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PULSATING FLOW THROUGH VERTICAL POROUS 
CHANNEL WITH VISCOUS DISSIPATION EFFECT  

Samuel O. ADESANYA1, J. A. FALADE2 and O.D. MAKINDE3 

This study investigates the effect of viscous dissipation on the pulsatile flow 
through a vertical porous channel subjected to periodic heating at the heated 
walls. The flow governing equations are transformed into corresponding non-
dimensional form. The dimensionless nonlinear coupled system of partial 
differential equations are then reduced to ordinary differential equations. 
Approximate solutions in the form of Adomian decomposition method (ADM) are 
obtained and the solutions are shown to be convergent. Important properties of the 
overall structure of the flow are presented and discussed including skin friction 
and Nusselt number. 
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1. Introduction 

Pulsatile flows has gained considerable attention over the past few decades 
due to its extensive applications in many industrial, engineering and physiological 
processes. The phenomena occurs in the cooling of electronic components, air-
conditioning, thermal insulation, geothermal systems, flow of urine in the ureter, 
movement of spermatozoa’s, blood flow in arterial network and human respiration 
to mention just a few. In recent times, a number of significant work have been 
done. For instance, in the purely oscillatory case Makinde and Mhone [1] 
investigated the radiative heat transfer to oscillatory flow of hydromagnetic heat 
absorbing fluid through a channel saturated with porous medium. This study was 
extended by Mehmood and Ali [2] by introducing effect of Navier slip at the 
interface of the porous wall and the porous walls. Bitla and Iyengar [3] studied the 
pulsating flow of an unsteady flow in which a periodic variation in flow velocity is 
superimposed on steady velocity. 
Eldabe et al [4] presented pulsatile flow behavior of oscillatory hydromagnetic 
couple stress fluid without heat transfer. Since the result in [4], there have been a 
lot of appreciable work on the pulsatile fluid flow. For instance, Zuecco and Beg 
[5] applied the Network numerical simulation to the pulsatile case of the result in 
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[4]. In addition, Adesanya and Ayeni [6] extended the pulsatile case examined in 
[5] to variable viscous case in which the channel is filled with porous medium. 
Similarly, Adesanya and Makinde [7] extended the result in [4] to the thermo-
dynamical case in which the effect of radiative heat transfer to was considered in 
the pulsatile fluid flow.  

In all the above studies, the effect of viscous dissipation was neglected. 
However, as explained by Jha and Ajibade [8], of all fluid properties viscosity is 
the most sensitive to temperature changes. This fluid property has a great 
influence on viscous dissipation because variation in fluid viscosity due to 
temperature may affect the flow characteristics as well as the efficient operation of 
industrial machinery where lubrication is important. Motivated by [8], the specific 
objective of this paper is to investigate the mixed convective pulsatile fluid flow 
through a heated porous channel with time-periodic boundary conditions which 
has net been accounted for in the previous models in the literature.  

In the rest of the paper, section 2 gives the Mathematical formulation of 
the problem including model assumptions and non-dimensionalization. Section 3, 
presents the detailed method of solution via the rapidly convergent Adomian 
decomposition method. Similar method has been used for nonlinear problems [9] 
– [13]. Results are presented and discussed in section 4 while section 5 concludes 
the paper 

2. Mathematical Analysis 

We consider an unsteady flow of a viscous dissipating fluid flow through 
infinite vertical plates located at hy ±=  and subjected to steady-periodic heating. 
The x′ - axis is taken along the infinite plate and y′ - axis normal to it as shown in 
Fig. 1. The flow is acted upon by a pulsatile pressure gradient in the direction of 
the flow together with buoyancy forces. The fluid is assumed to be injected with a 
certain constant velocity 0v  on one part of the plate and sucked off with the same 
velocity on the other plate. All fluid properties are assumed constant except the 
density which varies with temperature. 

