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A PARABOLIC p-BIHARMONIC EQUATION WITH LOGARITHMIC
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We study a parabolic p-biharmonic equation with the logarithmic nonlinearity.
Based on the difference and variation methods, we prove the existence of weak solu-
tions for the initial boundary problem. We also discuss the large time behavior and the
propagation of perturbations of solutions.
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1. Introduction

In this paper, we study the parabolic p-biharmonic equation with the logarithmic
nonlinearity
0
87;& + A(JAu|P2Au) = Mu|? 2ulog(|ul), =€, t>0, (1)
where A > 0,p > ¢ > 5+1,p> 5, Q CR" is a bounded domain with the smooth boundary.

The equation (1) is supplemented with the natural boundary value conditions
u=Au=0, z€0 t>0, (2)
and the initial value condition
u(z,0) = uo(z), =z €. (3)
In the past years, the p-biharmonic equation has been intensively studied. Kefi and
Radulescu [11] investigated the p(z)-biharmonic equation
A(|AuP@ =2 Aw) + a(z)|uP@ =20 = M(Vi(2)|u]7®) 20 — Va(x)u|*®)~2y).

They proved the existence of at least one nontrivial weak solution. Liu, Chen and Al-
muaalemi [13] studied

A(|Au|P72Au) + V(2)|uP?u = f(z,u).

They obtained the existence of the Nehari type ground state solutions. Pavel Drabek and
Mitsuharu Otani [6] considered the following equation

A(|Au|P2Au) = MulP~2u (4)

and proved that (4) and (2) had a principal positive eigenvalue A; which is simple and
isolated. However, only a few papers are devoted to the parabolic p-biharmonic equation.
Hao and Zhou [7] studied the nonlocal p-biharmonic parabolic equation

ou
— + A(JAulP2Au) = |u|? — |u|?dz.
at o
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They proved the blow-up, extinction and non-extinction of the solutions to the equation.
The relevant equations have also been studied in [1, 12, 16].

In this paper, we study the parabolic p-biharmonic equation with the logarithmic non-
linearity. The second order parabolic equation with the logarithmic nonlinearity is diffusely
studied. Chen considered the semilinear heat equation with the logarithmic nonlinearity [3]
and the semilinear pseudo-parabolic equations with the logarithmic nonlinearity [4]. Ji, Yin
and Cao [10] established the existence of positive periodic solutions and discussed the in-
stability of such solutions for the semilinear pseudo-parabolic equation with the logarithmic
source. Nhana and Truongc [14] discussed the equation

up = Auy — Ayu = [ulP~>ulog(Jul),
where A, is the p-Laplacian. He, Gao and Wang [9] study the pseudo-parabolic p-Laplacian
equation
up — Aug — Apu = [u|9?ulog(|ul).
In this paper, we first study the existence of weak solutions for the problem (1)-(3).
Now, we introduce weak solutions in the sense as following

Definition 1.1. A function u is said to be a weak solution of the problem (1)—(3), if the
following conditions are satisfied:
1) we L=(0,T;WiP(Q)) N C(0,T; LA(Q)),
% € L>(0,T; W‘Q’p/(ﬂ)), where p’ is the conjugate exponent of p;
2) For any ¢ € C§°(Qr), the following integral equality holds:

—// u%—fdxdt+ // |Au|P2 AuApdrdt — )\// |u|?2ulog(|u|)pdzdt = 0;
T T Qr

3) u(z,0) = up(x), in L*(Q)

This paper is arranged as follows. We first discuss the existence of weak solutions
by employing the variation methods in Section 2. Based on the energy techniques, Hardy
inequality and Poincaré inequality, we also obtain the large time behavior and the finite
speed of propagation of perturbations subsequently.

2. Existence
Let k£ be a nonnegative integer, p > 1. The family of functions
{u; D*u € LP(Q), for any « with |a| < k}

with the norm
1/p

sy = [ 3 1D%upds
2 jal<k
is called a Sobolev space, denoted by WP ((Q). W(f’p(ﬂ) denotes the closure of C§°(f2) in
Wkp(Q).
In this section, we are going to study the existence of weak solutions. Next, we state
the main result.

Theorem 2.1. Assume that ug € WP (Q), p > ¢ > 2+1,p>%. Then the problem (1)-(3)
admits at least one weak solution.

