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A COMPACT FINITE DIFFERENCE SCHEME FOR SPACE-TIME

FRACTIONAL DIFFUSION EQUATIONS WITH TIME

DISTRIBUTED-ORDER DERIVATIVE

Qinghua Feng1

In this paper, we present a compact finite difference scheme for the Dirich-

let problem of a class of space-time fractional diffusion equations with time distributed-

order derivative, where the time fractional derivative is defined in the sense of Caputo

derivative, and the space fractional derivative is defined by the Riesz derivative. The

term involving time distributed-order derivative is discretized by use of the compound

Simpson formula, and the Caputo fractional derivative is approximated by the Lagrange

interpolation formula, while the Riesz space fractional derivative is approximated by the

compact fractional center difference formula. The proposed difference scheme is proved

to be uniquely solvable, unconditionally stable and convergent with accuracy of fourth

order in both space and time directions. Numerical experiments for supporting the the-

oretical analysis are given.

Keywords: space-time fractional diffusion equation; time distributed-order derivative;
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1. Introduction

Fractional derivatives have been proved to be very useful in describing the memory

and hereditary properties of materials and processes, and fractional differential equations

are widely used various domains including physics, biology, engineering, signal processing,

systems identification, control theory, finance, fractional dynamics and so on [1-5]. One of

the most important applications for fractional differential equations is to model the pro-

cess of subdiffusion and superdiffusion of particles in physics, where the fractional diffusion

equations are extensively used [6-8].

Due to the complexity of fractional calculus, it is difficult to obtain exact solutions

for fractional differential equations. So it becomes important to develop effective numer-

ical methods for seeking numerical solutions for fractional differential equations. Among

the numerical methods existing in the literature, the finite difference method is the most

popular one, which has been used by many authors to construct efficient difference schemes

for a variety of fractional differential equations. Also there have been many effective finite

difference schemes for solving fractional diffusion equations. For example, in [9-12], finite

difference schemes were established for time fractional subdiffusion equations and diffusion-

wave equations, where the time fractional derivative is defined in the sense of the Caputo

derivative, and was approximated mainly by use of the Lagrange interpolation formulas

(L1 or L2). In [13-18], the authors developed various finite difference schemes for space
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fractional diffusion equations, while in [19, 20], difference schemes for space-time fractional

equations were investigated. Recently, there have also been some papers investigating dif-

ference methods for distributed-order fractional differential equations. In [21], Ye et al.

derived a second order compact difference scheme to approximate a distributed-order time-

fractional diffusion-wave equation, while in [22], Morgado and Rebelo presented an implicit

scheme for the distributed order time-fractional reaction-diffusion equation with a nonlinear

source term. In [23, 24], Gao and Sun developed alternating direction implicit difference

schemes for the two-dimensional diffusion and wave equations with fractional derivatives in

time. In [25], Ye et al. researched a class of space-time fractional diffusion equations with

time distributed-order, and proposed a second order difference scheme to approximate both

time and space fractional derivatives.

In this paper, we investigate difference schemes for space-time fractional diffusion

equations with time distributed-order derivative, and the following problem will be consid-

ered: 
D

ω(α)
t u(x, t) = p(x)

∂βu(x, t)

∂|x|β
+ f(x, t), x ∈ [a, b], t ∈ [0, T ],

u(x, 0) = φ(x), x ∈ [a, b],

u(a, t) = u(b, t) = 0,

(1)

where α ∈ (0, 1), β ∈ (1, 2), u is smooth enough, p is continuous with p(x) ≥ L > 0

for x ∈ (a, b),
∂βu(x, t)

∂|x|β
denotes the Riesz fractional derivative, D

ω(α)
t u(x, t) denotes the

time-fractional derivative of distributed order defined by
D

ω(α)
t u(x, t) =

∫ 1

0
ω(α)C0 D

α
t u(x, t)dα,

C
0 D

α
t u(x, t) =

1
Γ(1− α)

∫ t

0

u′
t(x, s)

(t− s)α
ds,

ω(α) ≥ 0,
∫ 1

0
ω(α)dα = K > 0,

(2)

where ω is smooth enough.

