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A LYAPUNOV-KRASOVSKII FUNCTIONAL FOR A
COMPLEX SYSTEM OF DELAY-DIFFERENTIAL

EQUATIONS

Irina Badralexi1, Andrei Halanay2, Ileana Rodica Rădulescu3

This paper introduces a complex model that describes the competition
between the populations of healthy and leukemic cells and the influence of the
T-lymphocytes on the evolution of leukemia. The system consists of 5 delay
differential equations derived from a Mackey-Glass approach. The main
results of this work center around sufficient linear stability conditions for a
nontrivial equilibrium point. These conditions arise from the construction
of a Lyapunov-Krasovskii functional.
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1. Introduction

Leukemia is a cancer of the blood and bone marrow, characterized by
large and uncontrolled growth of white blood cells. The most studied type of
leukemia, Chronic myelogenous leukemia (CML), involves granular leukocyte
precursors, namely the myelocyte line. The trigger of CML is a chromosomal
abnormality, called the Philadelphia chromosome (denoted Ph). The product
of this chromosome is the formation of the Bcr–Abl fusion protein which is
thought to be responsible for the dysfunctional regulation of myelocyte pro-
liferation. The standard treatment of CML in recent years is Imatinib, a
molecular targeted drug ([1]) that binds with Bcr-Abl and thus removes the
proliferative advantage it provides to cancer cells ([1], [2]). Unfortunately some
cells develop resistance to imatinib, so the treatment becomes inefficient ([3]).

Nowadays, it is well known that the immune system plays a fundamental
role in tumor progression [4]. Clinical and experimental studies have docu-
mented the immune responses to leukemia. In CML, the biological literature
reveals that T cells may play an important role in stemming the expansion
of leukemic cells. The response of the immune system to leukemia is similar
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to the response to any other foreign substance that enter the body: the im-
mune system reacts first through the activation of local Antigen-Presenting
Cells (APCs). APCs (such as Dendritic cells, Macrophages, B-lymphocytes)
are specialized blood cells that help fight off foreign substances ([5]). Ma-
ture APCs do not fight the leukemic cells directly, but they trigger the naive
(CD4+ and CD8+) T cells. CD4+ T cells differentiate into T-helpers which,
among other things, help to boost the activation of the CD8+ T cells. These
differentiate into T-cytotoxic cells (CTL) which fight the leukemic cells.

In the paper [6], the authors found that leukemia-specific effectors CTLs
were able to eliminate LSCs in vitro and in vivo in a setting with minimal
leukemia load. The role of CD4+ T cells in leukemia is less clear, although in
[7] the authors ascertained that some CML patients under imatinib-induced
remission develop an anti-leukemia immune response involving both CD4+
and CD8+ T cells. Therefore, there is ample evidence that antigen-specific
immune responses toward CML are elicited. Hence, our goal in this paper is
to capture in a mathematical model the underlying dynamics of this disease
by considering the evolution of healthy and leukemic cell populations along
with one of the most important component of the cellular immune response to
CML, namely T cell response.

Although a variety of mathematical papers have applied a range of mod-
eling approaches to study tumor-immune interactions in general (see, for exam-
ple the recent review [8]), only a few described the specific leukemia-immune
interaction. Leukemia-immune models have been formulated using mostly or-
dinary differential equations (ODE) ([9], [10]) or delay differential equations
(DDE) ([11], [12], [13], [14], [15], [16], [17]). Some models that specifically
study the immune response to CML are [13], [11], [18] and [9]. In [13], Kim et
al. analyzed a high order DDE model to account for the role of anti-leukemia
specific response in CML dynamics. The authors concluded that the anti-
leukemia T cell response may help maintain remission under Imatinib therapy
and they proposed a treatment strategy involving vaccination. In [11], the au-
thors analyzed a two-dimensional DDE model for the dynamics of CML cells
and effectors T cells considering Imatinib therapy and immunotherapy. The
focus in the paper [18] is on analyzing a DDE model in order to elucidate the
transition of leukemia from the stable chronic phase to the unstable accelerated
and acute phases and in [9], Moore and Li devise an ODE model and examine
which model parameters are the most important in the success or failure of
cancer remission.

