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SOME INTEGRAL INEQUALITIES FOR PRODUCT OF HARMONIC
log-CONVEX FUNCTIONS

Muhammad Aslam Noor, Khalida Inayat Noor, Sabah Iftikhar!, Cristiana Ionescu®

In this paper, we establish some new Hermite-Hadamard like integral inequali-
ties involving harmonic log-convex functions.

Keywords: Harmonic log-convex functions, Hermite-Hadamard inequality.

1. Introduction

It is well known that convexity had played an important and significant part in the
development of several branches of pure and applied sciences, see [1, 2, 6, 7, 9, 10, 15] and
the references therein.

A function f: [a,b] — R is said to be a convex function, if and only if, f satisfies the

inequality .

2 b—a 2 ’
The inequality (1) is known as Hermite-Hadamard inequality, see [4, 5]. For applications
and other aspects of Hermite-Hadamard inequality and their variant forms, see [2, 3, 7, 8,
9, 10, 11, 12, 13, 14, 16, 17].

In recent years, convex functions and convex sets have been generalized in many
directions using some innovative ideas A significant generalization of convex functions is
harmonic convex functions and harmonic log-convex functions introduced by Iscan [6] and
Noor et al. [9] respectively. The main purpose of this paper is to establish some new Hermite-
Hadamard integral inequalities for harmonic-log-convex functions. Our results represent
significant refinement of the known results.

2. Preliminaries
In this section, we recall some basic concepts and results.
Definition 2.1 ([16]). A set I C R\ {0} is said to be a harmonic convex set, if

LY
tr + (1 -ty

Definition 2.2 ([6]). Let I be a harmonic convez set. A function f: I C R\ {0} — R is
said to be a harmonic convex function, if and only if,

Ty
f(t:ch(lt)y) <A =t)f(x)+tf(y), v,y € It €[0,1].

el, Vao,y € I,t€l0,1].
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A function f is a harmonic convex function, if and only if, — f is a harmonic concave
function.
If t = %, then we have

f(:fj—yy) - f(w);f@), o,y e,

which is called Jensen harmonic convex function.

Definition 2.3 ([9]). A function f: I = [a,b] C R\ {0} — Ry is said to be a harmonic
log-convex function on I, if

f(M) < (f@)' ' (fw)',  Vayeltelo1] 2)

If the inequality (2) is reversed, then f is called harmonic log-concave function.
Ift = %, then we have Jensen harmonic log-convex function, that is,

f( 2oy ) < V@@, Vewel

Tty

It follows that

10gf<t:v+(xly—t)y) < (1—1t)log f(x) + tlog f(y), Vz,y € I,t € [0,1].

Using the arithmetic-geometric inequality, (2) can be written as

Ty 1-t t
< (1 —t)log f(x) +tlog f(y),  Va,yel,tel0,1].

This shows that harmonic log-convex functions are harmonic convex functions, but
the converse is not true, see [1].

Theorem 2.1 ([6]). Let f: I = [a,b] C R\ {0} — R be a harmonic convex function. If
f € Lla,b], then

f<azibb> /f ar < HOEIO ey (3)

Theorem 2.2 ([9]). Let f: I =[a,b] C R\ {0} = R be a harmonic log-convex function. If
f € Lla,b], then

f( 200 ) < exp {b“ba/ablog (fif))dx] < VI@f®), zclab].

a+b

Recall the following special means.
(1) The arithmetic mean:

Ala,b) = “‘;b Va,ba#be R,

(2) The geometric mean:
Gla,b) =Vab  Va,ba#be Ry
(3) The harmonic mean:

2ab
a+b

H(a,b) = Va,b,a # b e Ry
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(4) The quadratic mean:

2 1 p2
K(a,b) = /2 ;L Va,ba #be R,
(5) The logarithmic mean:
a—b
— Ina—Inb’ a # b
L(a,b) { o ab Va,b € Ry
(6) The generalized logarithmic mean:
pptl_gp+1 B
[(p—i—l)(b—a):| , a#Fbp#-10
LP(aa b) - a—b Va,b e R,
Ina—Inb’ a’%b’p:71
a, a=>o.