To prove the Theorem 2.1, we first consider the following elliptic problem

1

7 (k1 — ) + A(|Atgegr [P Augrr) — Augs1]|" > ups1 log(Jugsa|) = 0, (5)
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=A =0, k=0,1,---,N—1, 6
Ykt1 o Uk+1 o ( )

where h = N, ug is the initial value.

Now, we state and prove a preliminary result.
Lemma 2.1. For any fized k, if ui, € L?(2), the problem (5)-(6) admits a weak solution
U1 € WiP(), such that for any ¢ € C§°(Q), there holds

1
E/Q(uk_,_lfuk)gpdx+/Q|Auk+1\p72Auk+1Ag0dx

A a2 log (s e = 0. (7)
Q

Proof. We introduce the following functionals on the space Wy (Q)

1
:f/ |Au|Pdz,
bJa
1
=5 | Iz
:—f/ |u|?log(|u]) dx—i——/ |ul?dx,

Hu] = Flu] + G[ |+ AE[u] — qudx

where f € L?(f2) is a known function. By the Sobolev imbedding theorem, the Young
inequality, the Poincaré inequality and the fact u=#logu < (ep)™!, for u > 1, u > 0, we see
that for C’1 >0,

/\Au\pdw—i——/ |ul d:r—f/ |u|? log(|u|) dx—l——/ |u|qu—/fud$
> [1aupde s oo [ upae -2 [ ultog(Jul)dr
{zeQ;lu(z)|>21}
+—2/ |u|qu—/fudm
/\Au\pdaer /\u|2dx (ep)™ /|u|q+”dx+ /|u\qu7/fudac

— \Au\pdx—k—/ \u|2dx—€/ |Vu|pda:+—2/ luldz — | fudz—C
Q 2h Jo Q a Jo 9

>5[ 1aupds—cy / \f[2dz — C
Q
Recalling u|ag = 0 and the L? theory for elliptic equation([5]), we know
[ullw=r < CllAu] .

Hence H[u] — 400, if ||uly2» — +00, which shows that H[u] satisfies the coercive condi-
tion. Furthermore, H[u] is weakly lower semicontinuous on Wo2 P(Q). So, it follows from the
theory in [2] that there exists u, € W:*(£), such that

Hlu,] = inf H[u],

and u, is the weak solution of the Euler equation corresponding to H[u], namely

1
U+ A(AuP 2 Auw) = Ajul*Pulog(fu]) = f
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Choosing [ = %u;€7 we obtain the desired conclusion. The proof is complete.

Now, we construct an approximate solution u" of the problem (1)-(3) by defining

u(z,t) = up(z), kh<t<(k+1)h, k=0,1,---,N —1,

ul(x,0) = ug(z).

The desired solution of the problem (1)-(3) will be obtained as the limit of some subsequence

of {u"}. To this purpose, we need some uniform estimates on u”.

Lemma 2.2. If u be a weak solution of the problem (5)-(6), the following estimates hold

N
hZ/ |Aug|Pdx < C,
k=17
sup / |Au" (z,t)[Pdz < C,
0<t<T JQ

where C' is a constant independent of h, k.

Proof. i) Taking ¢ = ug41 in the integral equality (7), we deduce
1
E/ |ugr1]?dz —|—/ |Augq|Pdx
Q Q
1
:E/ ukﬂukdx—i—)\/ |ug+1|? log(|ugs1|)dx
Q Q

Using the Young inequality (ab < %aQ + %bz)7 we see that
1 2
— |uk+1| de + | |Augqq|Pdx
Q

_ﬂh/h%wm+ h/hwﬂﬁm+A/WwHWbawmﬂMx
Q Q

that is

1
ﬁ/ |uk+1|2dw+/ IAUk+1|pd9€—)\/ |uk-+1]? log(|uk+1])da
Q Q

_Zh/ |uk| dx.

Summing up these inequalities for k& from 0 to NV — 1, we have

N N
1
h / Auy|Pdx — hA /ukqlog u, dng/ uo|?dx.
,;:1 Q| | k§:1 Q| |*1og(|uxl) 5 Q| ol

On the other hand, by (10), we derive

1
f/ |u;€+1\2dx—|—/ |Augy1|Pda
Q

_%/Wderh/wHﬁM+/ | Yog (1 [}z
Q {ze|upt1(x)|>1}

(8)

(9)

(10)
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The fact u=*logu < (ea)™!, for u > 1, a > 0 yields

1
7/ \uk+1|2dac+/ |Au;€+1\pdx

1
g—/ \uk|2dx+/\(eoz)_1/ [wpt1 |7 da
2h Jq {ze|up41(z)|>1}
1 1
<3h /Q fur Pder + /Q | Ay [Pde. (12)