However, none of the above papers have considered competition between
healthy and leukemic cell populations, which is an important factor in CML
dynamics. In the present work, we analyze the stability properties of certain
equilibria of the CML competition model ([19]) with the immune interaction
as a first step of a complex study.
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2. The model

In this paper, we consider a mathematical model that aims to capture
the dynamics of the healthy and leukemic stem-like short-term and mature
leukocytes in CML (see [20], [21]) while taking into account the competition
for resources (between the healthy and leukemic cells) and the action of the
immune system in response to the disease. The model consists of 5 delay
differential equations (DDEs) with 5 delays. Two of the state variables are
stem-like cell populations, i.e. cell populations with self-renewal ability. These
cell populations are supposed to spend a relatively short period in the resting
phase and will be termed as short-term hematopoietic stem cells (ST-HSC).
The state variables are: x1 and x3- the healthy and leukemic ST-HSC, x2
and x4 - mature healthy and leukemic leukocytes and x5 - the concentration
of active anti-leukemia T-cells. The time evolution of the state variables is
described by the following DDEs system:

ẋ1 = −γ1hx1 − (η1h + η2h)kh(x2 + x4)x1 − (1− η1h − η2h)βh(x1 + x3)x1+

+2e−γ1hτ1(1− η1h − η2h)βh(x1τ1 + x3τ1)x1τ1+

+η1he
−γ1hτ1kh(x2τ1 + x4τ1)x1τ1

ẋ2 = −γ2hx2 + Ah(2η2h + η1h)kh(x2τ2 + x4τ2)x1τ2

ẋ3 = −γ1lx3 − (η1l + η2l)kl(x2 + x4)x3 − (1− η1l − η2l)βl(x1 + x3)x3+

+2e−γ1lτ3(1− η1l − η2l)βl(x1τ3 + x3τ3)x3τ3+

+η1le
−γ1lτ3kl(x2τ3 + x4τ3)x3τ3 − b1x3x5l1(x3 + x4)

ẋ4 = −γ2lx4 + Al(2η2l + η1l)kl(x2τ4 + x4τ4)x3τ4 − b2x4x5l1(x3 + x4)

ẋ5 = a1 − a2x5 − a3x5l2(x4) + 2n1a4x5τ5l2(x4τ5)

The healthy and leukemic cell populations are seen in competition for
resources and this is reflected in the fact that both feedback laws for self-
renewal and differentiation depend on the sum of healthy and leukemia cells.
Following [20] and [21], the rate of self-renewal is

βα(x1 + x3) = β0α
θmα1α

θmα1α + (x1 + x3)mα
, α = h, l

(h for healthy and l for leukemia) with β0α the maximal rate of self-renewal
and θ1α half of the maximal value, and the rate of differentiation is

kα(x2 + x4) = k0α
θnα2α

θnα2α + (x2 + x4)nα
, α = h, l.

where k0α is the maximal rate of differentiation and θ2α is half of the maximal
value. For more details about the competition modeling between healthy and
CML cell populations, please see [19].
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As in [22] and [19], it is assumed that a fraction η1α, α = h, l, of ST-HSC is
susceptible to asymmetric division: one daughter cell proceeds to differentiate
and the other re-enters the stem cell compartment. A fraction η2α, α = h, l, is
susceptible to differentiate symmetrically with both cells that result following
a phase of maturation and the fraction 1− η1α− η2α, α = h, l, is susceptible to
self-renewal so both cells that results after mitosis are stem-like cells (see [23],
[24]).

