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HYPERBOLIC FOUR VARIABLE REFINED SHEAR 

DEFORMATION THEORY FOR MECHANICAL BUCKLING 

ANALYSIS OF FUNCTIONALLY GRADED PLATES 

Abderrahmane BOUCHETA1, Mokhtar BOUAZZA2 , Tawfiq BECHERI 3, 

Noureddine BENSEDDIQ 4 

 Buckling behavior of a thick rectangular plate made of functionally graded 

materials is investigated in this article. The material properties of the plate are 

assumed to vary continuously through the thickness of the plate according to a 

power-law distribution. The plate is assumed to be under three types of mechanical 

loadings, namely; uniaxial compression, biaxial compression, and biaxial 

compression and tension. The governing stability equations are derived based on the 

new four variable refined shear deformation theory. Unlike any other theory, the 

number of unknown functions involved is only four, as against five in case of other 

shear deformation theories. The theory takes into account the transverse shear 

effects and parabolic distribution of the transverse shear strains through the 

thickness of the plate, hence it is unnecessary to use shear correction factors. The 

resulted stability equations are decoupled and solved analytically for the 

functionally graded rectangular plates being simply supported and subjected to 

different types of mechanical loadings. A comparison of the present results with 

those available in the literature is carried out to establish the accuracy of the 

presented analytical method. The effects of the volume fraction exponent  of the 

functionally graded material, plate thickness, aspect ratio and mechanical loading 

conditions on the critical buckling of aluminum/alumina functionally graded 

rectangular plates are investigated and discussed in detail.  

 

Keywords: Mechanical buckling, Functionally graded plate, Thick rectangular 

plate, New four variable refined shear deformation theory, Analytical 

solution. 

1. Introduction 

Recent advances in material processing technology have led to a new class 

of materials called functionally graded materials (FGMs). FGMs are composites 

whose composition and microstructure vary continuously in some spatial 
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directions. The advantage of FGMs is that no distinct internal boundaries exist 

and failures from interfacial stress concentrations developed in conventional 

structure components can be avoided. Featuring gradual transitions in 

microstructure and composition, they are designed to meet functional performance 

requirements varying with location within a structure component and to optimize 

the overall performance of the component. As a new concept of material design 

FGMs have found various available or potential applications in industries [1, 2]. 

Many works on FGM structures have been studied in literature. For example, Vel 

and Batra [3] have proposed a three-dimensional solution for free vibration of FG 

rectangular plates. Reddy [4] has analyzed the static behavior of FG rectangular 

plates based on his third-order shear deformation plate theory. Reddy and Cheng 

[5] have presented a three-dimensional model for an FG plate subjected to 

mechanical and thermal loads, both applied at the top of the plate. Park and Kim 

[6] studied thermal postbuckling and vibration of simply supported FGM plates 

with temperature-dependent materials properties by using finite element method. 

Bouazza et al. [7] used the first-order shear deformation theory to derive closed-

form relations for buckling temperature difference of simply supported 

moderately thick rectangular power-law (linear, quadratic, cubic, and inverse 

quadratic) functionally graded plates. Bouazza et al. [8] presented the derivation 

of equations for mechanical buckling of rectangular thin functionally graded 

plates under uniaxial and biaxial compression using classical plate theory. 

Mohammadi et al. [9] investigated the buckling behavior of functionally graded 

material plate under different loading conditions based on the classical plate 

theory (Levy solution); the governing equations are obtained for functionally 

graded rectangular plates using the principle of minimum total potential energy. 

Zenkour [10] derived the exact solution for FGM plates using generalized 

sinusoidal shear deformation theory and presented numerical results on 

displacement and stress response of FGM plates under uniform loading. Ying et 

al. [11] used a semi-analytical method to study thermal deformations of FG thick 

plates and the analysis is directly based on the 3D theory of elasticity. Yang and 

Shen [12] studied the postbuckling behavior of FGM thin plates under fully 

clamped boundary conditions. This work was then extended to the case of shear 

deformable FGM plates with various boundary conditions and various possible 

initial geometric imperfections by Yang et al. [13]. Woo et al. [14] studied the 

postbuckling behavior of FGM plates and shallow shells under edge compressive 

loads and a temperature field based on the higher order shear deformation theory.  

