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A C COMPILER FOR THE WIDE, LOW-POWER CONNEX-S VECTOR

ACCELERATOR
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Connex-S is a wide vector accelerator designed at the Electronics department at Po-

litehnica University of Bucharest. It is a competitive customizable architecture for em-
bedded applications with 32 to 4096 16-bit integer lanes.

Our C compiler targets OPINCAA, a JIT vector assembler and coordination C++

library for Connex-S accelerating computation for an arbitrary CPU. Therefore, we ad-
dress aspects of automatic parallelization such as efficient vectorization, communication,

and synchronization. We also develop the back end for Connex-S and support for em-
ulation of arithmetic operations for unsupported types such as 16-bit floating-point and

32-bit integer.

We discuss various optimizations we perform to compile efficient OPINCAA code
and describe why the generated code is correct.

We report speedup factors of at most 12.24 when running on a Connex-S accelerator

with 128 lanes w.r.t. the dual-core ARM Cortex A9 host clocked at a frequency 6.67
times higher. Also, we achieve a modest energy efficiency improvement average of 1.1

times. However, note that a Connex-S dedicated integrated circuit can achieve an order

of magnitude more energy efficiency than our FPGA implementation.
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1. Introduction

Data parallelism is an optimization strategy that divides the data domain of a prob-
lem into multiple regions and assigns different processors to compute the results for each
region [18]. Data-parallel programming is a sweet-spot [14]: parallel architectures can sup-
port it well and a lot of algorithms can be described in this manner. Data parallelism is
best matched by SIMD (Single Instruction Multiple Data) computer architectures. SIMD
processors achieve among others better energy efficiency because they use considerably fewer
resources for the control unit [41] and the compiler is delegated to extract ILP instead of the
hardware of a superscalar processor. Vectorization support for SIMD architectures is better
these days, available in open-source compilers like GCC and LLVM, besides proprietary al-
ternatives like Intel ICC and IBM XL. This is why mainstream processor manufacturers add
more SIMD units per chip and increase their widths: ARM recently introduced the Scalable
Vector Extension (SVE), which is an instruction set operating on maximum 2048 bits wide
data for the ARMv8-A architecture, Intel’s Xeon Phi manycore processor integrates up to 72
x86 cores with AVX-512 (Advanced Vector eXtensions) handling 512-bit vectors, NVIDIA’s
Graphics Processing Units (GPUs) incorporate an increasing number of SIMD units at each
newer generation and so on.

In this paper, we present an LLVM [30] compiler for a system using the Connex-S
vector accelerator. Connex-S is a customizable processor with 32 to 4096 16-bit integer lanes,
currently implemented in FPGA (Field-Programmable Gate Array), loosely integrated with
a CPU, which in this paper is ARM Cortex A9, suitable for embedded systems applications
acceleration, being low power [12, 45]. Connex-S is a wide vector processor, by which we
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understand it has more than 32 lanes. Our compiler is vector-length agnostic (VLA), which
means that the generated code can run on Connex-S accelerators of different widths (also
called vector lengths).

We choose LLVM [30] because it is an open-source compiler, with a better design than
GCC, with a well-defined Static Single Assignment (SSA) based intermediate representation
(IR) and a thriving community.

We perform offloading to the accelerator by using OPINCAA, a JIT (Just-In-Time)
vector assembler and coordination C++ library for Connex-S [13], which allows running
portably C++ host code together with easily readable, vector-length agnostic Connex-S
assembler programs. Note that, in principle, OPINCAA can also make the vector code
more efficient by easily specializing it with techniques such as loop unrolling during the JIT
assembling.

Our Connex-S processor is designed to be low-power compared to existing architec-
tures such as NVIDIA GPUs. Current NVIDIA GPUs suffer from power inefficiency issues
due to: i) small SIMD units with a maximum of 32 lanes (EUs) because their legacy is to
accelerate 3D computation and the bus accessing the RAM has a width of up to 384 bits; ii)
big register files required to allow switching easily context in order to overcome the limited
memory bandwidth [36]; iii) the GPU runtime schedulers, which offer easiness of program-
ming with the CUDA SPMD programming model, which is expressive and easy to compile
at the expense of a runtime overhead to schedule the code; iv) complex controllers with
conditional branch reconvergence. All these points are addressed by our wide Connex-S
accelerator, especially by its high bandwidth local banked vector memory, and its auto-
vectorizing LLVM compiler that performs many tasks that otherwise would be performed at
runtime. This has the potential to save energy. We perform in this paper a few experiments
to analyze the energy efficiency of the Connex-S accelerator w.r.t. its host. Note however
that our processor is currently implemented in a Xilinx FPGA, and FPGAs are an order
of magnitude less power efficient than a dedicated integrated circuit (IC) fabricated in the
same silicon technology [28, 33].