The immune system inhibits CML cells and leukemic cells stimulate the
immune system for a certain range of leukemic concentration, called ”optimal
load zone” (for details, see [13]). As the immune system is not stimulated
for too low or too high CML cell concentration, we choose the following feed-
back functions to model the interaction between the leukemic and the T cell
populations:

l1(x) =
1

b3 + x
, l2(x) =

x

b4 + x2

The duration of the cell cycle for healthy and leukemic ST-HSC cells, inde-
pendent of the type of division, is represented through the delays τ1 and τ3.
The time required for differentiation into mature leukocytes for healthy and,
respectively, leukemia cells is reflected through the delays τ2 and τ4 . The delay
τ5 is the time necessary for the activation of anti-leukemia T cells.

The term γ1α, α = h, l is the natural apoptosis. Aα is an amplification
factor and mα, nα control the sensitivity of respectively βα and kα to changes
in the size of stem-like and respectively mature populations.

3. Linear stability analysis

By making the right hand terms in the system equal to zero, we can
determine the following types of equilibria:

E1 = (0, 0, 0, 0, x∗5) E2 = (x∗1, x
∗
2, 0, 0, x

∗
5)

E3 = (0, 0, x̂3, x̂4, x̂5) E4 = (x̃1, x̃2, x̃3, x̃4, x̃5)

Equilibria E1 is usually associated with the death of the patient. The
second type of equilibria, E2, represents healthy states, since there are no
leukemic cells. In E3 the leukemic cells have completely replaced the healthy
cells and E4 corresponds to the chronic phase of the disease.

The first step in linear stability analysis of equilibrium points is the
study of their characteristic equation which, for delay-differential equations, is
a transcedental equation. It is known (see [25],[26], [27]) that, in order for the
equilibrium point to be stable, the roots of the characteristic equation must
all have negative real parts.

To determine the characteristic equation for an equilibrium point, we
must first linearize the system around that equilibrium point. LetA = (aij)i,j=1,5

be the matrix of the derivatives of the system with respect to x1, x2, x3, x4 and
x5 calculated in an equilibrium point. For a certain equilibrium point, we also
consider the following matrices:
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• Bτ1 = (bij)i,j=1,5 containing the derivatives with respect to
x1τ1 , x2τ1 , x3τ1 , x4τ1 , x5τ1
• Cτ2 = (cij)i,j=1,5 containing the derivatives with respect to
x1τ2 , x2τ2 , x3τ2 , x4τ2 , x5τ2
• Dτ3 = (dij)i,j=1,5 containing the derivatives with respect to
x1τ3 , x2τ3 , x3τ3 , x4τ3 , x5τ3
• Eτ5 = (eij)i,j=1,5 containing the derivatives with respect to
x1τ4 , x2τ4 , x3τ4 , x4τ4 , x5τ4
• Fτ5 = (fij)i,j=1,5 containing the derivatives with respect to
x1τ5 , x2τ5 , x3τ5 , x4τ5 , x5τ5
The characteristic equation has the general form:

det(λI5 − A−Bτ1e
−λτ1 − Cτ2e−λτ2 −Dτ3e

−λτ3 − Eτ4e−λτ4 − Fτ5e−λτ5) = 0

For equilibrium points E1 and E2 the characteristic equations decouple
nicely and can be studied through the methods presented in [28], [29] and [30].

Unfortunately, for E3 and E4 the characteristic equation does not de-
couple. Usually, in the event of multiple delays and for nontrivial equilibrium
points, the characteristic equation proves too complex for stability conditions
to be found from investigating it. The alternative is constructing a Lyapunov-
Krasovskii functional.

In what follows we are going to give sufficient conditions for linear sta-
bility using a Lyapunov-Krasovskii functional.

