For 8 = 0, Corollary 2.4 yields the following coefficient estimates for bi-convex func-
tions. This result is an improvement of the estimates obtained in Corollary 1.2.

Corollary 2.5. Let the function f given by (1) be in the class Ks. Then

2
|a2a4 - ag} <

‘a2a4 — a§| < é
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3. Conclusion

In the final section, we found improved upper bounds for the functional |H2(2)| for

functions in the class Bg’k (7; ). The technique of proof for Theorem 2.1 can be extended

to other classes of functions similar to 3g’k (7; ) as for example My (¢, 8) introduced in
Definition 1.1 of [12], in order to improve previous estimates by their Theorem 2.1. Sharp
estimates for |Hs(2)| are for now open problems.
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