The fractional diffusion equation with time distributed-order is useful for modeling

a mixture of delay sources [26]. The Riesz fractional derivative can be used for describing

anomalous diffusion [27]. In general, the most popular methods available for approximating

the Riesz fractional derivative in the case 0 < α < 2, α ̸= 1, are the Grunwald-Letnikov

and the fractional center difference approximation methods. In [28], Shen et al. established

implicit and explicit finite difference methods with Grünwald-Letnikov derivative approxi-

mation to a linear Riesz fractional diffusion equation, and proved that the explicit method is

conditionally stable, while the implicit method is unconditionally stable. In [29], the authors

investigated a discrete random walk model based on an explicit finite-difference approxima-

tion for the Riesz fractional advection-dispersion equation, and presented explicit and im-

plicit difference schemes using Grünwald-Letnikov derivative approximation. In [30], Yang

et al. presented the standard and shifted Grünwald-Letnikov derivative approximations, the

method of lines, the matrix transform method, the Lagrange approximation method and

a spectral representation method for a Riesz fractional advection-dispersion equation on a

finite domain, while in [31], Zhang et al. established an implicit finite difference method for

a non-linear Riesz fractional diffusion equation with Grünwald-Letnikov derivative approxi-

mation. In [32], Çelik et al. used the fractional centered difference to approximate the Riesz

fractional derivative, and established a second order accuracy Crank-Nicolson method for

the fractional diffusion equation with the Riesz fractional derivative.

We organize the rest of this paper as follows. In Section 2, we present some notations

and preliminaries. Then in Section 3, we develop a compact finite difference scheme for
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the problem (1). First, the spatial fractional derivative will be approximated by a compact

scheme of fourth order accuracy. Second, the integral term in the time distributed-order

derivative denoted by the first equation of (2) will be approximated by the compound Simp-

son formula, which is also of fourth order accuracy, and after this approximation, the time

distributed-order derivative can be decomposed to multi-term time fractional derivatives.

Third, each time fractional derivative will be approximated by the Lagrange interpolation

formula. In Section 4, Theoretical analysis including unique solvability, stability and conver-

gence for the present finite difference scheme are fulfilled. In Section 5, numerical examples

are given for testing the present finite difference scheme. Finally, in Section 6, some con-

cluding comments are proposed.

2. Preliminaries

Let J, M, N be positive integers, and ∆α = 1
2J , h = b− a

M , τ = T
N . Define

αl = l∆α(0 ≤ l ≤ 2J), xi = a+ i ∗ h(0 ≤ i ≤ M), tn = nτ(0 ≤ n ≤ N), Ωh = {xi|0 ≤ i ≤
M}, Ωτ = {tn|0 ≤ n ≤ N}, (i, n) = (xi, tn), and then the domain [a, b]× [0, T ] is covered by

Ωh ×Ωτ . By Un
i = u(xi, tn) and un

i we denote the exact solution and numerical solution at

the point (i, n) respectively. Denote Un = (Un
1 , U

n
2 , ..., U

n
M−1)

T , un = (un
1 , u

n
2 , ..., u

n
M−1)

T .

Define the grid functions spaces Vh = {u|u = (u1, u2, ...uM−1)
T } and V 0

h = {u|u ∈

Vh, u0 = uM = 0. For u, v ∈ V 0
h , define inner product as (u, v) = h

M−1∑
i=1

uivi, and

corresponding discrete L2 norm by ∥u∥ =
√
(u, u) = (

M−1∑
i=1

h|ui|2)
1
2 .

For further use, denote

δxu
n
i− 1

2

=
un
i − un

i−1

h
, δ2xu

n
i =

un
i+1 − 2un

i + un
i−1

h2 .

Definition 1. For n − 1 ≤ β < n, n ∈ N, the left-side Riemann-Liouville derivative, the

right-side Riemann-Liouville derivative, and the Riesz derivative of order β for the function

u(x, t) are defined by
−∞Dβ

xu(x, t) =
dn

dxn (
1

Γ(n− β)

∫ x

−∞(x− σ)n−1−βu(σ, t)dσ),

xD
β
∞u(x, t) = (−1)n dn

dxn (
1

Γ(n− β)

∫∞
x

(σ − x)n−1−βu(σ, t)dσ),

∂βu(x, t)

∂|x|β
= − 1

2 cos(βπ/2)
(−∞Dβ

xu(x, t)) +x Dβ
∞u(x, t))

(3)

respectively, where in the definition of the Riesz derivative it satisfies that β ̸= 2k + 1, k =

0, 1, ....