We perform a translation to zero and consider:

yi = xi − x̂i, i = 1, 5

We thus obtain the system:

ẏ1 = −γ1h(y1 + x̂1)− (η1h + η2h)kh[(y2 + x̂2) + (y4 + x̂4)](y1 + x̂1)−
−(1− η1h − η2h)βh[(y1 + x̂1) + (y3 + x̂3)](y1 + x̂1)+

+2e−γ1hτ1(1− η1h − η2h)βh[(y1τ1 + x̂1) + (y3τ1 + x̂3)](y1τ1 + x̂1)+

+η1he
−γ1hτ1kh[(y2τ1 + x̂2) + (y4τ1 + x̂4)](y1τ1 + x̂1)

ẏ2 = −γ2h(y2 + x̂2) + Ah(2η2h + η1h)kh[(y2τ2 + x̂2) + (y4τ2 + x̂4)](y1τ2 + x̂1)

ẏ3 = −γ1l(y3 + x̂3)− (η1l + η2l)kl[(y2 + x̂2) + (y4 + x̂4)](y3 + x̂3)−
−(1− η1l − η2l)βl[(y1 + x̂1) + (y3 + x̂3)](y3 + x̂3)+

+2e−γ1lτ3(1− η1l − η2l)βl[(y1τ3 + x̂1) + (y3τ3 + x̂3)](y3τ3 + x̂3)+

+η1le
−γ1lτ3kl[(y2τ3 + x̂2) + (y4τ3 + x̂4)](y3τ3 + x̂3)−

−b1(y3 + x̂3)(y5 + x̂5)l1((y3 + x̂3) + (y4 + x̂4))

ẏ4 = −γ2l(y4 + x̂4) + Al(2η2l + η1l)kl[(y2τ4 + x̂2) + (y4τ4 + x̂4)](y3τ4 + x̂3)−
−b2(y4 + x̂4)(y5 + x̂5)l1((y3 + x̂3) + (y4 + x̂4))

ẏ5 = a1 − a2(y5 + x̂5)− a3(y5 + x̂5)l2(y4 + x̂4) + 2n1a4(y5τ5 + x̂5)l2(y4τ5 + x̂4)
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Consider the following type of Lyapunov-Krasovskii functional:

V =
5∑
i=1

αiy
2
i +

5∑
j=1

βj

t∫
t−τj

y2j (s)ds+
∑
i 6=j

δij

t∫
t−τj

y2i (s)ds

with αi > 0, βj > 0,∀i = 1, 5, j = 1, 5 and δij > 0 for i 6= j
As we know from [31], a Lyapunov-Krasovskii functional needs to be

positively defined and
dV

dt
< 0.

dV

dt
=

5∑
i=1

2αiyiẏi +
5∑
j=1

βj
[
y2j (t)− y2j (t− τj)

]
+
∑
i 6=j

δij
[
y2i (t)− y2i (t− τj)

]

Let ẏi = gi, i = 1, 5. As we are working in the framework of stability in
the first approximation (see [31]), we have:

dV

dt
=

5∑
i=1

2αiyifi(y) +
5∑
j=1

βj
[
y2j (t)− y2j (t− τj)

]
+
∑
i 6=j

δij
[
y2i (t)− y2i (t− τj)

]

where

fi(y) =
5∑

k=1

∂gi
∂yk

(x̂)yk +
∑
k,j

∂gi
∂ykτj

(x̂)ykτj

We obtain sufficient stability conditions by forcing
dV

dt
to be negative.

The functions f1, f2, f3, f4 and f5 are :
f1(y) = {−γ1h − (η1h + η2h)kh(x∗2 + x∗4)− (1− η1h − η2h) [βh(x∗1 + x∗3)+ .

