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TRACEABILITY METHOD OF ACTIVE AND PASSIVE
FUSION FOR POLLUTANT EMISSIONS IN WATERSHEDS

Xiaoyu HUANG!, Yudong HUANG?, Wanting HU?, Lifang HU*, Ruohua LI?,
Xiaoxiao LIU®, Tao DING’

To swiftly and accurately trace water pollution incidents, a hybrid tracing
method combining active and passive approaches is proposed. Active tracing
algorithms serve as the primary pollutant source tracking strategy, complemented by
passive tracing algorithms for adjusting search parameters. Validation through
pollution tracing simulations confirms the feasibility and robustness of the fused
active-passive tracing method. Additionally, a mobile water pollution tracing
platform and a ground management platform were designed and developed,
incorporating the proposed tracing algorithm. These platforms enable real-time
water quality monitoring and pollutant source tracking, improving overall response

efficiency.
Keywords: Water pollution tracing, Active and passive fusion, Simulation
experiment, Mobile traceability platform

1. Introduction

Water resources play an indispensable role in human society and are crucial
for economic development [1]. However, frequent sudden water pollution incidents
in China exacerbate water scarcity, characterized by high frequency, severe
destructiveness, diverse forms, rapid spread, and long-lasting environmental
impacts [2]. The inability to promptly identify pollutant sources, often due to
human-induced illegal discharges, has resulted in environmental regulatory
agencies witnessing the gradual spread of pollution across watersheds. Therefore,
swiftly and accurately locating pollutant sources during sudden water pollution
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incidents is the primary focus of this study. Water pollution tracing methods fall
into two main categories: passive tracing algorithms and active tracing algorithms
[3]. Passive tracing involves retroactively deducing pollutant sources based on
water quality data from monitoring stations, providing information on source
location, emission intensity, and leakage time. Different types of passive tracing
algorithms include analytical methods [4-5], regularization techniques [6-7],
intelligent optimization algorithms [8-9], and probabilistic approaches [10].

Active tracing algorithms primarily utilize mobile devices equipped with
corresponding sensors to conduct active searches within polluted river zones
according to predefined rules until emission sources are located. Currently,
proposed active tracing algorithms include machine vision-assisted methods [11],
biomimetic olfaction methods [12-13], and information-oriented approaches [14].
Russell [15] developed a mobile platform equipped with concentration and obstacle
avoidance sensors. They analyzed the strengths and weaknesses of four active
tracing algorithms: Escherichia coli algorithm [16], moth algorithm [17], cockroach
algorithm [18], and concentration gradient algorithm—by comparing their
performance in controlling the mobile platform during the tracing process. Both
passive and active tracing algorithms have certain limitations. For passive tracing
algorithms, limitations in source inversion include the uneven distribution of
monitoring stations, which hinders effective water pollution tracing, and an over-
reliance on the accuracy of pollution diffusion models, even though real-world
water pollution environments are often complex and variable. Active tracing
algorithms face challenges such as: in the early stages of tracing, when downstream
pollutant concentrations are too low, sensors on the mobile platform may fail to
detect significant differences in pollutant concentrations, hindering effective active
tracing; additionally, the mobile platform can easily become trapped in local optima
due to overly small search step sizes. Therefore, this paper integrates the global
search capability of passive tracing algorithms with the local search capability of
active tracing algorithms, fully leveraging water quality information from both
fixed and mobile monitoring stations. A hybrid tracing method is proposed, and a
water pollution traceability platform is designed to include functionalities such as
water quality monitoring, pollutant source tracking, and remote viewing of water
quality information. This platform aims to provide references and assistance to
relevant authorities in pollution source tracking efforts.

2. Research on hybrid tracing method of river pollution sources

2.1. Design concept of active and passive fusion method

The design concept of the hybrid tracing method is illustrated in Fig.1.
Initially, an unmanned boat utilizes monitoring information from fixed monitoring
stations. It employs passive tracing algorithms to infer and estimate the approximate
location of the pollutant source, providing movement directional and step lengths
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for pollutant source tracking until entering areas of high pollution. During the
tracing phase in high-pollution areas, the unmanned boat switches to active tracing
algorithms for pollutant source tracking.

Fixed detection station

detected abnormal data

Invoke the passive traceability algorithm —

.

Mehbile platform performs pollution source tracking

Determine whether to enter the
high concentration area

—» Invoke the active traceability algorithm

Whether to fall into local optimal ¥
or out of the pollution zone

Source identification

Fig.1. Flow chart of active and passive fusion method

If situations arise where the boat becomes trapped in local optima or
deviates from the pollution zone, it utilizes information obtained from passive
tracing algorithms to infer and estimate the pollutant source location, thereby
providing movement directional and step lengths for active tracing, aiming to
escape local optima or return to the pollution zone.

