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SOME INTEGRAL INEQUALITIES FOR PRODUCT OF HARMONIC

log-CONVEX FUNCTIONS

Muhammad Aslam Noor, Khalida Inayat Noor, Sabah Iftikhar1, Cristiana Ionescu2

In this paper, we establish some new Hermite-Hadamard like integral inequali-

ties involving harmonic log-convex functions.
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1. Introduction

It is well known that convexity had played an important and significant part in the
development of several branches of pure and applied sciences, see [1, 2, 6, 7, 9, 10, 15] and
the references therein.

A function f : [a, b]→ R is said to be a convex function, if and only if, f satisfies the
inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
, x ∈ [a, b]. (1)

The inequality (1) is known as Hermite-Hadamard inequality, see [4, 5]. For applications
and other aspects of Hermite-Hadamard inequality and their variant forms, see [2, 3, 7, 8,
9, 10, 11, 12, 13, 14, 16, 17].

In recent years, convex functions and convex sets have been generalized in many
directions using some innovative ideas A significant generalization of convex functions is
harmonic convex functions and harmonic log-convex functions introduced by Iscan [6] and
Noor et al. [9] respectively. The main purpose of this paper is to establish some new Hermite-
Hadamard integral inequalities for harmonic-log-convex functions. Our results represent
significant refinement of the known results.

2. Preliminaries

In this section, we recall some basic concepts and results.

Definition 2.1 ([16]). A set I ⊆ R \ {0} is said to be a harmonic convex set, if

xy

tx+ (1− t)y
∈ I, ∀x, y ∈ I, t ∈ [0, 1].

Definition 2.2 ([6]). Let I be a harmonic convex set. A function f : I ⊆ R \ {0} → R is
said to be a harmonic convex function, if and only if,

f

(
xy

tx+ (1− t)y

)
≤ (1− t)f(x) + tf(y), ∀x, y ∈ I, t ∈ [0, 1].
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A function f is a harmonic convex function, if and only if, −f is a harmonic concave
function.

If t = 1
2 , then we have

f

(
2xy

x+ y

)
≤ f(x) + f(y)

2
, ∀x, y ∈ I,

which is called Jensen harmonic convex function.

Definition 2.3 ([9]). A function f : I = [a, b] ⊂ R \ {0} −→ R+ is said to be a harmonic
log-convex function on I, if

f

(
xy

tx+ (1− t)y

)
≤
(
f(x)

)1−t(
f(y)

)t
, ∀x, y ∈ I, t ∈ [0, 1]. (2)

If the inequality (2) is reversed, then f is called harmonic log-concave function.
If t = 1

2 , then we have Jensen harmonic log-convex function, that is,

f

(
2xy

x+ y

)
≤
√
f(x)f(y), ∀x, y ∈ I.

It follows that

log f

(
xy

tx+ (1− t)y

)
≤ (1− t) log f(x) + t log f(y), ∀x, y ∈ I, t ∈ [0, 1].

Using the arithmetic-geometric inequality, (2) can be written as

f

(
xy

tx+ (1− t)y

)
≤
(
f(x)

)1−t(
f(y)

)t
≤ (1− t) log f(x) + t log f(y), ∀x, y ∈ I, t ∈ [0, 1].

This shows that harmonic log-convex functions are harmonic convex functions, but
the converse is not true, see [1].

Theorem 2.1 ([6]). Let f : I = [a, b] ⊂ R \ {0} −→ R be a harmonic convex function. If
f ∈ L[a, b], then

f

(
2ab

a+ b

)
≤ ab

b− a

∫ b

a

f(x)

x2
dx ≤ f(a) + f(b)

2
, x ∈ [a, b]. (3)

Theorem 2.2 ([9]). Let f : I = [a, b] ⊂ R \ {0} −→ R be a harmonic log-convex function. If
f ∈ L[a, b], then

f

(
2ab

a+ b

)
≤ exp

[
ab

b− a

∫ b

a

log

(
f(x)

x2

)
dx

]
≤
√
f(a)f(b), x ∈ [a, b].