The contributions of this paper are:
• the compilation from a sequential C program to VLA (vector-length agnostic) code. To

achieve this goal the back end we write for the Connex-S vector processor has special sup-
port for symbolic scalar immediate operands, which are to be handled by the OPINCAA
JIT vector assembler. Note that this allows passing source program variables from the
CPU scalar memory to the vector kernel.
Also, we need to adapt LLVM’s loop vectorizer pass in order to perform symbolic quan-
titative static analysis to retrieve the trip counts of loops and the number of source code
array elements accessed in our vectorized code, and possibly recover them as symbolic
expressions from LLVM IR to C/C++. This quantitative analysis allows us to provide
input to our OPINCAA function calls requiring the amounts of data transferred at run-
time, its JIT assembler using e.g. symbolic trip counts for vector strip-mining, and our
symbolic compiler memory allocator.

• experimental results using our compiler on a test suite of simple C programs, namely
the native 16-bit integer type and emulated 32-bit integer and 16-bit floating-point types.
Besides measuring the execution time for the benchmarks when running on the CPU or
on the Connex-S accelerator, we perform also energy measurements in the two scenarios
for all programs.

Our approach is to extend existing open-source tools, such as LLVM, to achieve cor-
rect and efficient source-to-source compilation from sequential C to coordinated OPINCAA
programs with portable CPU C++ and Connex-S vector assembly code.
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The paper is structured as follows. In Section 2, we present some of the most relevant
works similar to ours. In Section 3, we detail the architectural features of the Connex-
S vector accelerator. Section 4 describes the Instruction Set Architecture (ISA) of the
Connex-S processor, its OPINCAA programming model, and the semantic gap between the
Connex-S assembler and the LLVM IR languages. Section 5 discusses the most relevant
features of the Connex-S OPINCAA LLVM compiler. In Section 6, we present experimental
results regarding execution time and energy consumption.

2. Related Work

Autovectorization, the compilation for a SIMD target, is an established 40-year-old
research topic [43, 5]. Nuzman and Zaks are the first to implement it in the GCC com-
piler [38, 39]. Eichenberger et al. implement support for the vector units of the Cell pro-
cessor inside the IBM XL compiler [19]. Vectorization is normally included as a middle-tier
pass, but exceptions exist, such as the Scout source-to-source transformation tool [27], which
generates directly inside the C code intrinsics for SIMD instruction sets such as Intel AVX,
SSE or ARM NEON. The mainstream adoption of GPU accelerators has motivated the cre-
ation of many programming models for them. Recently, a pragmatic approach is to compile
directly sequential C to such parallel architectures. The polyhedral compilation of C to
explicit parallel programming languages such as OpenCL or CUDA is presented by Grosser
et al. in [22]. Our work is similar to theirs, but we target only Connex-S and, therefore,
have to focus on the challenging issues of the customizable architecture.

Recently, the LLVM compiler [7, 20] for the ARM Scalable Vector Extension (SVE)
instruction set generates vector-length agnostic binary programs [46], but tight integration
with the ARMv8-A CPU requires no coordination of the SVE unit since it shares, among
others, the RAM with the CPU. For vector-length agnosticism, they require: i) to add
special instructions to the ARM SVE ISA, such as inc* (increment a scalar register by the
number of elements in an SVE vector), index, while* [46]; ii) to add a scalable attribute for
LLVM IR vector types and add a few new IR instructions, such as vscale, stepvector, propff,
and extend shufflevector to accept non-constant masks [7]); iii) they introduce separate
stack regions for scalar and vector values, the latter being dynamically allocated, in order to
support vector spills, fills and argument passing [46]. Our Connex-S architecture supports
easier vector-length agnosticism because it has a local banked vector memory of width CV L,
hence we do not need: instructions like inc*, nor stack regions. On the other hand, we also
have an instruction similar to index, which we call ldix.

Similarly, the RISC-V ISA [49, 24] has vector-length agnostic extensions [48, 10]. The
vector ISA can change dynamically the vector length, the number and element type of vector
registers. For example, it allows doing strip-mining with vector residual loop by using the
RISC-V vector instruction vsetvl.

Nuzman et al. address the generation of portable SIMD code by using GCC to
generate vector .Net code for the Mono VM, which is then able to run the code efficiently
on an x86 with SSE or a PowerPC with AltiVec SIMD unit [40]. Our generated OPINCAA
programs with C++ host code and Connex-S vector-length agnostic assembler code are
portable mainly because of our low overhead JIT assembling technique, which can access
the CV L variable and execute a compiled vector loop in order to match the trip count of
the original strip-mined loop.

A difficult subtask is to automatically generate communication primitives between
the CPU and the accelerator. For this, the DawnCC compiler [35], performs static Symbolic
Range Analysis (SRA) in order to offload data of parametric size to an accelerator via the
OpenACC and OpenMP 4.0 offload language extensions. We make use of this static analysis
in our project.
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The advantages of banked vector memories, such as the local memory of Connex-S, are
discussed in many papers like [29, 11, 32] and the book by Akl [4]. Armejach et al. [8] draw
attention that when running 3D stencil applications the standard CPU memory hierarchy
can become a performance bottleneck for the ARM SVE SIMD unit when it is wider than
512 bits. Similarly, Hennequin et al. discover the same thing for Intel’s x86 AVX-512 SIMD
unit [23].