2.2. Construction of active and passive fusion method

2.2.1 Passive tracing algorithm module

The passive tracing algorithm module in this study employs a genetic
algorithm. Genetic algorithms simulate natural selection and genetic mechanisms
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in optimization search. By simulating processes such as genetic inheritance,
crossover, and mutation, they evolve from an initial set of solutions to progressively
form better sets of solutions, addressing various optimization and search problems.
Using a genetic algorithm for inverse estimation of water pollution sources provides
the most realistic pollutant source location, emission intensity, and emission time.
The steps are as follows:(1) Determination of Genetic Algorithm Parameters.(2)
Determination of Pollution Source Parameters range.(3) Generation of Initial
Population.(4) Construction of the Fitness Function.(5) Implementation of Genetic
Algorithm.(6) Iterative Optimization.

2.2.2 Active tracing algorithm module

The active source tracking algorithm module in this paper adopts the Beetle
Antennae Search Algorithm (BAS)!'’!. The core idea of the BAS is to mimic a
beetle's perception of the environment using its two antennae and adjust its
movement direction based on differences in environmental information, ultimately
leading it to locate food sources. The steps of the pollution source tracking method
based on the BAS Algorithm are as follows:

Step 1: The parameters of the Beetle Antennae are initialized.

Step 2: The unmanned boat undergoes a random rotation by any angle.

Step 3: The unmanned boat is moved towards the side with higher pollutant
concentration.

2.2.3 Active tracing algorithm module

Combining the passive traceback algorithm module based on the genetic
algorithm with the active traceback algorithm module based on the beetle antenna
search algorithm, detailed steps for the integration of active and passive traceback
methods are proposed under the global search strategy, information interaction
strategy, and local search strategy.

(1) Integration Strategy

To address the issue of unmanned boats blindly tracing pollution sources
upstream in the initial stage, fixed monitoring stations deployed along the river are
utilized. These stations provide water quality information to invoke the passive
traceback algorithm module, inferring approximate pollution source locations. This
information serves as a global search strategy to guide the movement direction and
step size for the active traceback module until the unmanned boat enters a low
pollution concentration area. To overcome the problem of the unmanned boat
becoming trapped in a local optimum or deviating from the pollution plume, the
passive traceback algorithm module is re-invoked to provide movement direction
and step size for the active traceback module, facilitating escape from local optima
and return to the pollution plume.

During the traceback stage in low-pollution areas, the unmanned boat
utilizes the pollution source location information obtained from the passive
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traceback module to guide movement direction and step size for pollution source
tracking. Upon reaching a new position, monitoring information is fed back to the
passive traceback module. This continual exchange of information between active
and passive traceback allows for ongoing pollution source tracking.

During the traceback stage in high-pollution areas, the unmanned boat
employs the active traceback algorithm module based on differences in
concentration detected by sensors on both sides. It utilizes a local search strategy to
track pollution sources.

(2) Detailed Steps of the Integrated Tracing Method

Based on the Genetic Algorithm and the BAS algorithm, the detailed steps of
the integrated traceback method are as follows:

Step 1: When the fixed monitoring station detects abnormal concentrations of
the target pollutant, the traceback program of the unmanned boat is activated. The
unmanned boat is equipped with symmetric sensors for the target pollutant on both
sides, positioned at a distance L from the boat's center (X, Y).

Step 2: Record the changes in concentration of the target pollutant detected by
the fixed monitoring station. Invoke the genetic algorithm to infer the position of
the pollution source, and the unmanned boat moves toward this position by a step
length.

Step 3: Check if the sensors on both sides of the unmanned boat detect a
change in the concentration of the target pollutant. If an abnormal concentration is
detected, proceed to Step 4; otherwise, return to Step 2.

Step 4: Utilizing the position information and detected concentration of the
target pollutant from both the monitoring station and the unmanned boat, invoke
the genetic algorithm to infer a new pollution source position. The unmanned boat
is moved toward this position by a step length.

Step 5: Check if the difference in pollutant concentration detected by the
sensors on both sides of the unmanned boat is greater than a threshold value. If the
concentration difference exceeds the threshold, proceed to Step 6; otherwise, return
to Step 4.

Step 6: Based on the concentration of the target pollutant detected by the
sensors on both sides, invoke the BAS algorithm to output the coordinates of the
next position for the mobile platform and move towards it.

Step 7: If the unmanned boat repeatedly hovers around a position, it is
considered trapped in a local optimum. Return to Step 4; otherwise, proceed to Step
8.