Summing (12) on k from 0 to N — 1 and canceling the same terms on both sides, that yields

N
hZ/ |Auk|pdx§2/ luo|?dzx.
k=1 @

Therefore, (8) holds.
ii) Choosing ¢ = ug11 — ug in the (7) and integrating by parts, we know

1
E/ | g1 fuk|2dx+/ |Auk+1|p72Auk+1A(uk+1 — ug)dx
Q Q

=\ / |2t V08t ) (s — i)
Q

=y 117 2ug 1 Yo (1) (1 — )l
{xeupi1(x)|>1}

oy 1172 g1 108 (1)) (a1 — )
{zr€Q;|upr1(z)|<1}

S)\/ |Uk+1|q_2ulc+1 log(|uk+1|)(uk+1 - Uk)d33

{z€Q;lupt1(z)[>1}

1
FAC(h) / g2 [27-2 20 4 / 1 — ug|2da
2h Jq

{zeQ|upt1(z)|<1}
Since the first term of the left hand side of the above equality is nonnegative, it follows that

/‘Auk+1|pd$§/|AUk+1|p_2Auk+1Aukdx

Q Q

+>\/ [u+1|? log(|up1])de
{z€Q;|up11(x)|>1}

- A 1|7 *upgr log(|ug 1| urde
{z€Q;lupt1(z)[>1}

+ )\C’(h)/ |ug 1?22

{zeQ|up41(z)|<1}

-1 1
L= / | Aty [Pdz + —e= (P~ / | Au|Pda
p Q p Q

+ )‘/ [uk+1|? log(|uk41])da
{re|urt1(@)[ 21}

B )‘/ [up 1|7 2upy1 log(|upy 1| urde
{z€Q;|up11(x)|>1}

+AC(h) / g1 [27228 d

{z€Q;|up41(x)|<1}

-1 1
=L 5/ | Atgqq [Pdz + =P~ / |Aug|Pdx + I + Iy + I5.
p Q p Q
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Noting that
= / k1|7 e < / g1 du,
{zeQ|up41(x)|>1} Q

taking a = p — ¢, we obtain

Il g/ |uk+1|pdx.
Q

In addition, by the Holder inequality, we derive

- ksl ogfup 1 )
{zeQlug 41 ()21}

1 _(o—
azer [ | Log s 4|
q {ze€|up41(z)[>1}

=1, + 1.
Similar to the proof of the Iy,

q—1

|I2] <A

q—1
q
It follows from the Young inequality,

I, <A

—1
51/ \uk+1|q+ad:c§)\q 51/ |ugy1|Pda.
Q q Q

1 _—
I <h-ep 1)/ g | g2 | d
q {ze|ups1(z)|>1}

1 g
<—g; (e 1)252/
q p {z€|upt1(z)|>1}

1 . _ —q ——1
+ )\781 (¢-1)P qE P—q
q

|ug|Pdx

2 |upt1[Pdz
p {z€Qs|upy1(z)[>1}

1 -
<A=g U 1)g€2/ |ug|Pdz
q p Q
1 _(,_ —q -1
Azeg VB E = / U1 |Pda.
q p Q
For I3, by ¢ > £ + 1, we have

Ig § )\C(h7ﬁ)/ |uk+1|pdac.
Q

On the other hand, using the Poincaré inequality, we know

/|u|pdx§C/ |Au|Pdz.
Q Q

Combining the above estimates, we obtain

1 1 1 RS
(1 Ak P 10 -0~ Age—@—lﬂ%@ o /\C(h,ﬁ)(]) / | Awg1 |Pdz
Q

p
L1 _ I -4
< =P — A=Y 2O |Aug|Pda.
p q p Q
Chosing suitable €, €1, €5 and letting A sufficiently small, we have
—1 -1 1 —q -
12 e Ao a0 - Aag—@—l)ugz 10— \C(h, B)C

p p
1

ey 3,02
p q p
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For any m with 1 < m < N — 1, summing up the above inequality for & from 0 to m — 1,

we get
/\Aum|pda:§/|Auo\de.
Q Q

Hence (9) holds. O

Lemma 2.3. Let upi1 be the weak solution of the problem (5)-(6). Then the following
estimate holds

—Ch S/ |uk+1|2dI*/ lug|*dz < 0, (13)
Q Q

where C is a constant independent of h.