 
Fig. 1: Flow geometry 
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The equations governing the forced convective fluid flow can be written as [8]:  
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together with appropriate initial-boundary conditions;  
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additional terms in (1) is the pressure gradient and 0v  is due suction/injection of 
fluid at porous walls. Introducing the following dimensionless parameters and 
quantities,  
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we get, the following coupled partial differential equations    
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subject to the boundary conditions 
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where  
Cp – specific heat at constant pressure, μ - dynamic fluid viscosity, ν - kinematic 
viscosity, g – acceleration due to gravity, h –channel width, Pr – Prandtl number, 
( )', pp  – dimensional and dimensionless fluid pressure, ( )tt ,'  – dimensional and 

dimensionless time, 0T  – initial fluid temperature, 1T – fluid temperature , ( )θ,T  –  
dimensional and dimensionless temperature of the fluid, 'u - fluid velocity, u – 
dimensionless velocity of fluid, U - characteristic velocity, ( )xx ,'  dimensional 
and dimensionless horizontal component of velocity, β – coefficient of thermal 
expansion,  κ – thermal conductivity, ρ – density of the fluid, ω – pulsating 
frequency, ( )sv ,0  is the dimensional and dimensionless suction/injection 
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parameter, Gr is the Grashof number, Ec is the Eckert number and St is the 
Strouhal number. 

3. Method of Solution 

To obtain the solution of the coupled nonlinear equations (4)-(5), we 
assume a perturbative solution in the form:         
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and neglecting higher orders. Where ( )yA  – steady velocity profile, ( )yB  – 
unsteady velocity profile, ( )yF  – steady temperature profile, ( )yP  – unsteady 
temperature profile and 10 , λλ are positive constants.  
with (6) in (4) – (5), we have 
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( ) ( ) ( )( ) ( ) 11;2 =±′−=′−′′ FyAEcyFsyF                (9) 
( ) ( ) ( ) ( ) ( ) ( ) 11;2 =±′′−=−′−′′ PyByAEcyiStPyPsyP .                     (10) 

Transforming (7) – (10) to integral equations, we get 
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By ADM [9] – [13], we assume a series solution in the form 
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using (15) – (16) in the Volterra integral equations (11) – (14) leads to an iterative 
scheme given by 
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and  
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where the nonlinear terms written as 
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are decomposed into Adomian polynomials as follows 
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equations (17)-(21) are then coded on a computer symbolic package- mathematica 
version 8 and mathematical expression for the unknown constants are obtained 
using the rest boundary conditions at 1=y . 
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Let us define m to be the truncation point, then the partial sums given by 

∑∑∑∑
====

====
m

n
n

m

n
n

m

n
n

m

n
n YPYPYBYBYFYFYAYA

0000
)()(,)()(,)()(,)()(   (22) 

are the approximate solutions of the coupled system of equations (7)-(10) which 
are substituted into the assumed solution (6). Due to large output of the symbolic 
series solutions only the graphical results will be presented.  
Other parameter of interest includes the skin friction at the heated plates  
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and the rate of heat transfer 
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4. Results and Discussion 
Table 1:  

Convergence result for StGrstmEc ======== 101,1.0,5,0 λλ  
y 

EXACTu  ADOMIANu  ErrorABS .  
EXACTθ  ADOMIANθ

 

ErrorABS .  

-1 0 0 8.40745 1810 −×  1.995 1.995 4.44089
1610 −×  

-0.75 0.585714 0.58624 5.26129 410 −×  1.95208 1.95175 3.34076 410 −×  
-0.5 1.06577 1.06701 1.245290 310 −×  1.90692 1.90613 7.92176 410 −×  
-0.25 1.42206 1.42431 2.25663 310 −×  1.86734 1.8659 1.43945 310 −×  

0 1.62986 1.63349 3.63445 310 −×  1.84116 1.83883 2.33120 310 −×  
0.25 1.65389 1.65917 5.27784 310 −×  1.83585 1.83243 3.42464 310 −×  
0.5 1.44332 1.44992 6.59776 310 −×  1.85775 1.85338 4.36695 310 −×  