3. The Connex-S Vector Accelerator

The Connex-S processor is meant to be loosely integrated with a CPU, following the
accelerator paradigm.

Connex-S is essentially a SIMD processor with a number of 16-bit integer execution
units (EUs, also called lanes, cells, or Processing Elements; an EU can also support oper-
ations of different types than 16-bit int, in principle) fixed at design time between 32 and
4096, for which we assign variable CVL, ConnexVectorLength, normally a power of two, and
a hardware reduction tree. The processor is designed to support well kernels found in Basic
Linear Algebra Subprograms (BLAS) libraries.

We depict the architectural organization of a system with Connex-S accelerator and
an arbitrary CPU in Figure 1.

Connex-S is a Harvard architecture, with separate Internal Instruction Memory (IIM) [1]
and Local Storage (LS) memory. The processor has a predictable performance because all
instructions have basically the same latency and it has no sources of unpredictability such
as cache misses or a branch misprediction. We offload on the Connex-S accelerator intensive
computations [34], which have a simple, predictable execution; this is why Connex-S does
not need a data cache memory, which can address in part more difficult to predict memory
accesses.

Connex-S has an in-order pipelined controller with the following four stages: i) fetch
instruction from the IIM; ii) read registers and decode the instruction; iii) execute the
instruction or calculate an address; iv) write the result into a register. Note that the decoded
control signals also need to go through the distribution network of the controller, which has
a latency of log2(CV L) cycles.

Using 16-bit data paths is justified by the facts it reduces power consumption and
many integer benchmarks require only words of 16 bits or fewer [15, 9]. The processor
does not include hardware support for floating point because it is costly. Adding support
for 32-bit floating-point add, subtract, compare, and multiply operations is reported by
Karuri et al. [26] to increase the area of a chip by 2.5 times. On the other hand, the paper
claims floating-point emulation is one order of magnitude less energy efficient than direct
hardware execution. Therefore, since our wide processor can reach up to 4096 lanes, we
choose to emulate floating point in order to have a considerably smaller processor area. We
present in [16] how we perform efficiently floating-point emulation by delegating the LLVM
compiler to inline the emulation code and perform standard optimizations on it such as
register allocation.

In its largest instance, with 4096 lanes, Connex-S is basically two orders of magnitude
larger than the widest SIMD units handled by: i) ARMv8-A’s SVE instruction set, with
2048-bit vector operands, ii) Intel Xeon Phi’s AVX-512, with 512 bits long vector units for
each core and iii) NVIDIA GPUs, with SIMD units of at most 32 lanes of 32 or 64 bits each.

For this paper, we implement Connex-S inside a Xilinx Zynq-7020 FPGA [42]. The
number of EUs of Connex-S can be easily changed in the Verilog description of the processor
to match the needs of the running application. In principle, we can also change in the Verilog
code the size of the LS memory or of the IIM, the number of vector registers or add special
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Fig. 1. The architectural organization of a system with a Connex-S vector
accelerator

functional units to execute efficiently operations like the scan (prefix) higher-order function.
This customization is part of a process called hardware/software codesign [17].

The 28 nm Zynq-7020 SoC also has a dual-core ARM Cortex A9, so this platform
can be used for embedded applications, such as computer vision algorithms. This Connex-S
implementation with 128 lanes consumes a maximum of 1.5 Watts at 100 MHz, while Cortex
A9 consumes up to 0.8 Watts at 668 MHz in our experiments. But a 28 nm IC version of
Connex-S with 128 lanes at 1 GHz consumes lower than 0.5 Watts [33], which is more than
an order of magnitude more power-efficient.

The LS memory of Connex-S is a scratchpad memory (SPM), separate from the CPU
RAM. Therefore, the programmer or the compiler need to issue memory transfers, which
employ a Direct Memory Access (DMA) unit, to offer Connex-S the operands it needs to
work on and, optionally, to copy back data from the LS to the CPU RAM. The Connex-S
LS memory is a banked vector memory, being a memory that has an invariable, predictable
one cycle access latency. The Connex-S LS memory allows each lane to access only its
content. Communication between the lanes is performed efficiently and predictably using
an inter-lane shift unit. Following the classification from Akl [4], this makes Connex-S an
interconnection network (as opposed to shared memory) SIMD computer with a linear array
topology. Connex-S has only one inter-lane shift register in which we can load any vector
value, in which the lanes can communicate in one step with their direct neighbors, similarly
with the cells of systolic arrays [6].

When synthesized in a Xilinx Zynq-7020 FPGA, the LS memory has normally 1024
lines with 128 16-bit elements, given the limited number of gates of the FPGA. To these, we
also add normally another 200 lines exclusively dedicated for vector register spilling and for
storing tables for floating-point arithmetic operation emulation. Also, the IIM has normally
a capacity of 4 KB.

Connex-S has a RISC-like ISA [21] with a hardware loop mechanism with a scalar
counter and block predication but has neither call nor general branch instructions. Connex-S
is little-endian.