Step 8: Check if the unmanned boat has deviated from the pollution plume. If
so, return to Step 4; otherwise, proceed to Step 9.

Step 9: Check if the concentration of the target pollutant measured by the
sensors on the unmanned boat exceeds a threshold value. If it does, the pollutant
source is considered found. If not, proceed to Step 10.
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Step 10: Check if the maximum iteration count has been reached. If so, it is
determined that the pollutant source cannot be found; otherwise, return to Step 7.

In Steps 2 and 4 mentioned above, invoking the genetic algorithm to infer the
pollution source location involves a calculation process similar to the step of the
passive traceback algorithm module based on the genetic algorithm mentioned. The
optimization objective function is modified to:
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In the equations: C;; represents theoretical monitoring data; C'!  represents
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represents actual data

detected by the unmanned boat; 7" denotes the total monitoring time; and 7 is the
number of observation points. The step length mentioned in the above steps 2 and
4 is determined by the formula:
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20
The procedure mentioned in step 6, where the BA search algorithm is
invoked to obtain the next position coordinates of the mobile platform, follows the
same steps as outlined in the previous section on the active traceback algorithm
based on the BA search algorithm.

3. Simulation environment setup and experimental design

To construct a simulated concentration field that better reflects real river
conditions, a segment of a meandering river is selected as the computational
domain. Python is used to create a simulation environment for the continuous
discharge of sewage from a single-point source based on a two-dimensional
diffusion model. Simulations and analyses are then performed on the pollution
source tracking and positioning methods, utilizing both the BA search algorithm
and the integrated active-passive fusion tracing method within this concentration
field. The pollution source is located at (0, 0), and the initial position of the mobile
platform is (400, 40). To further compare the anti-interference capabilities of these
two algorithms, a concentration interference point is introduced at position (100,
25) in the pollution diffusion concentration field, creating a local concentration
peak. Simulations and analyses are conducted on the pollution source tracking and
localization methods based on the BAS algorithm and the integrated active-passive
fusion tracing method under this interference concentration field. The trajectory of
the mobile platform is illustrated in Fig.2.
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Fig.2. Traceability trajectories of pollution sources using different methods in interference
concentration fields

From the trajectories of the two pollutant tracking methods shown in Fig. 2,
it is clear that the pollutant tracking and localization method based on the BAS
algorithm gets stuck at a local interference point during the tracking process, which
leads to tracking failure. In contrast, during the traceability process of the active
and passive fusion method (from 400m to 200m), a genetic algorithm is employed.
The algorithm dynamically adjusts the estimated pollutant source location in
response to concentration variations detected by the monitoring stations, resulting
in significant fluctuations in the unmanned boat's trajectory due to the relatively
large search step size. At 200m, the method transitions to the BAS algorithm. When
the active and passive fusion method encounters a local interference point, it calls
the passive tracking algorithm to modify the search step length and direction,
allowing it to escape the local optimum. This results in stronger resistance to
interference, making the method more effective at solving tracking problems in
complex water pollution environments.

To further analyze the advantages of the intelligent step adjustment method
proposed in this paper over the approach of using a fixed scaling factor for step
adjustment, success rate, and average iteration count are employed as evaluation
metrics. River flow velocity and pollutant emission intensity are selected as
experimental variables. The BAS Algorithm, the Improved BAS Algorithm with
fixed scaling factor adjustment, and the integrated active-passive fusion tracing
method are subjected to tracing simulations under various conditions. The
Improved BAS Algorithm utilizes a fixed scaling factor to adjust the search step.
Tracing is deemed successful if the search reaches within a radius of 15m from the
pollution source. Nine sets of experiments are designed under different operating
conditions, with pollutant emission intensities of 200g/s, 150g/s, and 100g/s, and
river flow velocities of 0.5m/s, 1.0m/s, and 1.5m/s, respectively. Each tracing
algorithm is executed 100 times under each condition, and the results are presented
in Figs. 3, 4, and 5.

Comparing Figs. 3, 4, and 5, it is evident that under different discharge
intensities and flow velocities, the main-passive fusion tracing method can achieve
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a success rate of over 80%, with significantly fewer average iterations compared to
other search algorithms, all within fewer than 100 iterations.
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Fig.3. Simulation results of The BAS Algorithm under different conditions.
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Fig.5. Simulation results of the passive-active fusion tracing method under different conditions
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When changes occur in pollutant discharge intensity and river flow velocity,
noticeable fluctuations are observed in the performance of the BAS Algorithm and
its improved version. In contrast, the success rate of the main-passive fusion tracing
method remains largely unchanged, still exceeding 80%, with no significant
variation in the average iteration count, which remains around 80. This indicates
that variations in pollutant discharge intensity and river flow velocity have little
impact on the success rate and iteration count of the main-passive fusion tracing
method. In comparison to the BAS algorithm and its improved version, it
demonstrates greater robustness.