Javaheri and Eslami [15–18] presented the thermal and mechanical buckling of 

rectangular FGM plates based on the first- and higher-order plate theories. Three-

dimensional deformations of a simply supported FG rectangular plate subjected to 

mechanical and thermal loads on its top and/or bottom surfaces have been 

analyzed by Vel and Batra [19].  
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Recently, a two variable refined plate theory (RPT) was first developed for 

isotropic plates by Shimpi [20], and was extended to orthotropic plates by Shimpi 

and Patel [21,22]. Kim et al [23], and Thai and Kim [24] have studied laminated 

composite plates using this theory. Mechab et al. [25] have developed this theory 

for the FGM plates. Benachour et al. [26] presented analytical solution for free 

vibrations of FG plates using this theory. Thai and Choi [27] developed the 

efficient and simple refined theory for buckling analysis of functionally graded 

plates. El Meiche et al. [28]  proposed a new hyperbolic shear deformation theory 

for buckling and vibration analysis of functionally graded sandwich plates. 

Piscopo [29] also investigated refined buckling analysis of rectangular plates 

under uniaxial and biaxial compression. Hassaine Daouadji et al. [31] used a 

higher order theory which involves only four degrees of freedom for bending 

analysis of functionally graded plates. Bouhadra et al [32] studied the thermal 

buckling response of functionally graded plates with clamped boundary 

conditions using refined plate theory. Bellifa et al [33] used a new first-order 

shear deformation theory for bending and free vibration analysis of functionally 

graded plates using a simple shear deformation theory and the concept the neutral 

surface position. 
 

To the best of authors’ knowledge, there are no research works for 

mechanical buckling analysis of functionally graded rectangular plates based on 

new four variable refined shear deformation theory. In this work, the application 

of a hyperbolic four-variable refined theory is extended for the  FGM plates. For 

this purpose, the constitutive relations of buckling and vibration analysis of 

functionally graded sandwich plates are developed using four variable refined 

plate theory [28]. The novelty of this paper is the use of new four variable refined 

plate theory for mechanical buckling analysis of plates made of functionally 

graded materials. Unlike any other theory, the number of unknown functions 

involved is only four, as against five in case of other shear deformation theories. 

The theory presented is variationally consistent and does not require a shear 

correction factor. Introducing an analytical approach, the governing stability 

equations of functionally graded plates are decoupled and solved for a FGM 

rectangular plate with simply supported under different mechanical loads. The 

obtained results are compared with existing data in the literature. Moreover, 

mechanical loading conditions and geometric parameters of plate influence on the 

critical buckling of the FGM rectangular plate is comprehensively investigated. 
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2. Problem formulation  

2.1 Material properties 

Consider a rectangular plate of total thickness h. The  FGM plate is made 

of aluminium and alumina, the material properties of the FGM such as material 

properties vary continuously across the thickness according to the following 

equations, which are the same as the equations proposed by Reddy [4]: 
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where Em denote the elastic moduli of metal; Ec denote the elastic moduli of 

ceramic . z is the thickness coordinate variable; and 22 hzh  , where k is 

the power law index that takes values greater than or equals to zero 

For simplicity, Poisson’s ratio of the plate is assumed to be constant in this 

study for that the effect of Poisson’s ratio on deformation is much less than that of 

Young’s modulus [33]. 

2.2. Present new hyperbolic shear deformation theory  

The displacement field, which accounts for parabolic variation of 

transverse shear stress through the thickness, and satisfies the zero traction 

boundary conditions on the top and bottom faces of the plate using hyperbolic 

four variable refined shear deformation theory, is assumed as follows : 
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where, u and v denote the displacements along the x and y coordinate directions of 

a point on the midplane of the plate ; the transverse displacement W includes two 

components of bending bw and shear sw . Both these components are functions of 

coordinates x and y. 

It should be noted that unlike the first-order shear deformation theory, this 

theory does not require shear correction factors. The kinematic relations can be 

obtained as follows: 

(1) 
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The linear constitutive relations of a FGM plate can be written as: 

















































































xz

yz

xy

y

x

xz

yz

xy

y

x

Q

Q

Q

QQ

QQ





















55

44

66

2212

1211

0000

0000

0000

000

000

. 

 

The strain energy of the plate can be written as 

  
V

xzxzyzyzxyxyyyxx
V

ijij dVdVU 
2

1

2

1

. 