0.75 0.925758 0.931744 5.98569 310 −×  1.91087 1.9068 4.07589 310 −×  
1 0 0 3.64385 1710 −×  1.995 1.995 0 

 
Table 1 shows the convergence of the solution in the special case when 0=Ec . 
The accuracy of the solution can be improved by computing more terms, that is, 
as ∞→n . To illustrate the effects of fluid parameters of the flow, the following 
graphs are presented. Computations were done for 110 == λλ . Figs. 2 represents 
the effect of variations in Eckert number on velocity profile. From the plot, it is 
observed that an increase in Eckert number has an increasing effect on the 
velocity profile. This is due to rise in the kinetic energy due to heat source. Figure 
3 shows the effect of Grashof number on velocity profile. The result shows that an 
increase in Grashof number increases the velocity profile due to rise in buoyancy 
forces. Figure 4 depicts the plot of velocity profile for variations in Strouhal 
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number. The result also shows that an increase in the Strouhal number reduces the 
flow velocity. This is because as the pulsating frequency increases there is 
reduction in the maximum displacement and the flow tends toward a mean steady 
state. Similar phenomenon is seen in Figure 5 for the temperature distribution 
within the channel. Figure 6 shows that, as Eckert number increases, the fluid 
temperature also increases. This is true since additional heat is generated within 
the moving fluid as a result of rise in the kinetic energy within the channel. Figure 
7 represents the effect of rise in Prandtl number on the fluid temperature. The 
results shows that an increase in Prandtl number means decrease in the thermal 
conductivity of the fluid. This eventually lowers the fluid temperature within the 
channel as observed in the plot. Figures 8 and 9 show the effect of Eckert number 
on the fluid flow and temperature distribution respectively. As observed, an 
increase in Eckert number enhances the flow and temperature distribution with 
increase in time. However, it is observed in Figures 10 and 11, that an increase in 
the pulsating frequency parameter lowers the fluid velocity and the temperature. 
Figure 12 shows the effect of Eckert number on the skin friction. It is observed 
that an increase in Eckert number enhances the skin friction at the suction wall 
while it weakens skin friction at the wall with injection. Finally in Figure 13, an 
increase in Eckert number is observed to enhance the rate of heat transfer from the 
walls to the fluid. However, the rate of heat transfer is observed to decrease along 
of the heated plates. This is because as the plate get hotter, the rate of heat transfer 
decreases.  
 

 
Fig. 2: velocity profile with different values of Eckert number 
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Fig. 3: velocity profile with different values of Grashof number 

 

 
Fig. 4: velocity profile with different values of Strouhal number 

 

 
Fig. 5: Temperature profile with different values of Strouhal number 
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Fig. 6: Temperature profile with different values of Eckert number 

 
 

 
Fig. 7: Temperature profile with different values of Prandtl number 

 

 
Fig. 8: pulsating velocity profile with different values of Eckert number 
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Fig. 9: temperature distribution with different values of Eckert number 

 

 
Fig. 10: pulsating velocity profile with different values of Strouhal number 

 

 
Fig. 11: temperature distribution with different values of Strouhal number 
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Fig. 12: wall skin friction with different values of Eckert number 

 

 
Fig. 13: heat transfer rate with different values of Eckert number 

 

5.  Conclusion 

We have studied the mixed convective flow of pulsatile fluid through a vertical 
porous channel with viscous dissipation and time periodic boundary conditions. 
Based on oscillatory flow assumption, the coupled partial differential problems 
are reduced to couple nonlinear ordinary differential equations. The system of 
equations are uncoupled by using Adomian decomposition approach. In the 
present analysis, the contributions to knowledge are as follows: An increase in the 
Eckert number enhances the fluid temperature and velocity due to additional heat 
generated as a result of increase in the kinetic energy of the fluid particles. 
Moreover, as Eckert number increases, rate of heat transfer from the walls to the 
fluid increases while skin friction increases at the wall  with suction on the other 
hand it got weakened at the injection wall. 
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