Remark 1. Considering the homogeneous boundary value conditions in the problem (1),

we can extend the spatial definition of the function u to the whole R, and then it holds that
−∞Dβ

xu(x, t) =a Dβ
xu(x, t)),

xD
β
∞u(x, t) =x Dβ

b u(x, t),

∂βu(x, t)

∂|x|β
= − 1

2 cos(βπ/2)
(aD

β
xu(x, t)) +x Dβ

b u(x, t)).

(4)

Lemma 1 (The compound Simpson formula). Suppose f(α) ∈ C4[0, 1]. Then it holds

that ∫ 1

0
f(α)dα = ∆α

2J∑
l=0

dlf(αl)−
(∆α)4

180 f (4)(η), η ∈ (0, 1), (5)

where



82 Qinghua Feng

dl =


1
3 , l = 0, 2J,
2
3 , k = 2, 4, ..., 2J − 4, 2J − 2,
4
3 , k = 1, 3, ..., 2J − 3, 2J − 1.

Lemma 2 [9, Lemma 2.1](The Lagrange interpolation formula). Suppose 0 < α < 1,

and u(t) ∈ C2[0, tn]. Then it holds that

|C0 Dα
t u(t)− τ−α

Γ(2− α)
[a

(α)
0 u(tn)−

n−1∑
k=1

(a
(α)
n−k−1 − a

(α)
n−k)u(tk)− a

(α)
n−1u(t0)]|

≤ 1
Γ(2− α)

[1− α
12 + 22−α

2− α − (1 + 2−α)] max
t0≤t≤tn

|u′′
(t)|τ2−α, (6)

where a
(α)
k = (k+1)1−α − k1−α, k ≥ 0, and satisfies (1−α)(k+1)−α < a

(α)
k < (1−α)k−α.

Remark 2. Note that Lemma 2 also holds for α = 0 under the same conditions and

for α = 1 if the coefficients are modified by a10 = 1, a1k = 0, k = 1, 2, ...n− 1.

Lemma 3 [33, Theorem 2.4]. Let 1 < β < 2, f ∈ C7(R) and all its derivatives up to

order five belonging to L1(R). Define the fractional center difference

∆β
hf(x) =

∞∑
k=−∞

g
(β)
k f(x− kh),

where g
(β)
k =

(−1)kΓ(β + 1)

Γ(
β

2
− k + 1)Γ(

β

2
+ k + 1)

. Then

− 1
hβ∆

β
hf(x) =

β
24

∂βf(x− h)

∂|x|β
+ (1− β

12)
∂βf(x)

∂|x|β
+

β
24

∂βf(x+ h)

∂|x|β
+O(h4).(7)

Furthermore, the coefficients g
(β)
k satisfy the following properties:

g
(β)
0 =

Γ(β + 1)

Γ(
β

2
+ 1)2

> 0, g
(β)
k =

1− 1 + β

k +
β

2

 g
(β)
k−1, k = 1, 2, ...,

g
(β)
k = g

(β)
−k , k = 1, 2, ...,

∞∑
k=−∞

g
(β)
k = 0.

3. Derivation of the compact finite difference scheme

Let the operator A be defined as Aui =
β
24ui−1 + (1 − β

12)ui +
β
24ui+1. The first

equation of (1) can be rewritten as

1
p(x)

D
ω(α)
t u(x, t) =

∂βu(x, t)

∂|x|β
+

f(x, t)
p(x)

. (8)

Applying the operator A to (8) at the point (i, n) and by use of Lemma 3 one can

deduce that

A[ 1piD
ω(α)
t Un

i ] = − 1
hβ∆

β
hU

n
i +A(

fn
i
pi ) = − 1

hβ

i∑
k=−M+i

g
(β)
k Un

i−k +A(
fn
i
pi ).(9)

On the other hand, by (2) and Lemma 1 one has

D
ω(α)
t Un

i = ω(α)C0 D
α
t U

n
i = ∆α

2J∑
l=0

dlω(αl)
C
0 D

αl
t Un

i +O(∆α)4. (10)

Furthermore, from Lemma 2 and Remark 2 one can obtain that

C
0 D

αl
t Un

i = τ−αl

Γ(2− αl)
[a

(αl)
0 Un

i −
n−1∑
k=1

(a
(αl)
n−k−1 − a

(αl)
n−k)U

k
i − a

(αl)
n−1U

0
i ] +O(τ2−αl).(11)