4. Design and implementation of water pollution traceability platform

4.1. Design and implementation of the mobile traceability platform
This study introduces a mobile tracing platform based on an unmanned boat.
The hardware relationships of the mobile tracing platform are depicted in Fig.6.

Mobile traceability platform
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Fig.6. Relationship diagram of various modules on the mobile traceability platform

Raspberry Pi serves as the onboard computer of the mobile traceability
platform. It uses the PCF8591 module to convert analog data obtained from water
quality sensors into digital for data retrieval. The data is transmitted to the water
quality parameter monitoring platform via the LoRa module. Simultaneously,
Raspberry Pi invokes the tracing program to issue motion commands to the
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Pixhawk controller based on water quality data obtained from both the fixed
monitoring platform and onboard water quality sensors, thereby achieving pollution
source tracing. The Pixhawk controller, through a data transmission module, sends
navigation trajectories and data to the Mission Planner ground station. This ground
station enables the Pixhawk controller to receive instructions for tasks such as
fixed-point cruising and return voyages.

Additionally, manual control of the Pixhawk controller is facilitated through
a handheld remote controller, allowing for alterations in the mobile tracing
platform's direction and speed. The core components of the mobile traceability
platform are illustrated in Fig. 7(a): 1. Hull; 2. GPS; 3. Buzzer; 4. Receiver; 5.
Motor; 6. Propeller; 7. Power bank; 8. Raspberry Pi; 9. Battery; 10. Data
transmission module; 11. ESC (Electronic Speed Controller); 12. Pixhawk. The
appearance picture of the mobile tracing platform is presented in Fig. 7(b).

(a) 3D model (b) appearance picture

Fig.7. Installation layout diagram of various modules on the mobile traceability platform

4.2. Ground management platform design and implementation

4.2.1 Design of water quality parameter monitoring platform based on Qt

The upper computer software needs to record data such as water quality
parameters and time from the mobile traceability platform. In this study, MySQL is
chosen for data storage. QPushButton (button) controls are used to send
corresponding instructions, which are parsed and executed upon reception. These
instructions include opening the serial port, starting, viewing, saving, and clearing
the water quality monitoring data from the mobile traceability platform. The stored
water quality parameters are processed in the background and plotted as line graphs,
allowing for more intuitive observation of water quality changes.

4.2.2 Debugging of navigation interface based on Mission Planner

Mission Planner is an open-source ground station software used for
configuring, controlling, and monitoring Ardupilot unmanned aerial vehicle flight
control systems on the Windows platform. It provides an intuitive interface that
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allows navigation commands to be issued to the unmanned boat thought the ground
station, while real-time navigation data and trajectories can be obtained.

4. Conclusions

This paper proposes a fused passive and active tracing method and designs

a water pollution traceability platform based on a mobile traceability unit and a

ground management platform, utilizing the advantages of unmanned boats such as

efficiency, flexibility, and speed to enhance the success rate of pollution source
tracing by personnel. The main research achievements of this paper include:

(1) To address the inefficiency of single-tracing algorithms in water pollution
tracing, a fused passive and active tracing method for basin pollution is
proposed. The active tracing algorithm serves as the pollution source tracing
strategy, combined with passive tracing to adjust the search step, avoiding
failures due to limited diffusion model accuracy and issues like getting trapped
in local solutions or deviating from pollution belts. A two-dimensional curved
river concentration field is simulated using Python, validating the feasibility of
this method.

(2) Multiple concentration simulation scenarios are generated by altering river flow
velocity and emission intensity to conduct tracing simulation experiments with
different algorithms. Success rate and average iteration count are used as
evaluation metrics to comprehensively compare the performance of three
algorithms, Improved the BAS algorithm, and fused passive and active tracing
method. The results indicate that the improved the BAS algorithm outperforms
the BAS algorithm in algorithm performance but is susceptible to factors such
as flow velocity and emission intensity. On the other hand, the fused passive and
active tracing method not only exhibits excellent tracing capability but also
shows less sensitivity to factors such as river flow velocity and emission
intensity, demonstrating good robustness.

(3) A water pollution mobile tracing platform is designed and developed. When
combined with corresponding tracing algorithms, this platform enables water
quality monitoring and pollution source tracing. Additionally, a ground
management platform is developed, enabling real-time monitoring of both water
quality data and navigation data from the mobile tracing platform.
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