The principle of virtual work for the present problem may be expressed as 

follows: 
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where ),,( xyyx NNN  denote the total in-plane force resultants, ),,( b

xy

b

y
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x MMM , 

),,( s
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s

y

s

x MMM denote the total moment resultants of bending  total moment 

resultants of shear, respectively, and ),( yzxz QQ  are transverse shear stress 

resultants, show a Fig. 1 with the system of axes and force resultants and they are 

defined as: 
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Fig. 1 Internal forces and moments of the FGM plate. 
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Substituting Eq. (5) into Eq. (8) and integrating through the thickness of 

the plate, the stress resultants are given as: 
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where ijij BA , , etc. are the plate stiffness of extensional stiffness matrix , coupling 

stiffness matrix, defined by 
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The stability equations of the plate may be derived by the adjacent 

equilibrium criterion. Assume that the equilibrium state of the FGM plate under 

mechanical loads is defined in terms of the displacement 

components ),,,( 000

0

0

0 sb wwvu . The displacement components of a neighboring 

stable state differ by ),,,( 111

0

1

0 sb wwvu  with respect to the equilibrium position. 

Thus, the total displacements of a neighboring state are: 
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where the superscript 1 refers to the state of stability and the superscript 0 refers 

to the state of equilibrium conditions. 

Substituting Equations (3) and (12) into Equation (7) and integrating by 

parts and then equating the coefficients of  11
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separately, the governing stability equations are obtained for the new four variable 

refined shear deformation theory as 
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The following approximate solution is seen to satisfy both the differential 

equation and the boundary conditions 
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where  
1111 ,,, smnbmnmnmn WWVU are arbitrary parameters to be determined and 

am   and bn  .  

 The pre-buckling forces can be obtained using the equilibrium conditions 

as [8, 9] 
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where 0N  is the force per unit length, 1  and 2 are the load parameter which 

indicate the loading conditions. Negative values for 1  and 2  indicate that plate 

is subjected to biaxial compressive loads while positive values are used for tensile 

loads. Also, zero value for 1  or 2  shows uniaxial loading in x or y directions, 

respectively. 

3. Results and discussion 

In this section, various numerical examples are presented and discussed 

for verifying the accuracy and efficiency of the present theory in predicting the 

critical buckling load of FGM plates subjected to in-plane loading. For the 

verification purpose, the results obtained by present theory are compared with 

those found in the literature using various theories. The following material 

Al/Al2O3 properties are used: 

3.0,70,380  GPaEGPaE mc  ,  

c and m represent the aluminum and alumina, respectively.  

3.1. Comparisons 

In order to validate the accuracy of the present method, a comparison has 

been carried out with previously published results by Hashemi et al [34], Bouazza 

and Adda [8] and Mohammadi et al [9] for rectangular plates for simply 

supported. Plates are subjected to monoaxial in-plane compressive applied loads 

in the x )0,1( 21     and equal biaxial in-plane compressive applied loads 

)1,1( 21    . 

The results of critical buckling load parameters DaNN crcr

2~
  of 

isotropic thin and moderately thick square rectangular plate are presented in Table 

1 for different thickness to length ratios and aspect ratios.  The obtained results 

are compared with those given by Hashemi et al [34] based on exact solution for 

linear buckling of rectangular Mindlin plates. It can be seen the present results are 

in excellent agreement with those given by Hashemi et al [34] for all loading 

types and geometric parameters. 
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Table 1 

Comparison of critical buckling load parameters, DaNN crcr

2~
 of simply supported 

isotropic square plates  crcr NNNN
~~

,
~~

2211     
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Critical buckling load 
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Present 
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14.250514 

13.718799 

12.325227  

 

19.739102 

19.728510  

18.723845  

16.220716   

 

32.075932 

32.047973  

29.478533 

23.716511 

 

49.347353  

49.281211 

43.456572 

31.996718   

 

71.553225 

71.414247 

59.799393 

40.057195     

11.4487037 

11.4450009 

11.0865495 

10.1266901 

 

12.3369620 

12.3326625 

11.9174714 

10.8156159 

   

14.2560372 

14.2502963 

13.6988647 

12.2631793 

 

19.7390976 

19.7280931 

18.6868855 

16.1152490 

 

32.0759206 

32.0468723 

29.3878842 

23.5004635 

 

49.3473269 

49.2786081 

43.2624640 

31.6268055 

 

71.5531705 

71.4087824 

59.4387577 

39.5232409 

 

a Mode for plate is (m, n) = (2, 1). 

b Mode for plate is (m, n) = (3, 1). 

c Mode for plate is (m, n) = (4, 1). 

d Mode for plate is (m, n) = (5, 1). 
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Table 2 

Comparison of the critical buckling load (MN/m) for a FGM plate (b=1, h=0.01). 
 