Proof. To prove the first inequality, choosing ¢ = uy as a test function in (7), integrating
by parts, we derive

1 1
E/ |u |2dx :E,/ uk+1ukdx—|—/ |Agy 1P 2 Aup g1 Augda
Q Q Q

+)\/ [ug1]7 2 log(|upp1|)ups1urde.
Q

The Holder inequality and the estimate (9) imply

1 1 -1 1
f/ g |2 da Sf/uk_HukderL/ |Auk+1|p+f/ |Aug |Pdx
h Ja h Jo b Ja b Ja

+C’/ |uk+1|pdx+C’/ |ug|Pdx
Q Q

1 1
<— 2dr + — %d .
<gi | tnPdo+ 5o [ juPderc

—Chg/ |uk+1\2da:—/ lug |2da.
Q Q

In addition, using (12) again, we see that

/\uk+1|2daﬁ—/|uk|2dm§0.
Q Q

The proof is complete. O

So, we obtain

Proof of Theorem 2.1. First, we define the operator A* by A*(Au”) = |Aug|P~2Auy, Alul =
Ug41 — Uk, where kh < ¢t < (k+1)h, k =0,1,--- , N — 1. By the equation (5) and (8) in
Lemma 2.2, we know that

1
EAhuh is bounded in  L>(0,T; (WP (Q))). (14)

Combining (7), (9), with (14) and employing the compactness results ([15]), we conclude
that there exists a subsequence of {u} (which we denote as the original sequence), such
that

uh Bou, in L0, T; WP(Q)),
u = wu, in C(0,T;L*()),

(ues1 —up) = —, in L®(0,T; (W*P(Q))"),
AY(AuM) 2w, in L®(0,T;LP (),
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where p’ is the conjugate exponent of p. Therefore, by (7), we know that, for any ¢ €
CE)X)(QT)7

S (Garete v ataut) s = At og ol o) ot =0,

Sending h — 0 yields

ou

5 + Aw — Nu|P~2ulog |u| = 0, (15)

in the sense of distributions.
Now, we prove that w = |Au|P~?Au a.e. in Q7. Set

t —kh 1
() = / |uk+1|2dac —/ \uk|2dx + 7/ \uk|2dx,

where kh <t < (k+1)h, k=0,1,--- , N — 1. Tt follows from (11) that

/ lug|*dz — Ch < fu(t) /|uk| dz,

and
~C < fr(t) <0
According to the Ascoli-Arzela theorem, there exists a function f(t) € C([0,T]), such that

lim f,(¢t) = f(t) uniformly for ¢ e [0,7].
h—0
Using (13), we have

lim 1/ |u"|?dx = f(t) uniformly for t € [0,T]. (16)
h—0 2

It follows from (11) that

/|uN\ dx+// |Au"Pdxdt — // [u"|1og(ju"|)dzdt < = /|u0\ dx.

Passing to limits as h — 0 in above inequality and using (16), we obtain

lim <// |AulPdzdt — M // lu” |9 log( |uh)dxdt>
h—0 T

T—e

ﬁml (F(t) — f(t+2))dt

e—=0 ¢

e—0 h—0 2¢

T—e
= lim lim —/ / |u(x,))? — [u"(z,t + €)|?)dzdt.

Consider the functional G[u] = 3 [, [u[*dz. Obviously, G[u] is convex and %Lu] = u. Thus,
we get

1
2 Ja

h —uha: 'U;hl' X
sAwwm (2.t + &)l (x, t)d,

1
|ul(x, t)|?dx — 3 |ul(x,t 4 €)2dx
Q
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that is
T—e ; ;
i v ]
}ILILIB 26/ Q(|u (z,t)* — [u" (2, t + €)|*)dadt
T—e¢
/ / (x,t) — u(z,t + €))udzdt.
Therefore

T
lim // (// |Aul|Pdzdt — )\// |uhqlog(|uh|)dxdt) < —/ <@,u>dt,
h=0JJqr Qr Qr o O

where (-, ) denotes inner product. From (15), we conclude that

T
lim // |Auh\pdxdt§/ /wAudxdt. (17)
h—0 Qr 0 Q

Again by 5F[u] A(|Au[P~2Au) and the convexity of F[u], for any g € L>(0,T; WP (Q)),
we know

// |Ag|pdxdt—f// Al \”dxdt>// (AW P2 Au)A(g — u)dadt.