Recall the following special means.
(1) The arithmetic mean:

A(a, b) =
a+ b

2
∀a, b, a 6= b ∈ R+

(2) The geometric mean:

G(a, b) =
√
ab ∀a, b, a 6= b ∈ R+

(3) The harmonic mean:

H(a, b) =
2ab

a+ b
∀a, b, a 6= b ∈ R+
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(4) The quadratic mean:

K(a, b) =

√
a2 + b2

2
∀a, b, a 6= b ∈ R+

(5) The logarithmic mean:

L(a, b) =

{
a−b

ln a−ln b , a 6= b

a, a = b.
∀a, b ∈ R+

(6) The generalized logarithmic mean:

Lp(a, b) =


[

bp+1−ap+1

(p+1)(b−a)

] 1
p

, a 6= b, p 6= −1, 0

a−b
ln a−ln b , a 6= b, p = −1

a, a = b.

∀a, b ∈ R+

In particular, we have the following inequality

H ≤ G ≤ L ≤ A.

3. Main results

In this section, we derive Hermite-Hadamard inequalities for harmonic log-convex
functions

Theorem 3.1. Let f : Ih ⊂ R \ {0} −→ R be an increasing and a harmonic log-convex
function. If f ∈ L[a, b], then

f

(
2ab

a+ b

)
L(f(a), f(b))

≤ ab

8(b− a)

∫ b

a

f4(x)

x2
dx+

1

8

f(a)2 + f(b)2

2

f(a) + f(b)

2

f(b)− f(a)

log f(b)− log f(a)
+ 1.

Proof. Let f be harmonic log-convex function. Then

f

(
ab

ta+ (1− t)b

)
≤ [f(a)]1−t[f(b)]t.

Now using the inequality

8xy ≤ x4 + y4 + 8, x, y ∈ R,

we have

8

∫ 1

0

f

(
ab

ta+ (1− t)b

)
[f(a)]1−t[f(b)]tdt

≤
∫ 1

0

f4
(

ab

ta+ (1− t)b

)
dt+

∫ 1

0

[f(a)]4(1−t)[f(b)]4tdt+ 8.

Since f is an increasing function, we have

8

∫ 1

0

f

(
ab

ta+ (1− t)b

)
dt

∫ 1

0

[f(a)]1−t[f(b)]tdt

≤
∫ 1

0

f4
(

ab

ta+ (1− t)b

)
dt+

∫ 1

0

[f(a)]4(1−t)[f(b)]4tdt+ 8.
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From the above inequality it is easy to observe that

f

(
2ab

a+ b

)
L(f(a), f(b))

≤ ab

8(b− a)

∫ b

a

f4(x)

x2
dx+

1

8
K2(f(a), f(b))A(f(a), f(b))L(f(a), f(b)) + 1

=
ab

8(b− a)

∫ b

a

f4(x)

x2
dx+

1

8

f(a)2 + f(b)2

2

f(a) + f(b)

2

f(b)− f(a)

log f(b)− log f(a)
+ 1,

which is the required result. �

Theorem 3.2. Let f, g : I = [a, b] ⊂ R\{0} −→ R be an increasing and harmonic log-convex
functions. If f ∈ L[a, b], then

f

(
2ab

a+ b

)
L(f(a), f(b)) + 2A(f(a), f(b))L(f(a), f(b))− L2(f(a), f(b))

+
a2b

(b− a)2
f(a)

∫ b

a

(b− x)f(x)

x3
dx+

ab2

(b− a)2
f(b)

∫ b

a

(x− a)f(x)

x3
dx

≤ ab

b− a

∫ b

a

f2(x)

x2
dx+A(f(a), f(b))L(f(a), f(b)) + ψ(a, b),

where

ψ(a, b) =
f2(a) + f(a)f(b) + f2(b)

3
.

Proof. Let f, g be harmonic log-convex functions on I. Then

f

(
ab

ta+ (1− t)b

)
≤ [f(a)]1−t[f(b)]t ≤ (1− t)f(a) + tf(b) ∀a, b ∈ I, t ∈ [0, 1].

Using the elementary inequality

xy + yz + zx ≤ x2 + y2 + z2, x, y, z ∈ R,
we have∫ 1

0

f

(
ab

ta+ (1− t)b

)
[f(a)]1−t[f(b)]tdt+

∫ 1

0

(1− t)[f(a)]2−t[f(b)]tdt+

∫ 1

0

t[f(a)]1−t[f(b)]1+tdt

+ f(a)

∫ 1

0

(1− t)f
(

ab

ta+ (1− t)b

)
dt+ f(b)

∫ 1

0

tf

(
ab

ta+ (1− t)b

)
dt

≤
∫ 1

0

f2
(

ab

ta+ (1− t)b

)
dt+

∫ 1

0

[f(a)]2(1−t)[f(b)]2tdt

+ f2(a)