Connex-S has no scalar data memory. The 32 Connex-S vector registers, with a
number of CV L, normally 128, 16-bit integer elements, are named in OPINCAA R(0), ...,
R(31), and the line i of the LS memory is referred to as LS[i].

Connex-S communicates with the rest of the system through its instruction, memory
I/O (inbound and outbound memory transfers between CPU RAM and LS memory), and
reduction FIFOs, as depicted in Figure 1, all of them having a capacity of 512 32-bit words.
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We can make these FIFOs perform faster transfers by increasing the word size to 128 bits,
for example, which also leads to bigger power consumption. Normally, Connex-S receives
its operands in the LS memory via I/O transfers from the system RAM and returns results
only via the reduction FIFO, without performing I/O reads from the LS memory.

The I/O calls of Connex-S have a big overhead: for example, sending 256 or 512 bytes
from Connex-S takes basically the same amount of time of 72 µs. Therefore, to increase the
throughput of the I/O transfers, we need to aggregate, where possible, the copies for each
array, in order to mitigate the big overhead of a transfer. However, as already discussed,
there is one difficulty in doing this, namely, we need to know the length of the array being
transferred. We compute the length statically by using the SRA LLVM pass.

Connex-S can be used as an educational processor like the Vector DLX [11], especially
because it has a clean ISA and an easy to use assembler tool.

The synthesized Connex-S processor at 100 MHz, with 128 lanes achieves a large LS
memory bandwidth of 26 GB/sec, comparable with the speed of the latest DDR5 desktop
PC RAM modules available on the market, putting in evidence the performance advantage
of the LS banked vector memory normally with 1224 words (or 2.4 KB) per lane.

4. The Connex-S ISA and Its OPINCAA Programming Model

The Connex-S Instruction Set Architecture (ISA) contains pure SIMD operations
like arithmetic, bitwise logical, logical, memory access, and nop instructions. It also
has special vector instructions: load immediate operand (vload), sum-reduce (red, which
takes log2(CV L) cycles to execute), inter-lane shift operations (cellshl/r and ldsh), which
basically move data between lanes one position per cycle, block predication instructions
(whereeq/lt/cry and endwhere, which in OPINCAA are called EXECUTE WHERE EQ/
LT/CRY/ IN ALL,) and simple loop with counter instructions (setlc and ijmpnzdec, in
OPINCAA represented by REPEAT(imm) and END REPEAT, which currently do not al-
low loop nesting and have a body size limited by the capacity of the IIM).

The where blocks are useful because: i) they can reduce the instruction bit length
since the predicate register is not encoded in it; ii) they send fewer decoded control signal
bits to each lane for each predicated instruction, which has the potential for saving energy.

A complete description of the ISA is available in [21]. Also, we can find in Table 2
from Section 6 all the instructions of the vector accelerator together with their energy
consumption. As we can see, Connex-S has a few control flow instructions allowing to run
normally only non-nested loops of constant trip counts and to use a predication mechanism
using the Boolean values of the Carry, Less or Equal flags, set previously for each lane. It
does not have call or conditional branch instructions, available, for example, in NVIDIA
GPU’s PTX assembly [41].

All the instructions take vector operands of 16-bit signed integer (i16) elements, unless
otherwise specified, and a few of them can have an immediate operand. We also require hav-
ing 16-bit unsigned integer (u16) instructions for multiplication and reduction, mult.u16
and red.u16, which help for the efficient emulation of reduction and multiplication opera-
tions for 32-bit (or larger) signed integers. Note that the mult.i16/u16, accompanied by
the result reading instructions multlo and multhi, use the DSP48E1 functional units of
Xilinx Zynq, which can perform efficiently, among others, i16 or u16 multiplication.

4.1. The OPINCAA Programming Model

OPINCAA, an acronym for OPcode INjector for the ConnexArray Architecture [13],
is an everything (decomposition, mapping, communication, and synchronization) explicit
parallel programming model [44] for a system with one Connex-S accelerator.
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The OPINCAA JIT vector assembler and coordination C++ library for Connex-S
does the following: i) it allows writing, sequential C++ host code, together with easily read-
able and modifiable Connex-S vector-length agnostic assembly kernels directly in C++ by
overloading the standard C++ arithmetic operators - this makes the syntax of the Connex-S
assembly simple to learn; ii) it assembles at runtime on the host the kernels to be dispatched
for execution on Connex-S; iii) it caches the JIT assembled instruction binary stream of a
kernel to increase the performance of its future invocations; iv) it performs coordination for
the accelerator, such as communication and synchronization between an arbitrary CPU and
Connex-S.

OPINCAA can assemble at runtime instructions with symbolic scalar immediate
operands from C/C++ expressions, representing, for example, the sizes of arrays, loop trip
counts, or the width of the vector processor. In effect these make the OPINCAA programs
vector-length agnostic, meaning that we can run them on Connex-S machines of arbitrary
width, mostly due to the program environment variable CVL and the CV L-parametric
strip-mining. Also, since Connex-S has a limited hardware loop mechanism, we can write
in OPINCAA host-side for loops, which are simple C++ for loops that unroll the assembly
code inside their bodies, which helps to implement loop nests of arbitrary depth.