Combining (9)-(11) we have
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A{∆α
pi

2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)
[a

(αl)
0 Un

i −
n−1∑
k=1

(a
(αl)
n−k−1 − a

(αl)
n−k)U

k
i − a

(αl)
n−1U

0
i ]}

= − 1
hβ

i∑
k=−M+i

g
(β)
k Un

i−k +A(
fn
i
pi ) +O(τ + h4 + (∆α)4). (12)

Then the finite difference scheme for the problem (1) can be formulated as follows:



A{∆α
pi

2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)
[a

(αl)
0 un

i −
n−1∑
k=1

(a
(αl)
n−k−1 − a

(αl)
n−k)u

k
i − a

(αl)
n−1u

0
i ]}

= − 1
hβ

i∑
k=−M+i

g
(β)
k un

i−k +A(
fn
i
pi ), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

u0
i = φ(xi), 1 ≤ i ≤ M − 1,

un
0 = un

M = 0.

(13)

4. Unique solvability, stability and convergence analysis

In this section, we prove the unique solvability, stability and convergence of the finite

difference scheme (13).

Setting ũn
i =

un
i
pi , f̃

n
i =

fn
i
pi , the first equation of (13) can be rewritten

A{∆α
2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)
[a

(αl)
0 ũn

i −
n−1∑
k=1

(a
(αl)
n−k−1 − a

(αl)
n−k)ũ

k
i − a

(αl)
n−1ũ

0
i ]}

= − 1
hβ

i∑
k=−M+i

g
(β)
k pi−kũ

n
i−k+Af̃n

i . (14)

By the definition of the operator A we have Aui = (1 +
β
24h

2δ2x)ui, and for ∀u ∈ V 0
h ,

(Au, u) = (u, u) +
β
24h

2(δ2xu, u) = ∥u∥2 − β
24h

2(δxu, δxu)

= ∥u∥2 − β
24h

2∥δxu∥2.
On the other hand, by [34, Lemma 2.1.1] we have ∥δxu∥ ≤ 2

h
∥u∥. So one can obtain that

(Au, u) ≥ ∥u∥2 − β
6 ∥u∥

2. Since β ∈ (1, 2), then 2
3∥u∥

2 ≤ (Au, u) ≤ ∥u∥2. Furthermore, for

∀u, v ∈ V 0
h , we can define one discrete inner product as (u, v)A = (Au, v) = h

M−1∑
i=1

(Aui)vi,

while define the discrete norm as ∥u∥A =
√

(Au, u). As one can see from above, 2
3∥u∥

2 ≤
∥u∥2A ≤ ∥u∥2.

Lemma 4. For β ∈ (1, 2), p(x) ≥ L > 0, v ∈ V 0
h , it holds that

− h
hβ

M−1∑
i=1

[
i∑

k=−M+i

g
(β)
k pi−kvi−kvi] ≤ −cβ∗L[2(b− a)]−βh

M−1∑
i=1

v2i ,

where cβ∗ = 2
β
rβ , and rβ = e−2[

(4− β)(2− β)β
(6 + β)(4 + β)(2 + β)

][
Γ(β + 1)

Γ2(β/2 + 1)
](3 +

β
2 )

β+1.

The proof of Lemma 4 is similar to [34, Lemma 5.1.2].

Theorem 1. The finite difference scheme (13) is uniquely solvable.

Proof . We need to prove that there is only zero solution for the corresponding homo-

geneous difference equation of (13), which is formulated as follows due to (14)
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A{∆α
2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)
a
(αl)
0 ũn

i } = − 1
hβ

i∑
k=−M+i

g
(β)
k pi−kũ

n
i−k. (15)

Taking the inner product of (15) with ũn, considering a
(αl)
0 = 1, from Lemma 4 one can

deduce that

[∆α
2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)
]∥ũn∥2A ≤ 0.

Since p(x) is continuous on the compact interval [a, b], there exists a positive constant κ

such that p(x) ≤ κ for x ∈ (a, b), and furthermore, there exists one integer j satisfying

∥un∥∞ = |un
j | = |pj

un
j
pj | ≤ κ|

un
j
pj | ≤ κ∥ũn∥ ≤

√
3
2κ∥ũ

n∥A ≤ 0, which implies (15) has only

zero solution. Furthermore, the finite difference scheme (13) has unique solution. The proof

is complete.