In particular, we have the following inequality

H<G<LSL<A

3. Main results

In this section, we derive Hermite-Hadamard inequalities for harmonic log-convex
functions

Theorem 3.1. Let f: I, C R\ {0} — R be an increasing and a harmonic log-convex
function. If f € L[a,b], then

£( 22 )@ 10

a+b
ab v [ () 1 f(a)® + f(b)* f(a) + f(b)  f(b) — f(a)
S8(b—a)/a x2 dx+§ 2 2 logf(b)—logf(a)—i—l'
Proof. Let f be harmonic log-convex function. Then

i) U@ o,

Now using the inequality
8ay <a'+y'+8,  xzyeR,

we have

8/01f(M)[f(a)]l_t[f(b)]tdt
- /01 a (er(?—t)b) e /o1 [F@* OO f (b)) *dt + 8.

Since f is an increasing function, we have

8/01 d (M)dt /0 @ o)
: / ! (t+<1bt>b)dt * / L@l at 48
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From the above inequality it is easy to observe that

£( 22 ) st 50

Qa b f4 X
i [ D+ R O)AG @), NI @) S0) 1

__ab "IN@) L L@ 02 )+ f0) SO = fle)
~8(b—a) ), a2 8 2 2 log f(b) —log f(a)
which is the required result. O

Theorem 3.2. Let f,g: 1 = [a,b] C R\ {0} — R be an increasing and harmonic log-convex
functions. If f € Lla,b], then

f( 2ab >L(f(a), F(0)) +2A(f(a), F(b))L(f(a), f(b)) = L*(f(a), f(b))

—I-b
bb—2)f(x ab? b(z—a)f(z
(H) ()/ ( ng( s g [ =,
/ (@), FO)L(F(a). £(5)) + ¥(ab),
where
sty = L@ I@IO 7).
Proof. Let f,g be harmonic log-convex functions on I. Then

i imas) < V@I IO < 0 =0f@ +150) Vabe Lee .1l

Using the elementary inequality
vy +yz+ze <a?+y P+ 22 zy,z€R,

we have

! ab 1—t ¢ ! 2¢ ¢ ! 1—t 1+t
| 1 (= @ ronan: [ o ol@p-iseran [ o

< / e (M)dt + / @O0 )P

—I—f2(a)/0 (1—t)2+f2(b)/0 t?dt+f(a)f(b)/o 2t(1 — t)dt (4)
As it is easy to see that
1 9 a _ ab f2
/Of (ta+(1—t ) N 5)

By substituting 2¢ = u, we obtain

1 2 u 9 2 a
/0 F@POD[F B = L 12 (a) /0 <f<b>) du — %1 ! (Zi (a)
_(

2 f(a) og f(b) — log f(a)

(@) + F(0)(f(b) — f(a))
2log f(b) — log f(a)
=A(f(a), f(b))L(f(a), f(b)). (6)




Some integral inequalities for product of harmonic log-convex functions

15

Using the left half of the Hermite-Hadamard inequality (3), one can obtain

[ (it Jr@r-vonas [ (i ) [ v vora

_ ab bf(ff)dx f(b) = f(a)
b—a), x* " logf(b)—logf(a)

> (22 ) @50,

a+b
Also
1 By B ! )\"
[ a-ou@p e - fo [ <1t>(()) dat
P S@f®) - L
log iz (log 5})”
and
! a 1—t 1+t _ a ! f(b) !
[ dsr-torsa= swse [ o H5) a
0 PO - [0
oot (e Y
Take ﬁ = x, to have

' ab a?b b(b—2)f(x
f(a)/o (1t)f<m+(1_t)b>dt_(b_a)2f(a)/a %dx

0 /0 1 tf(m>dt - (b“bz)Qf(w / b (= a)f @,

From (5)-(12), (4) reduces to

» (
f( 2ab >L(f(a), F(0)) +2A(f(a), F(b))L(f(a), f(b)) = L*(f(a), f(b))

a+b
a?b P (b—2)f(x) ab? b (z —a)f(x)
+ mf(a)/a 3 dz + = a)2f(b)/a de
b 2 l‘
< o [ ar At @), SODE( (@) 50) + 60D

which is the required result.