∫ 1

0

(1− t)2 + f2(b)

∫ 1

0

t2dt+ f(a)f(b)

∫ 1

0

2t(1− t)dt (4)

As it is easy to see that∫ 1

0

f2
(

ab

ta+ (1− t)b

)
dt =

ab

b− a

∫ b

a

f2(x)

x2
dx. (5)

By substituting 2t = u, we obtain∫ 1

0

[f(a)]2(1−t)[f(b)]2tdt =
1

2
f2(a)

∫ 2

0

(
f(b)

f(a)

)u

du =
1

2

f2(b)− f2(a)

log f(b)− log f(a)

=
(f(a) + f(b))(f(b)− f(a))

2 log f(b)− log f(a)

=A(f(a), f(b))L(f(a), f(b)). (6)
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Using the left half of the Hermite-Hadamard inequality (3), one can obtain∫ 1

0

f

(
ab

ta+ (1− t)b

)
[f(a)]1−t[f(b)]tdt ≥

∫ 1

0

f

(
ab

ta+ (1− t)b

)
dt

∫ 1

0

[f(a)]1−t[f(b)]tdt

=
ab

b− a

∫ b

a

f(x)

x2
dx

f(b)− f(a)

log f(b)− log f(a)

≥ f
(

2ab

a+ b

)
L(f(a), f(b)). (7)

Also ∫ 1

0

(1− t)[f(a)]2−t[f(b)]tdt = f2(a)

∫ 1

0

(1− t)
(
f(b)

f(a)

)t

dt

=
−f2(a)

log f(b)
f(a)

+
f(a)f(b)− f2(a)(

log f(b)
f(a)

)2 (8)

and ∫ 1

0

t[f(a)]1−t[f(b)]1+tdt = f(a)f(b)

∫ 1

0

t

(
f(b)

f(a)

)t

dt (9)

=
f2(b)

log f(b)
f(a)

− f2(b)− f(a)f(b)(
log f(b)

f(a)

)2 (10)

Take ab
ta+(1−t)b = x, to have

f(a)

∫ 1

0

(1− t)f
(

ab

ta+ (1− t)b

)
dt =

a2b

(b− a)2
f(a)

∫ b

a

(b− x)f(x)

x3
dx (11)

f(b)

∫ 1

0

tf

(
ab

ta+ (1− t)b

)
dt =

ab2

(b− a)2
f(b)

∫ b

a

(x− a)f(x)

x3
dx (12)

From (5)-(12), (4) reduces to

f

(
2ab

a+ b

)
L(f(a), f(b)) + 2A(f(a), f(b))L(f(a), f(b))− L2(f(a), f(b))

+
a2b

(b− a)2
f(a)

∫ b

a

(b− x)f(x)

x3
dx+

ab2

(b− a)2
f(b)

∫ b

a

(x− a)f(x)

x3
dx

≤ ab

b− a

∫ b

a

f2(x)

x2
dx+A(f(a), f(b))L(f(a), f(b)) + ψ(a, b)

which is the required result. �

Theorem 3.3. Let f, g : Ih ⊂ R\{0} −→ R be harmonic log-convex functions. If fg ∈ L[a, b],
then

ab

b− a

∫ b

a

(
f(x)

x2

)
[g(a)]

a(x−b)
x(a−b) [g(b)]

b(a−x)
x(a−b) dx+

ab

b− a

∫ b

a

(
g(x)

x2

)
[f(a)]

a(x−b)
x(a−b) [f(b)]

b(a−x)
x(a−b) dx

≤ ab

b− a

∫ b

a

(
f(x)g(x)

x2

)
dx+

1

2
M(a, b).

where M(a, b) = f(a)g(a) + f(b)g(b).
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Proof. Let f and g be harmonic log-convex functions. Then

f

(
ab

ta+ (1− t)b

)
≤ [f(a)]1−t[f(b)]t,

g

(
ab

ta+ (1− t)b

)
≤ [g(a)]1−t[g(b)]t.

Now, using 〈x1 − x2, x3 − x4〉 ≥ 0, (x1, x2, x3, x4 ∈ R) and x1 < x2, x3 < x4, we have

f

(
ab

ta+ (1− t)b

)
[g(a)]1−t[g(b)]t + g

(
ab

ta+ (1− t)b

)
[f(a)]1−t[f(b)]t

≤f
(

ab

ta+ (1− t)b

)
g

(
ab

ta+ (1− t)b

)
+ [f(a)]1−t[f(b)]t[g(a)]1−t[g(b)]t.