Theorem 2. The finite difference scheme (13) is unconditionally stable with respect to

the initial datum and the right source term f .

Proof . Set µ = ∆α
2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)
. Then according to (2) and Lemma 1 one can

deduce that there exists a positive constant Kµ such that µ ≥ Kµ.

Taking the inner product of the first equation of (14) with ũn, considering p(x) ≥
L > 0, by use of Lemma 4 one can deduce that

∆α
2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)
[a

(αl)
0 (Aũn, ũn)−

n−1∑
k=1

(a
(αl)
n−k−1 − a

(αl)
n−k)(Aũk, ũn)

−a
(αl)
n−1(Aũ0, ũn)] = − 1

hβ

M−1∑
i=1

i∑
k=−M+i

g
(β)
k pi−kũ

n
i−kũ

n
i + (Af̃n, ũn)

≤ −cβ∗L[2(b− a)]−βh
M−1∑
i=1

ũ2
i + (Af̃n, ũn)

= −cβ∗L[2(b− a)]−β∥ũn∥2 + (Af̃n, ũn)

≤ −cβ∗L[2(b− a)]−β∥ũn∥2 + {cβ∗L[2(b− a)]−β∥ũn∥2 + 1
4cβ∗L[2(b− a)]−β ∥Af̃n∥2}

= 1
4cβ∗L[2(b− a)]−β ∥Af̃n∥2,

that is,

µ∥ũn∥2A ≤ ∆α
2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)

[
n−1∑
k=1

(a
(αl)
n−k−1 − a

(αl)
n−k)(ũ

k, ũn)A + a
(αl)
n−1(ũ

0, ũn)A] +K1∥Af̃n∥2, (16)

where K1 = 1
4cβ∗L[2(b− a)]−β .

Now we prove the following inequality by use of the mathematical induction method

∥ũn∥2A ≤ ∥ũ0∥2A + 2K1
µ max

1≤s≤n
∥Af̃s∥2. (17)

If n = 1, from (16) one has

µ∥ũ1∥2A ≤ µ∥ũ0∥2A +K1∥Af̃1∥2,
which implies (17) holds.

Suppose (17) holds for 1, 2, ..., n − 1, then for the level n, from (16) one can deduce

that

µ∥ũn∥2A ≤ ∆α
2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)
[
n−1∑
k=1

(a
(αl)
n−k−1 − a

(αl)
n−k)(

∥ũn∥2A + ∥ũk∥2A
2 )
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+a
(αl)
n−1(

∥ũn∥2A + ∥ũ0∥2A
2 )] +K1∥Af̃n∥2,

which is followed by

µ∥ũn∥2A ≤ ∆α
2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)
[
n−1∑
k=1

(a
(αl)
n−k−1 − a

(αl)
n−k)∥ũk∥2A

+a
(αl)
n−1∥ũ0∥2A] + 2K1∥Af̃n∥2.

Then

µ∥ũn∥2A ≤ ∆α
2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)
[
n−1∑
k=1

(a
(αl)
n−k−1 − a

(αl)
n−k)(∥ũ0∥2A + 2K1

µ max
1≤s≤k

∥Af̃s∥2)

+a
(αl)
n−1∥ũ0∥2A] + 2K1∥Af̃n∥2,

and furthermore,

µ∥ũn∥2A ≤ ∆α
2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)
[
n−1∑
k=1

(a
(αl)
n−k−1 − a

(αl)
n−k) + a

(αl)
n−1]∥ũ0∥2A

+∆α

2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)
[

n−1∑
k=1

(a
(αl)
n−k−1 − a

(αl)
n−k) + a

(αl)
n−1]

2K1

µ
max
1≤s≤k

∥Af̃s∥2 + 2K1∥Af̃n∥2

= µ∥ũ0∥2A + 2K1 max
1≤s≤n−1

∥Af̃s∥2 + 2K1∥Af̃n∥2.
Moreover, we have

µ∥ũn∥2A ≤ µ∥ũ0∥2A + 2K1 max
1≤s≤n

∥Af̃s∥2.

So (17) also holds for ∀n ≥ 1 according to the mathematical induction method.