 

K     a/b    

 

CRITICAL BUCKLING LOAD 

),( 21  =(-1,0) ),( 21  =(0,-1) ),( 21  =(-1,-1) 

REF[9] REF[8] PRESENT                              REF[9] REF[8] PRESEN

T                              

REF[9] REF[8] PRESEN

T                              

0     0.5 

        1 

        1.5 
 

1     0.5 

        1 
        1.5 

 

2      0.5 
        1 

        1.5 

2.14655 

1.37379 

1.49066a 
 

1.06993 

0.68475 
0.74300 

 

0.83488 
0.53432 

0.57978a 

2.14655 

1.37379 

1.49066a 
 

1.06993 

0.68475 
0.74300a 

 

0.83488 
0.53433 

0.57978a 

2.14353 

1.37302 

1.48949a 
 

1.06866 

0.68443 
0.74252a 

 

0.83382 
0.53405 

0.57937a 

8.58619 

1.37379 

0.71658 
 

4.27971 

0.6847532 
0.35717 

 

3.33953 
0.53432 

0.27871 

8.58619 

1.37379 

0.71658  
 

4.27971 

0.6847532 
0.35717 

 

3.33953 
0.53433 

0.27871 

8.57412 

1.37302 

0.71628 
 

4.27464 

0.68443 
0.35705 

 

3.3353 
0.53405 

0.2786 

1.71724 

0.68689 

0.49609 
 

0.85594 

0.34238 
0.24727 

 

0.66791 
0.26716 

0.19295 

1.71724  

0.686896 

0.49609 
 

0.85594 

0.34238 
0.24727 

 

0.66791 
0.26716 

0.19295 

1.71482 

0.68651 

0.49589 
 

0.85493 

0.34221 
0.24719 

 

0.66706 
0.26703 

0.19288 

a Mode for plate is (m, n) = (2, 1). 

 

The next comparison is performed for simply supported FGM plates 

subjected to various loading conditions. The plate is made from a mixture of 

aluminum (Al) and alumina (Al2O3). The critical buckling loads of simply 

supported plate for different values of aspect ratio a/b, and power law index k are 

shown in Table 1. As table shows, the present results have a good agreement with 

Refs. [8,9]. 

3.2. Buckling analysis of FGM plates 

The variation of the nondimensional critical buckling load crN  of square 

plate versus the variation of the modulus ratio Em/Ec of FGM (i.e., different 

ceramic-metal mixtures) and dimensional parameter a/h have been plotted for 

various loading conditions in Fig. 1 through Fig. 6. In each figure, four arbitrary 

values of the power law index (k = 0; 1; 5; 10) are considered. As explained 

earlier, the variation of the composition of ceramics and metal is linear for k = 1. 

The value of k equal to zero represents a homogeneous (fully ceramic) plate.  

Figs. 1, 3, and 5  show that nondimensional critical buckling load 

increases by increasing modulus ratio Em/Ec of FGM and decreases by increasing 

power law index (k) from zero to 10. Figs. 2, 4, and 6 show that nondimensional 

critical buckling load increases with increasing dimension ratio a/h and also with 

decreasing power law index (k) from 10  to zero. It can be concluded from all the 

figures that, nondimensional critical buckling load for homogeneous plate (k = 0) 

is considerably greater than the values for nonhomogeneous functionally graded 

plates (k > 0) especially for thin plates.  
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Fig.1. Critical buckling load of the FGM under biaxial compression versus  Ec/Em 
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Fig.2. Critical buckling load of the FGM under biaxial compression versus a/h 

 

A comparison of Figs. 1 and 2 with Figs. 3 and 4 shows that the 

nondimensional critical buckling load for the plate subjected to uniaxial 

compression (1=-1, 2=0), is greater than the corresponding values for the plate 

under biaxial compression (1=-1, 2=-1). The calculated values for (1=-1, 2=0) 

are twice those for (1=-1, 2=-1) for the square plate b/a= 1 but the difference 

decreases by increasing aspect ratio (a/h) and modulus ratio (Em/Ec). Also, a 

comparison of Figs. 3 and 4 with Figs. 5 and 6 shows that the nondimensional 

critical buckling load for the plate subjected to compression along x-direction and 

tension along y-direction (1=-1, 2=1) , is greater than the corresponding values 

for the plate under uniaxial compression (1=-1, 2=0). Obtained values for (1=-
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1, 2=1) are approximately twice those for (1=-1, 2=0) for the square plate 

(b/a= 1) but the difference decreases by increasing aspect ratio (a/h) and modulus 

ratio (Em/Ec). For the square plate under in-plane combined tension and 

compression ((1=-1, 2=1); b/a = 1), the plate buckles when m  = 1 and n = 2. In 

all other cases, buckling occurs for m = n= 1. 