Integrating over [0, 1], we get∫ 1

0

f

(
ab

ta+ (1− t)b

)
[g(a)]

a(x−b)
x(a−b) [g(b)]

b(a−x)
x(a−b) dt+

∫ 1

0

g

(
ab

ta+ (1− t)b

)
[f(a)]

a(x−b)
x(a−b) [f(b)]

b(a−x)
x(a−b) dt

≤
∫ 1

0

f

(
ab

ta+ (1− t)b

)
g

(
ab

ta+ (1− t)b

)
dt+

∫ 1

0

[f(a)]1−t[f(b)]t[g(a)]1−t[g(b)]tdt.

From the above inequality it follows that

ab

b− a

∫ b

a

(
f(x)

x2

)
[g(a)]

a(x−b)
x(a−b) [g(b)]

b(a−x)
x(a−b) dx+

ab

b− a

∫ b

a

(
g(x)

x2

)
[f(a)]

a(x−b)
x(a−b) [f(b)]

b(a−x)
x(a−b) dx

≤ ab

b− a

∫ b

a

(
f(x)g(x)

x2

)
dx+ L(G2(f(a), g(a)), G2(f(b), g(b)))

≤ ab

b− a

∫ b

a

(
f(x)g(x)

x2

)
dx+A(G2(f(a), g(a)), G2(f(b), g(b)))

=
ab

b− a

∫ b

a

(
f(x)g(x)

x2

)
dx+

1

2
M(a, b),

which is the required result. �

Theorem 3.4. Let f, g : Ih ⊂ R \ {0} −→ R be an increasing and harmonic log-convex
functions. If fg ∈ L[a, b], then

f

(
2ab

a+ b

)
L[g(a), g(b)] + g

(
2ab

a+ b

)
L[f(a), f(b)]

≤ ab

b− a

∫ b

a

(
f(x)g(x)

x

)
dx+ L[f(a)g(a), f(b)g(b)].

≤ ab

b− a

∫ b

a

(
f(x)g(x)

x2

)
dx+

f(a)g(a) + f(b)g(b)

2
.

Proof. Let f, g be harmonic log-convex functions. Then

f

(
ab

ta+ (1− t)b

)
≤ [f(a)]1−t[f(b)]t.

g

(
ab

ta+ (1− t)b

)
≤ [g(a)]1−t[g(b)]t.
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Now, using 〈x1 − x2, x3 − x4〉 ≥ 0, (x1, x2, x3, x4 ∈ R) and x1 < x2, x3 < x4, we get

f

(
ab

ta+ (1− t)b

)
[g(a)]1−t[g(b)]t + g

(
ab

ta+ (1− t)b

)
[f(a)]1−t[f(b)]t

≤f
(

ab

ta+ (1− t)b

)
g

(
ab

ta+ (1− t)b

)
+ [f(a)]1−t[f(b)]t[g(a)]1−t[g(b)]t.

Integrating over [0, 1], we have∫ 1

0

f

(
ab

ta+ (1− t)b

)
[g(a)]1−t[g(b)]tdt+

∫ 1

0

g

(
ab

ta+ (1− t)b

)
[f(a)]1−t[f(b)]tdt

≤
∫ 1

0

f

(
ab

ta+ (1− t)b

)
g

(
ab

ta+ (1− t)b

)
dt+

∫ 1

0

[f(a)]1−t[f(b)]t[g(a)]1−t[g(b)]tdt.

Now, since f, g are increasing functions, we have∫ 1

0

f

(
ab

ta+ (1− t)b

)
dt

∫ 1

0

[g(a)]1−t[g(b)]tdt+

∫ 1

0

g

(
ab

ta+ (1− t)b

)
dt

∫ 1

0

[f(a)]1−t[f(b)]tdt

≤
∫ 1

0

f

(
ab

ta+ (1− t)b

)
g

(
ab

ta+ (1− t)b

)
dt+

∫ 1

0

[f(a)]1−t[f(b)]t[g(a)]1−t[g(b)]tdt.