By (17) and the fact that F'(u) is weakly lower semicontinuous, letting h — 0 in the above

equality, we have
1 1
- // |Ag|Pdxdt — — // |Au|Pdxdt
p T p Qr

- //T wA(u — g)dxdt.

Replacing g by €g + u, we see that

1
—(Flu+eg] — // wAgdxdt.
€ Qr

Letting € — 0, which implies that

T u T

Due to the arbitrariness of g, we get the opposite inequality of the above inequality. There-
fore

w = |AulP~2 Aw.
The strong convergence of u" in C(0,T;L?(2)) and the fact that u"(x,0) = ug(x)
implies that u satisfies the initial value condition. The proof is complete. O

3. Large time behavior

This section is devoted to the large time behavior of solutions. To this purpose, we
first show that

Theorem 3.1. Suppose that u be a weak solution obtained in Theorem 2.1, then for any
0<peC*(Q),
1

3 [ Pl Pda =5 [ pla)luo(a) s
_)\// plul®log(|u(z, 7) dxdr—//t|Au|p 2AuA (p(@)u(e, ))dedr,  (18)
where Q; = Q x (0,1).
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Proof. In the proof of Theorem 2.1, we know that
1
f(t) = 5/ u(z, £)2dz € C((0, T]).
Q

Similarly, we can also easily prove that for any 0 < p(z) € C%(Q),
1
1) = 3 [ pwlute.0Pds € C(0.7)).

Consider the functional )
2ol = 5 [ pl@)lota) s,
Q

It is easy to see that ®,[v] is a convex functional on L?().
For any 7 € (0,T) and h > 0, we have
Dplu(r + h)] = @plu(r)] = (u(r + h) — u(7), p(x)u(z, T)).
By &%ﬁﬂ = p(z)v, for any fixed t1,ts € [0,T],t1 < to, integrating the above inequality with
respect to 7 over (t1,t2) , we have

toth ti+h to
/ O, [u(r)]dr — / O, [u(r)]dr > / (u(T + h) — u(71), p(x)u)dr.

to t1 ty

Multiplying the both side of the above inequality by %L, and letting h — 0, we obtain

B, [u(ls)] — ®,[u(ty)] > /

Similarly, we have

Thus

and hence
ou

to
B fut)] = By lut)] = [ (G ayar
Taking t; = 0,t5 = t, we get from the definition of solutions that
Dp[u(t)] = p[u(0)]

t
= [ (A AuP 2 0) + Nl 2ulog(ful). pa)u(r)dr
0
t
0
The proof is complete. O

_ / (|AufP~ Au, Alp(z)u(r)])dr + / (=2 log(u]), p(a)u(r))dr.

Theorem 3.2. Let u be the weak solution of the problem (1)-(3), p > 2. Then
Cs 2
e t)de < ————, C;>0(i=1,2,3)a= ——.
[ lute s < e ( Ja=-25
Proof. Taking p(z) = 1 in the equality (18), we have

1 / (e, t)Pdz — / o () e
2 Ja 2 Jq

t
:-/ / |Au\pd:cdt+)\// (| Tog (|| dazdt. (19)
0 JQ Qt
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Let f(t) =1 [, [u(z,t)|*dz. By (3.2), we have
1
F(8) = —/ AulPdz + /\/ luf? log(|ul)dz < _7/ AulPdz < 0.
Q Q 2 Q

Noticing that u € VVO2 P(Q) and employing the Poincaré inequality, we see that

2/p
/ |u(x,t))?dx < C/ |Au|?dz < C </ |Aupdx) ,
Q Q Q

which implies f(t) < C|f'(t)[*/?.
Again by f(t) <0, we get f'(t) < —Cf(t)?/?, and hence
1 2
wez, t)Pde < ————, a=——,0;>0,i=1,2.
[l < o = 225
The proof is complete. O

4. Finite speed of propagation of solutions

Theorem 4.1. If |6,,(0)] < b, and u is the weak solution of the problem (1)-(3), then for
any fized t > 0, we have

on(t) — o, (0) < Ct* </Ot/Q|Au|pdxdt>ﬂ,

where C is a constant depending on p,n,b; o,(t) = sup{z;x € supp u(-,t)}, 2z = xy,;
a > 0,8 > 0andb > 0 are constants independently of t.

To prove the theorem 4.1, we need the following lemma.
Lemma 4.1. ([1]) Let fs(2) = [°(z — 2)%g(z)dz, 0 < g(x) € L*(Ry), k>0, a > 00 >

z

0, s>1,and0<h<s<w= egfl, Assume fs_p(0) is finite and

fo(2) Sk (foun(2))?, ¥z 20,
Then the support of fo is a bounded interval [0,1] and
1< (w— s+ 1)kT 0w fo(0)ws.