0 5 10 15 20

0

10

20

30

40

50

60

70

Uniaxial compression

a/b=1

 k=0

 k=1

 k=5

 k=10

N
o

n
d

im
e

n
s
io

n
a

l 
c
ri

ti
c
a

l 
b

u
c
k
lin

g
 l
o

a
d

E
c
/E

m

 
Fig.3. Critical buckling load of the FGM under uniaxial compression Nx versus  Ec/Em 
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Fig.4. Critical buckling load of the FGM under uniaxial compression Nx versus a/h. 
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Fig.5. Critical buckling load of the FGM under combined compression Nx and tension Ny versus  

Ec/Em. 
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Fig.6. Critical buckling load of the FGM under combined compression Px and tension Py versus 

a/h. 

 

 The nondimensional critical buckling loads have been show in Figures 3–6 

for simply supported plates subjected to uniaxial compression, and biaxial 

compression and tension, respectively. Fig. 3 shows the variation of 

nondimensional critical buckling load of square plate versus the modulus ratio 

Ec/Em of FGM (i.e., different ceramic-metal mixtures) for different values of power 

law index. The thickness ratio a/h is assumed to be 10. It can be seen that the 

nondimensional critical buckling load increases as the ceramic-to-metal modulus 

ratio increases and decreases as the power law index increases. 
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 Fig. 4 shows the nondimensional critical buckling load vs the thickness to 

span ratio a/h for different values of volume fraction exponent k (a/b= 1). It is seen 

that the nondimensional critical buckling load increases monotonically as the 

relative thickness a/h increases. 

 The modulus ratio Ec/Em of FGM on nondimensional critical buckling load 

of simply supported plate under combined compression and tension is shown in 

Fig. 5. The thickness ratio a/h is assumed to be 10. It is shown that the 

nondimensional critical buckling load generally increases by the increase of the 

modulus ratio Ec/Em.  

 Fig. 6 shows the variation trend of nondimensional critical buckling with 

respect to the thickness to span ratio a/h for different values of material gradient 

index k. The aspect ratio of the plate is set as a/b=1. It is observed that with 

increasing the thickness to span ratio a/h from 5 to 50, the nondimensional critical 

buckling also increases steadily, whatever the material gradient index k is. 

 

4. Conclusions 

 In the present paper, mechanical buckling analysis of simply supported 

FGM plates has been analyzed using a new four-variable refined plate theory. 

Derivation was based on the new four variable refined shear deformation theory 

and with the assumption of power law composition for the material. Equilibrium 

and stability equations for rectangular simply supported functionally graded plates 

have been obtained. The buckling analysis of FGM plates under different types of 

mechanical loadings is presented. Closed-form solutions for the critical buckling 

of plates are presented. It is concluded that: 

1. It is a displacement-based theory that includes the transverse shear effects. 

2. Unlike any other theory, the number of unknown functions involved is 

only four, as against five in case of other shear deformation theories.  

3. The theory takes account of transverse shear effects and parabolic 

distribution of the transverse shear strains through the thickness of the 

plate, hence it is unnecessary to use shear correction factors.  

4. The critical buckling load for the functionally graded plates is reduced 

when the power law index k increases.  

5. The critical buckling load for the functionally graded plates increases with 

increasing dimension ratio b/a. 

6. The critical buckling load for the functionally graded plates decreases with 

increasing modulus ratio Ec/Em. 

7. The critical buckling load for the plates under uniaxial compression is 

greater than the plates under biaxial compression. 
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8. The critical buckling load for the plates under combined compression and 

tension is greater than for plates under uniaxial and biaxial compression. 

This conclusion confirms that the addition of a tensile load in the 

transverse direction is seen to have a stabilizing influence. 

 

In conclusion, it can be said that the proposed theory is accurate and simple in 

solving the buckling behaviors of thick functionally graded plates. 
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