From the above inequality it follows that

f

(
2ab

a+ b

)
L[g(a), g(b)] + g

(
2ab

a+ b

)
L[f(a), f(b)]

≤ ab

b− a

∫ b

a

(
f(x)g(x)

x2

)
dx+ L[f(a)g(a), f(b)g(b)]

≤ ab

b− a

∫ b

a

(
f(x)g(x)

x2

)
dx+

f(a)g(a) + f(b)g(b)

2
,

which is the required result. �

Theorem 3.5. Let f, g : Ih ⊂ R\{0} −→ R be harmonic log-convex functions. If fg ∈ L[a, b],
then

a2b

(b− a)2

∫ b

a

(b− x)

x3
[log f(a) log g(x) + log g(a) log f(x)]dx

+
ab2

(b− a)2

∫ b

a

(x− a)

x3
[log f(b) log g(x) + log g(b) log f(x)]dx

≤1

3
[log f(a) log g(a) + log f(b) log g(b)] +

1

6
[log f(a)g(b) + log f(b)g(a)]

+
ab

b− a

∫ b

a

log f(x) log g(x)

x2
dx.

Proof. Let f, g be harmonic log-convex functions. Then

log f

(
ab

ta+ (1− t)b

)
≤ (1− t) log f(a) + t log f(b).

log g

(
ab

ta+ (1− t)b

)
≤ (1− t) log g(a) + t log g(b).
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Now, using 〈x1 − x2, x3 − x4〉 ≥ 0, (x1, x2, x3, x4 ∈ R) and x1 < x2, x3 < x4, we have

log g(a)(1− t) log f

(
ab

ta+ (1− t)b

)
+ log g(b)t log f

(
ab

ta+ (1− t)b

)
+ log f(a)(1− t) log g

(
ab

(1− t)a+ tb

)
+ log f(b)t log g

(
ab

ta+ (1− t)b

)
≤ log f

(
ab

ta+ (1− t)b

)
log g

(
ab

ta+ (1− t)b

)
+ [(1− t) log f(a) + t log f(b)][(1− t) log g(a) + t log g(b)].

Integrating over [0, 1], we get

log g(a)

∫ 1

0

(1− t) log f

(
ab

ta+ (1− t)b

)
dt+ log g(b)

∫ 1

0

t log f

(
ab

ta+ (1− t)b

)
dt

+ log f(a)

∫ 1

0

(1− t) log g

(
ab

ta+ (1− t)b

)
dt+ log f(b)

∫ 1

0

t log g

(
ab

(1− t)a+ tb

)
dt

≤
∫ 1

0

log f

(
ab

ta+ (1− t)b

)
log g

(
ab

ta+ (1− t)b

)
dt

+ log f(a) log g(a)

∫ 1

0

(1− t)2 + log f(b) log g(b)

∫ 1

0

t2dt

+ [log f(a)g(b) + log f(b)g(a)]

∫ 1

0

t(1− t)dt.

Now after simple integration, we have

a2b

(b− a)2

∫ b

a

(b− x)

x3
[log f(a) log g(x) + log g(a) log f(x)]dx

+
ab2

(b− a)2

∫ b

a

(x− a)

x3
[log f(b) log g(x) + log g(b) log f(x)]dx

≤1

3
[log f(a) log g(a) + log f(b) log g(b)] +

1

6
[log f(a)g(b) + log f(b)g(a)]

+
ab

b− a

∫ b

a

log f(x) log g(x)

x2
dx,

which is the required result. �

Theorem 3.6. Let f, g : I = [a, b] ⊂ R \ {0} −→ R be harmonic convex functions. If
fg ∈ L[a, b], then

f

(
2ab

a+ b

)
g

(
2ab

a+ b

)
a2b2

(b− a)2

∫ b

a

log g(x)

x2
dx

∫ b

a

log f(x)

x2
dx

≤ exp

[
ab

2(b− a)

∫ b

a

log f(x) log g(x)

x2
dx+

1

12
M(a, b) +

1

6
N(a, b) + log f

(
2ab

a+ b

)
log g

(
2ab

a+ b

)]
.