From (17) we have
2
3∥ũ

n∥2 ≤ ∥ũ0∥2 + 2K1
µ max

1≤s≤n
∥Af̃s∥2 ≤ 1

L∥u0∥2 + 2K1
Lµ max

1≤s≤n
∥Afs∥2. (18)

Furthermore, there exist K2 > 0 and an integer j ∈ [1,M − 1] such that |p(x)| ≤ K2, and

∥un∥∞ = |un
j | = |pj ũn

j | ≤ K2|ũn
j | ≤ K2∥ũn∥. (19)

Combining (18) and (19) we have

∥un∥2∞ ≤ 3K2
2

2L ∥u0∥2 + 3K1K
2
2

Lµ max
1≤s≤n

∥Afs∥2

≤ 3K2
2 (b− a)
2L ∥u0∥2∞ +

3K1K
2
2 (b− a)
Lµ max

1≤s≤n
∥Afs∥2∞

≤ 3K2
2 (b− a)
2L ∥u0∥2∞ +

3K1K
2
2 (b− a)

LKµ
max
1≤s≤n

∥Afs∥2∞. (20)

From (20) one can see that the solution un of the finite difference scheme (13) depends

continuously on the initial datum u0 and on the term f on the right, which shows that the

difference scheme (13) is unconditionally stable. The proof is complete.

For the convergence of the finite difference scheme (13), we have the following theorem.

Theorem 3. The finite difference scheme (13) is convergent with the accuracy O(τ +

h4 + (∆α)4).

Proof . Let ϵn = Un−un, n = 0, 1, ..., N denote the errors between the exact solutions and

the numerical solutions, and ϵn = (ϵn1 , ϵn2 , ϵn2 , ..., ϵ
n
M−1)

T , ϵ̃ni =
ϵni
pi . Then from (12)-(14)

one can obtain that
A{∆α

2J∑
l=0

dlω(αl)
τ−αl

Γ(2− αl)
[a

(αl)
0 ϵ̃ni −

n−1∑
k=1

(a
(αl)
n−k−1 − a

(αl)
n−k)ϵ̃

k
i − a

(αl)
n−1ϵ̃

0
i ]}

= − 1
hβ

i∑
k=−M+i

g
(β)
k pi−k ϵ̃

n
i−k +Rn(τ, h,∆α), 1 ≤ n ≤ N, 1 ≤ i ≤ M − 1,

ϵ0i = 0, 1 ≤ i ≤ M − 1,

(21)
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where Rn(τ, h,∆α) = O(τ + h4 + (∆α)4).

Similar to the proof process of Theorem 2 one can deduce that
2
3∥ϵ̃

n∥2 ≤ ∥ϵ̃0∥2 + 2K1
µ max

1≤s≤n
∥Rs(τ, h,∆α)∥2 = 2K1

µ max
1≤s≤n

∥Rs(τ, h,∆α)∥2

and

∥ϵn∥2∞ ≤ 3K1K
2
2 (b− a)
Kµ

max
1≤s≤n

∥Rs(τ, h,∆α)∥2∞, (22)

where K1, K2, Kµ are defined as in Theorem 2. Then there exist positive constants

C1, C2, C3 such that

∥ϵn∥∞ ≤ C1τ + C2h
4 + C3(∆α)4.

The proof is complete.

5. Numerical experiments

In this section, we carry out numerical experiments for testing the efficiency of the

finite difference scheme (13).

Example 1. Consider the problem (1) with the following conditions

a = 0, b = 1,

ω(α) = Γ(3− α),

p(x) = x2 + 1,

φ(x) = x2(1− x)2,

f(x, t) =
2t(t− 1)x2(1− x)2

ln(t)
+

(x2 + 1)
2 cos(βπ/2)

4∑
n=2

[ cnn!x
−α+n

Γ(1− α+ n)
+

cnn!(1− x)−α+n

Γ(1− α+ n)
],

where c2 = c4 = 1, c3 = −2. The exact solution is u(x, t) = (t2 + 1)x2(1 − x)2 for the

problem above.

Let ∥en∥ = ∥Un−un∥ denote the absolute error in L2 norm between the exact solution

and the numerical solution. In Table 1, the numerical error results at different time steps

are shown.