Given the preceding arguments, we choose that the result of our compiler is an OPIN-
CAA C++ program.

OPINCAA is similar to OpenCL [37] in the sense both coordinate execution in hetero-
geneous systems and employ some form of runtime code generation, but OPINCAA targets
just the Connex-S accelerator and writes kernels for it in vector assembly language instead of
OpenCL C. OPINCAA is more efficient normally than OpenCL because it does not compile
at runtime the kernels for the accelerator, making it more appropriate for embedded systems
applications. Note that the specialized embedded profile of OpenCL fixes this inefficiency.

5. The Connex-S OPINCAA LLVM Compiler

Now that we introduced the heterogeneous platform we target with the Connex-
S accelerator, we start describing our LLVM-based compiler taking sequential C source
programs.

Following the terminology of parallelization steps introduced in Skillicorn et al. [44],
the compiler has to decompose the program into tasks, map them on the EUs, synchronize
them and establish communication between tasks. Fortunately, for SIMD architectures
synchronization is not an issue due to the lock-step fashion they operate [11].

We present in Figure 2 a flowchart with the stages of our compiler. We first parse the
C source file with the clang command, which generates unoptimized LLVM IR code. Then,
we run the opt command, which optimizes the LLVM IR by executing explicitly the pipeline
of LLVM passes we give as arguments - note that we do not call the indvars module because
it changes the names of variables, which would disallow to later recover from LLVM IR to
C/C++ the names from the C source file. Among those modules, we dynamically load the
SRA (Symbolic Range Analysis) and our modified LoopVectorizeOpincaa passes. Next, we
run the back end, llc, to generate CPU assembly instructions and Connex-S vector assembly
code. We then replace the vectorized loops in the source C file with the associated obtained
OPINCAA kernels and coordination code in order to obtain the final OPINCAA program,
by using a simple tool. With this last step, we essentially perform a simple source-to-source
transformation, which makes the code CPU independent. Generating C++ code allows
using the OPINCAA C++ framework in order to write vector-length agnostic Connex-S
assembler code, which performs CV L-parametric strip-mining by relying on the OPINCAA
JIT assembler and reading at runtime the CV L program environment variable. The resulting
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C++ OPINCAA program can be compiled with a standard tool like GCC, preferably at the
maximum optimization level for the benefit of the host code.

Since an LLVM back end must have a scalar CPU processor, not only a vector unit,
we create the Connex-S back end by adding the Connex-S vector instructions to the existing
LLVM eBPF (extended Berkeley Packet Filter) [31] back end. We could start from a more
common back end such as the one for ARM, but since our method discards the scalar
assembly code at the end and replaces it with the original sequential C code, we allow
ourselves to use something simpler. We add to it vector instructions getting inspired from
the MSA (MIPS SIMD Architecture) vector instructions specified in the LLVM Mips back
end.

Note that in the LLVM IR machine model, the virtual vector units are tightly coupled
to the CPU, which runs the sequential LLVM code. On the other hand, Connex-S is nor-
mally an accelerator, loosely integrated with the CPU, with its own separate memory space,
as already discussed, so the communication and synchronization between the two needs to
be performed explicitly, using OPINCAA’s coordination Application Programming Interface
(API). For this, we generate the calls for these memory transfers in our LoopVectorizeOpin-
caa module.

C input
program

clang- -LLVM IR -(Vector) LLVM IR+

coord. Opincaa code

-

-

opt:
LoopVectorizeOpincaa
- symbolic static
LS mem allocator

SRA(Symbolic Range
Analysis)

llc:
Connex-S+
eBPF CPU
back end

C++ program
(with OPINCAA
kernels and coord.

calls)

Fig. 2. The stages of the Connex-S OPINCAA LLVM compiler

We extend LLVM’s standard LoopVectorize module, which automatically transforms,
if profitable, sequential innermost loops of the input LLVM IR program into vector LLVM
code, to implement most non-back end functionality:
• a symbolic static memory allocator for Connex-S’s LS memory;
• generation of optimal, aggregated I/O transfer calls between the Connex-S LS memory

and the system RAM, of OPINCAA kernel begin and end primitives, of kernel execution
calls and the reads of the reduction results;

• the logic to create new appropriate vector reads and writes to properly address the LS
memory instead of the system RAM;

• the generation of loop headers and footers inside the Connex-S vector kernel;
• to achieve a respectable performance we need to reduce the size of the kernel by generating

for the innermost two levels of C loop nests an OPINCAA REPEAT loop containing a
host-side C++ for loop (this normally results in a kernel with minimal number of vector
instructions if all the original trip counts are at least CV L), while for simple C loops we
generate only REPEAT. Note that for deeper loop nests we simply leave unchanged the
outer loops.