O

Theorem 3.3. Let f,g: I, C R\{0} — R be harmonic log-convex functions. If fg € L[a, ],

then
2 [ (L) ot iar L [ (89 o o
< % /ab (f(xi‘;](x))dx—i— %M(a,b).

where M(a,b) = f(a)g(a) + f(B)g(b)-
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Proof. Let f and g be harmonic log-convex functions. Then

i) < U@ o,

o) < o oo
Now, using (z1 — xa,23 — x4) > 0, (1,22, 23,24 € R) and 21 < x9, 3 < 24, we have
ab 1—t t

H it ) W@ 00 + (i ) V@170

<1 (= ) Qa+1_¢ ;) + @ O o] oo
Integrating over [0, 1], we get

! ab a(z—b) bla—z 1 ab a(z—b) b(a—z)

[ (it @ as [ oot @S 05

< [ 1t o G )Jar+ [ @ o oo

From the above inequality it follows that

b?a[j({gﬁ>mmﬂﬁfgw@ﬂﬁi3dx+babtébcm?>ﬁ@ﬂﬂygﬁwﬂﬁTg¢”

b
<72 [ () + 1@ 7000910 620),000)

-2 /ab (f(x;g(x)>dx+ S M(a,b),

which is the required result. O

Theorem 3.4. Let f,g: I, C R\ {0} — R be an increasing and harmonic log-convex
functions. If fg € Lla,b], then

£( 22 st o0 + o 22 Yulsta), s0)

ab_ [*( f(x)g(x)
<32 [ (P s s wi@gt. sorao.

xT

__ab /b(f(a:)g(x))derf(a)g(a)+f(b)g(b).

“b—al, x 2

Proof. Let f, g be harmonic log-convex functions. Then

Mo =) = @ o

(i) < @l
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Now, using (x1 — @2, 23 — x4) > 0, (21, 22, 23,4 € R) and z1 < 29, 23 < x4, We get
b b
H ot ) @01+ o L@l 0

<f <m m flb_ m)ﬂ(m - (af_ t),)) +F@) [ 0) g(@] g ).

Integrating over [0, 1], we have

[ (i Yot =sorars [ o it @ o

< [ (i o G )Jar+ [ @ oo oo
Now, since f, g are increasing functions, we have
[ (i ) [ w@r=tsoras [ o m—s Jat [ i@ =yora

< [ (i o G )Ja+ [ @ o ooy

From the above inequality it follows that

which is the required result. O
Theorem 3.5. Let f,g: I, C R\{0} — R be harmonic log-convex functions. If fg € L[a, ],
then

a’b

(b—a

2 b T —a
+ (bciba)z/a : e llog £(5)ogg(x) + o (5 log f(2)]da

bp— o
2 [ s f(a) ogg(e) + og g(a) o ()

<y llog f(a) g g(a) + log £(8) log g(5)] + [log f(a)g(b) + log f(b)g(a)]

b—a 2

Wl

+

Proof. Let f,g be harmonic log-convex functions. Then

b
logf<m+a1_t)b> < (1— t)log f(a) + tlog £(b).
b

log g (abt)) < (1 —t)logg(a) + tlogg(b).

ta+ (1
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Now, using (x1 — @2, 23 — x4) > 0, (21,22, 23,74 € R) and z1 < 29, 23 < x4, we have
ab ab
1 1—-1¢)1 _ 1 b)tl _
ogg(a)(1—1) 0gf<ta+(1_t)b> + log g(b) ng(ta+(1—t)b>

+log f(a)(1 —t)logyg ((1—:;;-&-??(7) + log f(b)tlogg<m+(alb_t)b>

ab ab
Slogf(m +- t)b) logg<m T (- t)b>
+[(1 —t)log f(a) + tlog f(b)][(1 — t)log g(a) + tlog g(b)].