Table 1: The absolute errors at τ = 0.01, h = 1
10 , ∆α = 0.05

β = 1.3 β = 1.5 β = 1.7 β = 1.8

time steps ∥e∥∞ ∥e∥∞ ∥e∥∞ ∥e∥∞
10 1.5210×10−4 2.4070×10−4 3.7246×10−4 4.5876×10−4

20 1.7650×10−4 2.7418×10−4 4.1557×10−4 5.0644×10−4

30 1.9259×10−4 2.9658×10−4 4.4586×10−4 5.4137×10−4

40 2.0823×10−4 3.1944×10−4 4.7861×10−4 5.8032×10−4

50 2.2562×10−4 3.4567×10−4 5.1728×10−4 6.2687×10−4

60 2.4564×10−4 3.7635×10−4 5.6308×10−4 6.8230×10−4

70 2.6871×10−4 4.1198×10−4 6.1659×10−4 7.4721×10−4

80 2.9506×10−4 4.5285×10−4 6.7811×10−4 8.2191×10−4

In Figs. 1-2, comparisons between the exact solutions and the numerical solutions are

demonstrated.

It follows from Table 1 that the absolute errors are stable with the increment of the

computation time steps, which coincide with the theoretical analysis results in Theorem 2.

From Figs. 1-2 one can see that the numerical solutions can approximate the exact solutions

in a prefect manner.
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Example 2. Consider the problem (1) with the following conditions

a = 0, b = 1,

ω(α) = Γ(4− α),

p(x) = sin(x) + 1,

φ(x) = x3(1− x)3,

f(x, t) =
6t2(t− 1)x3(1− x)3

ln(t)
+

(sin(x) + 1)
2 cos(βπ/2)

6∑
n=3

[ cnn!x
−α+n

Γ(1− α+ n)
+

cnn!(1− x)−α+n

Γ(1− α+ n)
],

where c3 = 1, c4 = −3, c5 = 3, c6 = −1.

The exact solution is u(x, t) = (t3 + 2)x3(1− x)3.

In Table 2, the numerical error results at different time steps are shown, while in

Figs. 3-4, the exact solutions and the numerical solutions are demonstrated respectively

under certain selected parameters.

Table 2: The absolute errors at τ = 0.01, h = 1
10 , ∆α = 0.05

β = 1.3 β = 1.5 β = 1.7 β = 1.8

time steps ∥e∥∞ ∥e∥∞ ∥e∥∞ ∥e∥∞
10 5.×10−4 1.9228×10−4 3.7246×10−4 4.5876×10−4

20 1.2317×10−4 1.9371×10−4 2.5216×10−4 3.2158×10−4

30 1.3152×10−4 1.9362×10−4 2.7956×10−4 3.4235×10−4

40 1.3789×10−4 1.9440×10−4 2.8691×10−4 3.7008×10−4

50 1.5634×10−4 1.9706×10−4 3.2354×10−4 4.2164×10−4

60 1.6107×10−4 2.0238×10−4 3.5211×10−4 4.6018×10−4

70 1.6986×10−4 2.1101×10−4 4.1026×10−4 5.1127×10−4

80 1.8206×10−4 2.2363×10−4 4.3257×10−4 5.8765×10−4

From Table 2 one can see that the numerical results are stable, and Figs. 3-4 show

that the numerical solutions can approximate the exact solutions satisfactorily.

Remark 3(Comparison with other method). In [25], the author considered the following

space-time fractional diffusion equations with time distributed-order derivative
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D
ω(α)
t u(x, t) = Kβ

∂βu(x, t)

∂|x|β
+ f(x, t)

with the same initial and boundary value conditions as in (1), where Kβ > 0 is a constant.

A finite difference scheme was proposed with the error is in fact O(τ + h2 + (∆α)2) in [25].

From the results in Tables 1-2 one can see that the orders of magnitude of the errors are

10−4, that is, h−4, while the orders of magnitude of the errors in Ref. [25] is h−2. So our

method is evidently of higher precision than that in Ref. [25].

6. Conclusions

We have developed a compact difference scheme with accuracy O(τ+h4+(∆α)4) for a

class of space-time fractional diffusion equations with time distributed-order derivative, and

proved the uniquely solvability, unconditionally stable and convergence for it. Numerical

experiments for testing the theoretical analysis results were carried out, and the numerical

results show that they are in good agreement with the theoretical analysis.
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