5.1. Example of Compiled Code

When compiling the simple C program from Listing 1, implementing a sum-reduce
pattern over an array of size variable N, we obtain the program in Listing 2 containing
OPINCAA coordination and assembly code.

The connexGlobal C++ object encapsulates the accelerator functionality. Its write-
DataToConnexPartial() method performs a blocking I/O transfer with the N short elements
of array C from the CPU memory to the Connex-S LS memory, from offset 0. The OPIN-
CAA Connex-S kernel gets assembled on the CPU when the OPINCAA program is running
and starts being executed on the accelerator only when the CPU enters executeKernel().
readReduction() also is a blocking method, which waits in this case for the only reduc-
tion result from the kernel provided by the last vector instruction. Note that we use in
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the OPINCAA Connex-S code a symbolic C/C++ operand for the number of iterations of
the REPEAT instruction, which is to be translated to an immediate operand during the
assembling, at runtime.

We also address the correctness of the generated Connex-S OPINCAA vector-length
agnostic code in the case the trip count of the vectorized loop is not a multiple of CV L:
we pad in method writeDataToConnexPartial() executed on the CPU array C with zero
elements such that it occupies an integer number of vectors.

It is important to note again that this OPINCAA program performs CV L-parametric
strip-mining and uses the CVL environment variable, which informs the program what is
the number of lanes, s.t. it can run on a Connex-S accelerator with an arbitrary CV L.

// Assume N ∗ s i z e o f ( short ) <=
// CONNEX MEM SIZE
short SumReduce ( short ∗C, int N) {

short sum = 0 ;

for ( int i = 0 ; i < N; ++i )
sum += C[ i ] ;

return sum ;
}

Listing 1. C source pro-
gram for array sum-
reduction

int CONNEX VL;
#define CVL CONNEX VL /∗ f o r r e a d a b i l i t y ∗/
short SumReduce ( short ∗C, int N) {

short sum = 0 ;

// I f N % CVL != 0 we pad d a t a w i t h 0
connexGlobal−>writeDataToConnexPartial (

C, N, 0 /∗ LS memory o f f s e t ∗/ ) ;

BEGIN KERNEL(”SumReduce” ) ;
EXECUTE IN ALL(

R(0) = 0 ; R(1) = 1 ; R(2) = 0 ;
R(3) = 0 ; /∗ a c c um u l a t o r ∗/
// CVL s t r i p −mined d o t p r o d u c t
REPEAT((N / CVL) + ((N % CVL) > 0 ) ) ;

R(4) = LS [R( 2 ) ] ;
R(2) = R(2) + R( 1 ) ;
R(3) = R(3) + R( 4 ) ;

END REPEAT;

RED R( 3 ) ;
) ;

END KERNEL(”SumReduce” ) ;

connexGlobal−>executeKerne l ( ”SumReduce” ) ;
sum = connexGlobal−>readReduction ( ) ;

return sum ;
}

Listing 2. The OPINCAA
program generated by the
Connex-S OPINCAA LLVM
compiler from the code from
Listing 1

6. Experiments

We now evaluate the performance of the code generated by our optimizing compiler.
For experiments, we use a Zedboard development platform with the Xilinx Zynq-7020

SoC, with an ArchLinux 1.4 distribution with Linux kernel 3.14.0, and GCC 8.2.0. Connex-S
OPINCAA LLVM [2] is based on LLVM 8.0 from Mar 2019, with a LoopVectorize pass from
LLVM 3.8, and the OPINCAA library is available for download at [3].

We refer the reader to our previous paper [16], which contains a few more experiments.
We present in Figure 3 the performance speedups of a few benchmarks written in

C when running on a Connex-S machine with 128 lanes and an LS memory of 1024 lines
synthesized on the Xilinx Zynq-7020 FPGA, clocked at 100 MHz w.r.t. the dual-core ARM
Cortex A9 processor integrated into the Zynq SoC, at 667 MHz, equipped with an 8-stage
superscalar pipeline with 128-bit NEON SIMD support - the board setup also is described
by B̂ıră et al. [12]. Connex-S uses most of the resources of the FPGA. Note that on ARM,
just as on Connex-S, we run the benchmarks compiled with maximum optimization level.
Note that we do not perform loop tiling transformations on ARM since GCC offers little
support for it and ARMv7’s speculative hardware prefetcher is poor, not suitable for tiling.

All the benchmarks employ arrays with elements of native type 16-bit integer (i16),
or of emulated types 32-bit integer (i32) and 16-bit floating-point (f16). The benchmarks
perform: matrix multiplication (MatMul) for sizes 128×128, and 256×256, the second matrix
being already transposed to allow better vectorization; Sum of Squared Differences (SSD-
1024) and Sum of Absolute Differences (SAD-1024), standard functions used in computer
vision, compute statistics for all pairs of two groups of 64, 64 or 32 collections of 1024 i16,
f16 or i32 elements, respectively. All these kernels, except MatMul-128, have input data
of 256 KB, the size of the LS memory. Also, MatMul-256.i32 requires tiling because its
memory footprint is bigger than the 256 KB of the SPM.
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M
at