Integrating over [0, 1], we get
1 ab L ab
logg(a)/0 (1-1) 10gf<ta+(l—t)b>dt + 10gg(b)/0 thgf(ta—l—(l—t)b)dt
1 ab 1 ab
+logf(a)/0 (1-1) logg<m+(1_t)b>dt+10gf(b)/o tlogg((l_wm>df

< [ s (=) o 1= )
+log f(a) log g(a) /0 "1 02 4 log £(8) log o) / ar

0
1
+llog F(@)g(t) + log (blg(a)] | (1~ )at.
0
Now after simple integration, we have
a’b
(b—a

ab? by —
+ C _ba)z/a ( 3 )[logf(b)logg(ﬂf)ﬂogg(b) log f(x)]dz

log f(a) g g(a) +log £ (5 log g(0)] + g log f(a)g(8) +log f(b)g(a)
ab /b log f(x) log g(x) .

b—a 2

b(p—zx
)2 / ¢ e ) [log f(a) log g(x) +log g(a) log f(z)]dx

<

Q| =

+

which is the required result. O

Theorem 3.6. Let f,g: I = [a,b] C R\ {0} — R be harmonic convex functions. If
fg € Lla,bl, then

2ab 2ab a’b? ®log g(z) Y log f(z)
f<a+b)g<a+b><b—a>2/a i

ab b log f(z)log g(x) 1 1 2ab
< Ta - —
=P [Q(b—a)L sz dx+ 12M(a»b)+6N(a,b)+logf a+b logg

2ab
a+b

Proof. Let f,g be harmonic log-convex functions with ¢ = %, then

2ab 1 ab ab
o (55) < 308 (vtr=am) * o (a=evm) )
eo(53) = 2ot oo (=)
a+b 2 ta+ (1 —1t)b (I—t)a+td
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Now, using (x1 — @2, 23 — x4) > 0, (21, 22, 23,74 € R) and z1 < 29, 23 < x4, We get

(2 o) e )
ST A S )

< st <t+<ab>b> et (<a>b+tb)] oo (i)
)| e (25 )k’g (a+5)
1ot (=) oo (tr=am) v (=i ) oo (=)
+logf( b e ()
oss a7 ﬂ +1°gf(f+b) o(i53)
R e R e e e e R G
+(1 = )logf( )+t10gf )][tlogg( )+ t)log g(b)]
+ 1108 (@) + (1 = ) log FO](1 ~ ) og ) + o 403 +1ogf( 25 e (25

Jbgf(mﬁb)b)l ( >+1°gf( Hb) gg(a?fm)

+2t(1 — t)[log f(a)log g(a )+10gf( )10gg b)]

+ log f(a)ogg(¥) + 1o S0 ogg(@][ + (1~ 07| +10g £ 22 ) towa (2575

Integrating over [0, 1], we have

stou (255) ) [ovo(ti=s) +ono (s
31 (ﬁ)/l[ oS (vtr=m) e (=)
<) o0t () oo (et =)
o (s +tb)1gg(<l—?§l+b>dt

+ 2[log f(a) log g(a) + log £(b) log g(b)] /0 11— t)dt

g 1 (o) log (0) +log £0) o g(a)] [ 2+ (1- t)?]dt]

2ab 2ab !
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1 1 ab ab
=1 [/O 10gf<ta+ 1- t)b) logg<ta+ 1- t)b)dt
1 ab ab
+/0 1ng<(1 —t)a+tb> 1Ogg((l —t)a+b>dt

[log f(a)log g(a) + log f(b) log g(b)]

- [10g £(@) log g(b) + log f(b) log g(a)ﬂ +log f( +bb)1 gg(fﬂ)

\ww\»a

From the above inequality it follows that

2ab 2ab a’b? logg log f(z) f
f(a—i—b)g(a—i-b) (b—a)2/a d /

ab ®log f(x)log g(x) 2ab 2ab
< — _ bt
exp[ /a 5 dx+12M(a,b)+6N(a,b)+logf CH_b)logg( ,

2(b—a) x a+b
which is the required result. O
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