+β‘h(x∗1 + x∗3)x
∗
1

]}
y1 +

[
−(η1h + η2h)k‘h(x∗2 + x∗4)x

∗
1

]
y2+

+
[
−(1− η1h − η2h)β‘h(x∗1 + x∗3)x

∗
1

]
y3 +

[
−(η1h + η2h)k‘h(x∗2 + x∗4)x

∗
1

]
y4+

+
{

2e−γ1hτ1(1− η1h − η2h)
[
βh(x∗1 + x∗3) + β‘h(x∗1 + x∗3)x

∗
1

]
+

+η1he
−γ1hτ1kh(x∗2 + x∗4)} y1τ1 +

[
η1he

−γ1hτ1k‘h(x∗2 + x∗4)x
∗
1

]
y2τ1+

+
[
2e−γ1hτ1(1− η1h − η2h)β‘h(x∗1 + x∗3)x

∗
1

]
y3τ1+

+
[
η1he

−γ1hτ1k‘h(x∗2 + x∗4)x
∗
1

]
y4τ1

f2(y) = −γ2hy2 + [Ah(2η2h + η1h)kh(x∗2 + x∗4)] y1τ2+

+
[
Ah(2η2h + η1h)k‘h(x∗2 + x∗4)x

∗
1

]
y2τ2+

+
[
Ah(2η2h + η1h)k‘h(x∗2 + x∗4)x

∗
1

]
y4τ2
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f3(y) = {−γ1l − (η1l + η2l)kl(x
∗
2 + x∗4)− (1− η1l − η2l) [βl(x

∗
1 + x∗3)+ .

+β‘l(x
∗
1 + x∗3)x

∗
3

]
− b1x∗5

[
l1(x

∗
3 + x∗4) + l‘1(x

∗
3 + x∗4)x

∗
3

]}
y3+

+
[
−(1− η1l − η2l)β‘l(x∗1 + x∗3)x

∗
3

]
y1 +

[
−(η1l + η2l)k

‘
l(x
∗
2 + x∗4)x

∗
3

]
y2+

+
[
−(η1l + η2l)k

‘
l(x
∗
2 + x∗4)x

∗
3 − b1x∗3x∗5l‘1(x∗3 + x∗4)

]
y4+

+ [−b1x∗3l1(x∗3 + x∗4)] y5 + {2e−γ1lτ3(1− η1l − η2l) [βl(x
∗
1 + x∗3)+

+β‘l(x
∗
1 + x∗3)x

∗
3

]
+ η1le

−γ1lτ3kl(x
∗
2 + x∗4)

}
y3τ3+

+
[
2e−γ1lτ3(1− η1l − η2l)β‘l(x∗1 + x∗3)x

∗
3

]
y1τ3+

+
[
η1le

−γ1lτ3k‘l(x
∗
2 + x∗4)x

∗
3

]
y2τ3 +

[
η1le

−γ1lτ3k‘l(x
∗
2 + x∗4)x

∗
3

]
y4τ3

f4(y) =
{
−γ2l − b2x∗5

[
l1(x

∗
3 + x∗4) + l‘1(x

∗
3 + x∗4)x

∗
4

]}
y4+

+
[
−b2x∗5x∗4l‘1(x∗3 + x∗4)

]
y3 + [−b2x∗4l1(x∗3 + x∗4)] y5[

Al(2η2l + η1l)k
‘
l(x
∗
2 + x∗4)x

∗
3

]
y2τ4+

+ [Al(2η2l + η1l)kl(x
∗
2 + x∗4)] y3τ4+

+
[
Al(2η2l + η1l)k

‘
l(x
∗
2 + x∗4)x

∗
3

]
y4τ4

f5(y) = [−a2 − a3l2(x∗4)] y5 +
[
−a3x∗5l‘2(x∗4)

]
y4 +

[
2n1a4x

∗
5l

‘
2(x
∗
4)
]
y4τ5+

+ [2n1a4l2(x
∗
4)] y5τ5

To simplify the calculations, we introduce special notations for the coef-
ficients in f1, f2, f3, f4 and f5 as follows:

f1(y) = c11y1 + c12y2 + c13y3 + c12y4 + c14y1τ1 + c15y2τ1 + c16y3τ1 + c15y4τ1

f2(y) = c21y2 + c22y1τ2 + c23y2τ2 + c23y4τ2

f3(y) = c31y3 + c32y1 + c33y2 + c34y4 + c35y5 + c36y3τ3 + c37y1τ3 + c38y2τ3 + c38y4τ3

f4(y) = c41y4 + c42y3 + c43y5 + c44y4τ4 + c44y2τ4 + c45y3τ4

f5(y) = c51y5 + c52y4 + c53y5τ5 + c54y4τ5

The construction will be exemplified considering only the terms from V
that come from f1(y) and those from the other equations that combine with
them, since all the other ones are handled in a similar manner.