M
ul

-1
28

M
at

M
ul

-2
56

SS
D
-1

02
4

SA
D
-1

02
4

0.25

0.5

1

2

4

8

16

5.33
6.34

6.94

12.24

0.33

0.43

0.32
0.37

1.51
1.8

2.4

3.7

i16 i32(emulated) f16(emulated)

Fig. 3. Semi-log plot with speedups of the benchmarks on Connex-S with 128

lanes, at 100 MHz w.r.t. the dual-core ARM Cortex A9 at 667 MHz with two

128-bit NEON SIMD units

All i32 benchmarks achieve a subunitary speedup because of the big complexity of
the i32 arithmetic operations emulated on Connex-S and because GCC vectorizes programs
with i32 type for ARM. To be able to actually accelerate these i32 benchmarks on Connex-S,
we should run them on a wider vector processor: for example, SAD-1024.i32 on a Connex-S
with 512 lanes should achieve a speedup factor of 1.4.

We experience a decent acceleration of the f16 benchmarks because ARMv7 does not
support the f16 type natively either, so it has to convert it to f32 to perform native operations
and then revert to f16, and these conversion operations have a big cost. A less important
reason is the fact GCC 8.2 is unable to vectorize floating-point operations for ARM NEON.

We now measure the energy consumed by Connex-S and the Cortex A9 CPU inte-
grated into the Zynq SoC when running our benchmarks. To measure the power consumption
of Connex-S and the ARM CPU integrated into the Zynq SoC reported in Table 1 we use a
daughtercard for Zedboard, which puts in contact the Current Sense and the XADC Header
connectors of Zedboard, the latter being the interface to Xilinx’s Analog Mixed Signal (AMS)
module. We read the XADC registers from the Linux file system to obtain the instantaneous
power consumption every 0.1 seconds. We can also sample ten times faster, which seems it
is not too invasive and should increase precision. Then, we compute the energy consumption
using the integration trapezoidal rule given the measured power values.

Breaking down the energy consumption of the ARM CPU from the FPGA on the
Zynq-7020 SoC is somewhat difficult. Fortunately, we use the existing linear regressive
model of the ARM Cortex A9 CPU integrated into the Zynq-7020 SoC from Wu et al. [50]
to determine the idle power consumption of Cortex A9 with a standard Linux distribution,
which in our case is 0.224 Watts. We also use the Xilinx Power Estimator model of the CPU
to estimate the idle power consumption of the ARM processor with a load of 2% [51] and
obtain a similar result.

We see in Table 1 that the energy consumption of Connex-S is better for tests with i16
type w.r.t. the ARM Cortex A9 given the fact we achieve high speedups, but worse for types
i32 and f16. We note that the energy-saving ratio is almost constantly proportional to the
execution time speedup with a factor of 0.3x. This indicates the average power consumption
of Connex-S and the CPU is almost constant for all our benchmarks. We remind that
our Connex-S accelerator being currently implemented in an FPGA consumes an order of
magnitude more power than a dedicated IC such as the one reported in Maliţa et al. [33].
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We present in Table 2 with the energy consumption of the Connex-S assembly in-
structions. Power consumption varies also with ambient temperature, but we are able to
adjust the power of idle functioning of the Zynq-7020 SoC to perform useful measurements
of our benchmarks on the CPU or the accelerator.

Table 1. The energy consumption in Joules of the benchmarks when exe-

cuted on Connex-S with 128 lanes, clocked at 100 MHz, together with the CPU

performing just I/O - see column Connex-S + CPUI/O. Also the consumption

of the same tasks running just on the dual-core ARM Cortex A9 at 667 MHz

together with Linux OS - see column CPU. We also present the energy-saving

ratio when running on Connex-S instead of CPU and compare it to the execution

time speedup.

Benchmark Connex-S + CPUI/O CPU Eng.-saving ratio Ratio / speedup
MatMul-128.i16 0.003115 0.004374 1.404x 0.263x
MatMul-256.i16 0.022218 0.039128 1.761x 0.278x

SSD-1024.i16 0.005047 0.012177 2.413x 0.348x
SAD-1024.i16 0.005572 0.020857 3.356x 0.274x

MatMul-128.i32 0.019287 0.002644 0.137x 0.415x
MatMul-256.i32 0.190326552 0.031266 0.163x 0.382x

SSD.i32 0.013613 0.001497 0.11x 0.344x
SAD.i32 0.014783 0.001742 0.118x 0.319x

MatMul-128.f16 0.148319 0.062082 0.419x 0.277x

We observe from Table 2 that: i) nop has the smallest energy consumption, for the ob-
vious reason it does not perform any computation; ii) all arithmetic and logical instructions,
except multlo and multhi, which only copy registers, consume a similar energy quantity,
with an average of 11.41 nJ; iii) vload is more energy consuming than ldix because vload’s
immediate operand value is transmitted from the controller to each lane, while ldix loads
the value from the execution unit itself; iv) a bit surprisingly, cellshl and cellshr consume
little energy because of the locality of the data movements in each cycle.