Proof of Theorem 4.1. Without loss of generality, we assume o,(t) > 0. Taking p(z) =
(2 —20)%, 20 > b, s > 2pin (18), we see that

1/(z—Zo)j_|u(:v,t)\2dz
2 Ja

=— /0 /Q |AuP2AuA[(z — z0)% uldedT + )\//Qt(z — 20) |u(7)| log(|u(7)|)dxdr
=1I.

A simple calculation shows that

t
I=-— / / |AuP2AuA[(z — 29)’ uldedT — )\// (z = 20)% |u(r)|Pdxdr
0 JQ Qt

t t
=— / / (z — 20)3 | AulPdadr — 2/ / V[(z = 20)% | Vu| AulP~? Audzdr
0o Jo 0o Jo

t
- / / s(s —1)(2 — 20)5 2u|AulP 2 Audzdr
0o Jo

+ )\// (2 = 20)3% |u(r)|* log(|u(T)|)dzdr.
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The Holder inequality implies

I<-— /t/(z — 20)% |Au|PdxdT + l/t/(z — 20)% |[Au|Pdxdr
+C’1/ / z—20)5 P|VulPdedr + / /|Au|p z — 29)% dxdt
+ Cg/ /(z - zo)i—2p|u|pd$dT + C)\/ /(z — 20)%|u(7)[Pdzdr
— f/ / \Au|pdxdT+C’1/ / z—20)% P|VulPdzdr
+ Cz/ /(z — 20) P |u|Pddr.
0o Ja

In addition, the Hardy inequality [8] shows that

P
) Pludr < (P / — 20) P D ufPda.
/Q(z 20)% PlulPdr < <s—2p—|—1> Q(z 20)% "D ulPdx

Therefore, we get

/(z—zo )E |ul?dx + = // )5 | AulPdxdr

SC’;),/ /(z—zo)i_p|Vu|dedT—|—C4/ /(z—zo)i_p|Dzu|dedT
o Ja 0 Jo

t
§C/ /(z—zo)ifp|Vu|pdxdT,
0 Jo

which implies

sup /(z — 20)% |ul?dz < C// (z — 20) P|Vu|Pdxdr
Q t

0<r<t

// z — 20 +|Au|pdavcl7'<C’// z— z0)5 P|VulPdadr.

Combining the (21) Wlth the Hardy inequality, we obtam

sup /(z — 20)% |ul?dz < C// (z — 20)% | AulPdadr.
Q t

0<r<t

t
Es(zo):// (2 — 20)5 | AulPdadr, Eo(zo):/o /Q|Au|pdacd7'.

Using (22) and the weighted Nirenberg inequality, we see that

Eopi1(z0) < Ch // (z — 20)2 T |VulPdzdr

t a (1—a)p/2
< C’/ </ (z — zo)ﬂ+1|Au|pdx> (/ (z — zo)ﬂ+1|u|2dx> dr,
0o \Jo Q

where 1 5= +2 + a(f - p—_2~_2) + (1 —a)1, therefore

and

Set
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It follows from (23), that

(1-a)p/2
Espyi(z0) <C <// (z — ZO)IJ’r+1Au|Pd:ch> / /((2 - Zo)i+1|Au|Pdm)adT
t 0 JQ

< B (ol ([ = s dupdsar ) o

< CEp+1(ZO)(17a)p/2+atlfa.

We are going to obtain from the above inequality that Au =0 a. e. for zyp > band 0 < 7 < .
By (23), we know that u = 0 a. e. on the same set. By Lemma 4.1, we obtain Theorem 4.1.
The proof is complete. O

5. Conclusions

The parabolic equation with the logarithmic nonlinearity is important. The second
order parabolic equation with the logarithmic nonlinearity is diffusely studied. In this paper,
we study the higher order parabolic equation with the logarithmic nonlinearity. We study
the existence of weak solutions. The main difficulties for treating the problem are caused
by the nonlinearity of the principal part and the logarithmic nonlinearity. The method used
for treating the second order parabolic equation with the logarithmic nonlinearity seems not
applicable to the present situation. Our method is based on the variation methods. Using
the energy techniques, Hardy inequality and Poincaré inequality, we also obtain the large
time behavior and the finite speed of propagation of perturbations subsequently.
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