Sufficient stability conditions arise from:

2α1c11y
2
1 + 2α1c12y1y2 + 2α1c13y1y3 + 2α1c12y1y4 + 2α1c14y1y1τ1 + 2α1c15y1y2τ1+

+2α1c16y1y3τ1 + 2α1c15y1y4τ1 + β1y
2
1 − β1y21τ1 − δ21y

2
2τ1 − δ31y

2
3τ1 − δ41y

2
4τ1 < 0

We create perfect squares by adding and substracting terms, such as:

2α1c14y1y1τ1−β1y21τ1+
α2
1c

2
14

β1
y21−

α2
1c

2
14

β1
y21 = −

(
α1c14√
β1

y1 −
√
β1y1τ1

)2

+
α2
1c

2
14

β1
y21

and

2α1c12y1y2 + α2
1c

2
12y

2
1 − α2

1c
2
12y

2
1 + y22 − y22 = − (α1c12y1 − y2)2 + α2

1c
2
12y

2
1 + y22
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The term y22 will be taken into account in the conditions that come from
studying f2(y).

In doing so with every problematic term in the derivative of the Lyapunov-
Krasovskii functional, we restrict the coefficient of y21 as follows:

[
c214
β1

+
c215
δ21

+
c216
δ31

+
c215
δ41

+ 2c212 + c213

]
α2
1 + 2c11α1 + (β1 + δ12 + δ13 + 1) < 0

We denote the coefficient of α2
1 by p1, the coefficient of α1 by q1, and the

free term by r1 and we consider the following equation:

p1α
2
1 + q1α1 + r1 = 0

with p1 > 0 and r1 > 0.

This second degree equation has real roots if q21 − 4p1r1 > 0 .

As the product of the roots is positive P =
r1
p1

, the roots have the same

sign. In order for the roots to be positive, the sum of the roots must be positive:

S = −q1
p1
⇒ q1 < 0

Let α11 and α12 be the roots of the equation. Since p1 > 0, then

α1 ∈ (α11, α12) for p1α
2
1 + q1α1 + r1 < 0.

The same calculations are made for yi, i = 2, 5 and we obtain:[
c223
β2

+
c222
δ12

+
c223
δ42

]
α2
2 + 2c21α2 + (β2 + δ21 + δ23 + δ24 + 2) < 0[

c236
β3

+
c237
δ13

+
c238
δ23

+
c238
δ43

+ c232 + c233 + c234 + c235

]
α2
3 + 2c31α3 + (β3 + δ31 + δ34 + 2) < 0[

c244
β4

+
c244
δ24

+
c245
δ34

+ c242

]
α2
4 + 2c41α4 + (β4 + δ41 + δ42 + δ43 + δ45 + 3) < 0[

c253
β5

+
c254
δ45

+ c252

]
α2
5 + 2c51α5 + (β5 + 2) < 0

We ultimately give the following sufficient stability conditions:

q21 − 4p1r1 > 0, q1 < 0, α1 ∈ (α11, α12)

q22 − 4p2r2 > 0, q2 < 0, α2 ∈ (α21, α22)

q23 − 4p3r3 > 0, q3 < 0, α3 ∈ (α31, α32)

q24 − 4p4r4 > 0, q4 < 0, α4 ∈ (α41, α42)

q25 − 4p5r5 > 0, q5 < 0, α5 ∈ (α51, α52)
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4. Conclusions

In this paper we have introduced a model that tries to capture the dy-
namics of the competition between healthy and leukemic cells and the response
of immune system in CML.

Four types of equilibria were found for this system. The stability of the
first two (E1 and E2) can be studied through their characteristic equation and
will be studied in further work.

For the other two (E3 and E4), sufficient linear stability conditions were
found using a Lyapunov-Krasovskii functional.

Also in further work, the effect of treatment on the populations of leukemic
cells will be introduced in the model.
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