We have included the values from Table 2 in our OPINCAA architectural simulator,
in order to provide a simple power model for our Connex-S processor to estimate the energy
consumption of the accelerator when executing a vector kernel. It is easy to adapt our power
model for a different Connex-S processor implementation such as a dedicated IC.

A widely used metric is the performance per Watt, which is the arithmetic instruc-
tion throughput of a processor divided by the average power consumption. We compute
this metric for Connex-S by using the number of equivalent integer or floating-point scalar
operations, divided by the execution time and power. For the MatMul-128 benchmark, we
achieve on Connex-S 1.12 GOPS/Watt for type i16, 0.172 GOPS/Watt for type i32, and
0.031 GFLOPS/Watt for type f16.

In Table 3 we show the energy consumption variation of the MatMul-128.i16 kernel
w.r.t. the Connex-S width, CV L. We note that increasing CV L leads to saving energy since
we decrease the number of vector instructions required to execute the kernel and keep the
power consumption of the instruction sequencer basically constant, which makes the energy
efficiency of a vector instruction grow together with the CV L. This is why, for example,
Connex-S with 128 lanes consumes 1.6, respectively 1.8 times less energy than Connex-S
with CV L 32. This trend can also be noticed in Figure 14 of Waeijen et al. [47] for a vector
processor similar to ours. Also, Inoue [25] notices that using the SIMD units on a multi-core
x86 processor for an application performing sorting saves energy, even if it increases the
average power.
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Table 2. The average energy consumption in nanojoules when executing a

vector assembly instruction or I/O primitive on Connex-S with 128 lanes, clocked

at 100 MHz. All assembly instructions take 1 cycle to be processed. We provide

random input operands to the vector instructions. For comparison, the energy

consumption of an add or sub scalar instruction of the Cortex A9 host is 0.1 nJ.

Connex-S Instruction Avg. eng. consumption [nJ]
add 12.1
sub 12.2
addc 12.2
subc 12.2

mult[.u16] 12.6
multlo 0.5
multhi 0.5
not 7.5
or 11.5
and 11.8
xor 12.5
shl 12.0
ishl 12.1
shr 12.0
ishr 12.0
ishra 12.4

popcnt 7.2
eq 10.5
lt 10.8
ult 10.8

iread 2.6
read 5.6
iwrite 9.9
write 12.8
ldix 0.5
vload 8.4

endwhere 0.1
whereeq 0.1
wherelt 0.1
wherecry 0.1

disablecells 1.7
enableallcells 0.1

setlc 0.15
ijmpnzdec 0.15

nop 0.1
cellshl 0.2
cellshr 0.2

red[.u16] with readReduction(), for 1 cycle 23
vector kernel transfer for 1 instruction 9.5

writeDataToConnex() for 1 cycle 3.8

Table 3. The energy consumption in Joules of the MatMul-128.i16 benchmark

for different Connex-S processors with 32, 64 and 128 lanes, clocked at 100 MHz.

We also present the number of vector instructions executed for each experiment

and the ratio of the energy saving w.r.t. the consumption for 32 lanes when CV L

is 64 or 128.

CV L 32 64 128
Energy consumption 0.005708 [J] 0.003801 [J] 0.003115 [J]
num. vector instr. 557,950 328,574 213,886
ratio wrt CVL=32 1.0x 1.5x 1.8324x

7. Conclusions

This paper described how we efficiently compile sequential C programs to obtain
vector-length agnostic (VLA) code for the wide Connex-S vector accelerator. The generated
C++ program with host code and Connex-S assembler code uses the OPINCAA JIT vector
assembler and coordination library, which can run the VLA code on accelerators of different
width.

The Connex-S OPINCAA LLVM compiler generates code of good quality. We report
speedups of up to 12.24 when using the Connex-S vector accelerator with 128 lanes clocked
at a frequency of 100 MHz w.r.t. the dual-core ARM Cortex A9 running at 667 MHz. Also,
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we achieve a modest energy efficiency improvement average of 1.1 times when accelerating
on Connex-S the computation. However, we could save at least an order of magnitude
more energy when using a reported prototype Connex-S dedicated integrated circuit also
fabricated in 28nm technology [33].

Our most original contributions in the Connex-S OPINCAA LLVM compiler are: i)
achieving VLA compilation in LLVM, which is something novel, basically only done for the
ARM SVE ISA extension for both LLVM and GCC, and for the .Net IR in order to target
arbitrary SIMD ISAs [40]; ii) the simple instruction set supports only 16-bit integer native
arithmetic vector operations, which forces us to emulate efficiently other useful types like
16-bit floating-point and 32-bit integer using a combination of manual and simple compiler
optimizations.

For a complete description of the compiler, more details on the Connex-S architecture
and on the energy measurements we invite the reader to consult the author’s PhD thesis.
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[12] C. B̂ıră, R. Hobincu, et al. Energy-Efficient Computation of L1 and L2 Norms on a FPGA
SIMD Accelerator, with Applications to Visual Search. In CSCC’14.
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