Proof. Let f, g be harmonic log-convex functions with t = 1
2 , then

log f

(
2ab

a+ b

)
≤ 1

2

[
log f

(
ab

ta+ (1− t)b

)
+ log f

(
ab

(1− t)a+ tb

)]
.

log g

(
2ab

a+ b

)
≤ 1

2

[
log g

(
ab

ta+ (1− t)b

)
log g

(
ab

(1− t)a+ tb

)]
.
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Now, using 〈x1 − x2, x3 − x4〉 ≥ 0, (x1, x2, x3, x4 ∈ R) and x1 < x2, x3 < x4, we get

1

2
log f

(
2ab

a+ b

)[
log g

(
ab

ta+ (1− t)b

)
+ log g

(
ab

(1− t)a+ tb

)]
+

1

2
log g

(
2ab

a+ b

)[
log f

(
ab

ta+ (1− t)b

)
+ log f

(
ab

(1− t)a+ tb

)]
≤1

4

[
log f

(
ab

ta+ (1− t)b

)
+ log f

(
ab

(1− t)a+ tb

)][
log g

(
ab

ta+ (1− t)b

)
+ log g

(
ab

(1− t)a+ tb

)]
+ log f

(
2ab

a+ b

)
log g

(
2ab

a+ b

)
=

1

4

[
log f

(
ab

ta+ (1− t)b

)
log g

(
ab

ta+ (1− t)b

)
+ log f

(
ab

(1− t)a+ tb

)
log g

(
ab

(1− t)a+ b

)
+ log f

(
ab

ta+ (1− t)b

)
log g

(
ab

(1− t)a+ tb

)
+ log f

(
ab

(1− t)a+ tb

)
log g

(
ab

ta+ (1− t)b

)]
+ log f

(
2ab

a+ b

)
log g

(
2ab

a+ b

)
≤1

4

[
log f

(
ab

ta+ (1− t)b

)
log g

(
ab

ta+ (1− t)b

)
+ log f

(
ab

(1− t)a+ tb

)
log g

(
ab

(1− t)a+ b

)
+ [(1− t) log f(a) + t log f(b)][t log g(a) + (1− t) log g(b)]

+ [t log f(a) + (1− t) log f(b)][(1− t) log g(a) + t log g(b)]

]
+ log f

(
2ab

a+ b

)
log g

(
2ab

a+ b

)
≤1

4

[
log f

(
ab

ta+ (1− t)b

)
log g

(
ab

ta+ (1− t)b

)
+ log f

(
ab

(1− t)a+ tb

)
log g

(
ab

(1− t)a+ b

)
+ 2t(1− t)[log f(a) log g(a) + log f(b) log g(b)]

+ [log f(a) log g(b) + log f(b) log g(a)][t2 + (1− t)2]

]
+ log f

(
2ab

a+ b

)
log g

(
2ab

a+ b

)

Integrating over [0, 1], we have

1

2
log f

(
2ab

a+ b

)∫ 1

0

[
log g

(
ab

ta+ (1− t)b

)
+ log g

(
ab

(1− t)a+ tb

)]
dt

+
1

2
log g

(
2ab

a+ b

)∫ 1

0

[
log f

(
ab

ta+ (1− t)b

)
+ log f

(
ab

(1− t)a+ tb

)]
dt

≤1

4

[ ∫ 1

0

log f

(
ab

ta+ (1− t)b

)
log g

(
ab

ta+ (1− t)b

)
dt

+

∫ 1

0

log f

(
ab

(1− t)a+ tb

)
log g

(
ab

(1− t)a+ b

)
dt

+ 2[log f(a) log g(a) + log f(b) log g(b)]

∫ 1

0

t(1− t)dt

+ [log f(a) log g(b) + log f(b) log g(a)]

∫ 1

0

[t2 + (1− t)2]dt

]
+ log f

(
2ab

a+ b

)
log g

(
2ab

a+ b

)∫ 1

0

dt
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=
1

4

[ ∫ 1

0

log f

(
ab

ta+ (1− t)b

)
log g

(
ab

ta+ (1− t)b

)
dt

+

∫ 1

0

log f

(
ab

(1− t)a+ tb

)
log g

(
ab

(1− t)a+ b

)
dt

+
1

3
[log f(a) log g(a) + log f(b) log g(b)]

+
2

3

[
log f(a) log g(b) + log f(b) log g(a)

]]
+ log f

(
2ab

a+ b

)
log g

(
2ab

a+ b

)
From the above inequality it follows that

f

(
2ab

a+ b

)
g

(
2ab

a+ b

)
a2b2

(b− a)2

∫ b

a

log g(x)

x2
dx

∫ b

a

log f(x)

x2
dx

≤ exp

[
ab

2(b− a)

∫ b

a

log f(x) log g(x)

x2
dx+

1

12
M(a, b) +

1

6
N(a, b) + log f

(
2ab

a+ b

)
log g

(
2ab

a+ b

)]
,

which is the required result. �
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