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A PARABOLIC p-BIHARMONIC EQUATION WITH LOGARITHMIC

NONLINEARITY
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We study a parabolic p-biharmonic equation with the logarithmic nonlinearity.

Based on the difference and variation methods, we prove the existence of weak solu-
tions for the initial boundary problem. We also discuss the large time behavior and the

propagation of perturbations of solutions.
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1. Introduction

In this paper, we study the parabolic p-biharmonic equation with the logarithmic
nonlinearity

∂u

∂t
+∆(|∆u|p−2∆u) = λ|u|q−2u log(|u|), x ∈ Ω, t > 0, (1)

where λ > 0, p > q > p
2 +1, p > n

2 , Ω ⊂ Rn is a bounded domain with the smooth boundary.
The equation (1) is supplemented with the natural boundary value conditions

u = ∆u = 0, x ∈ ∂Ω, t > 0, (2)

and the initial value condition

u(x, 0) = u0(x), x ∈ Ω. (3)

In the past years, the p-biharmonic equation has been intensively studied. Kefi and
Rǎdulescu [11] investigated the p(x)-biharmonic equation

∆(|∆u|p(x)−2∆u) + a(x)|u|p(x)−2u = λ(V1(x)|u|q(x)−2u− V2(x)|u|α(x)−2u).

They proved the existence of at least one nontrivial weak solution. Liu, Chen and Al-
muaalemi [13] studied

∆(|∆u|p−2∆u) + V (x)|u|p−2u = f(x, u).

They obtained the existence of the Nehari type ground state solutions. Pavel Drábek and
Mitsuharu Ôtani [6] considered the following equation

∆(|∆u|p−2∆u) = λ|u|p−2u (4)

and proved that (4) and (2) had a principal positive eigenvalue λ1 which is simple and
isolated. However, only a few papers are devoted to the parabolic p-biharmonic equation.
Hao and Zhou [7] studied the nonlocal p-biharmonic parabolic equation

∂u

∂t
+∆(|∆u|p−2∆u) = |u|q −

∫
−

Ω

|u|qdx.
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They proved the blow-up, extinction and non-extinction of the solutions to the equation.
The relevant equations have also been studied in [1, 12, 16].

In this paper, we study the parabolic p-biharmonic equation with the logarithmic non-
linearity. The second order parabolic equation with the logarithmic nonlinearity is diffusely
studied. Chen considered the semilinear heat equation with the logarithmic nonlinearity [3]
and the semilinear pseudo-parabolic equations with the logarithmic nonlinearity [4]. Ji, Yin
and Cao [10] established the existence of positive periodic solutions and discussed the in-
stability of such solutions for the semilinear pseudo-parabolic equation with the logarithmic
source. Nhana and Truongc [14] discussed the equation

ut −∆ut −∆pu = |u|p−2u log(|u|),

where ∆p is the p-Laplacian. He, Gao and Wang [9] study the pseudo-parabolic p-Laplacian
equation

ut −∆ut −∆pu = |u|q−2u log(|u|).
In this paper, we first study the existence of weak solutions for the problem (1)-(3).

Now, we introduce weak solutions in the sense as following

Definition 1.1. A function u is said to be a weak solution of the problem (1)–(3), if the
following conditions are satisfied:

1) u ∈ L∞(0, T ;W 2,p
0 (Ω)) ∩ C(0, T ;L2(Ω)),

∂u
∂t ∈ L∞(0, T ;W−2,p′

(Ω)), where p′ is the conjugate exponent of p;
2) For any φ ∈ C∞

0 (QT ), the following integral equality holds:

−
∫∫

QT

u
∂φ

∂t
dxdt+

∫∫
QT

|∆u|p−2∆u∆φdxdt− λ

∫∫
QT

|u|q−2u log(|u|)φdxdt = 0;

3) u(x, 0) = u0(x), in L2(Ω)

This paper is arranged as follows. We first discuss the existence of weak solutions
by employing the variation methods in Section 2. Based on the energy techniques, Hardy
inequality and Poincaré inequality, we also obtain the large time behavior and the finite
speed of propagation of perturbations subsequently.

2. Existence

Let k be a nonnegative integer, p > 1. The family of functions

{u;Dαu ∈ Lp(Ω), for any α with |α| ≤ k}

with the norm

∥u∥Wk,p(Ω) =

∫
Ω

∑
|α|≤k

|Dαu|pdx

1/p

is called a Sobolev space, denoted by W k,p(Ω). W k,p
0 (Ω) denotes the closure of C∞

0 (Ω) in
W k,p(Ω).

In this section, we are going to study the existence of weak solutions. Next, we state
the main result.

Theorem 2.1. Assume that u0 ∈ W 2,p
0 (Ω), p > q > p

2 +1, p > n
2 . Then the problem (1)-(3)

admits at least one weak solution.

To prove the Theorem 2.1, we first consider the following elliptic problem

1

h
(uk+1 − uk) + ∆(|∆uk+1|p−2∆uk+1)− λ|uk+1|q−2uk+1 log(|uk+1|) = 0, (5)
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uk+1

∣∣∣
∂Ω

= ∆uk+1

∣∣∣
∂Ω

= 0, k = 0, 1, · · · , N − 1, (6)

where h = T
N , u0 is the initial value.

Now, we state and prove a preliminary result.

Lemma 2.1. For any fixed k, if uk ∈ L2(Ω), the problem (5)-(6) admits a weak solution

uk+1 ∈ W 2,p
0 (Ω), such that for any φ ∈ C∞

0 (Ω), there holds

1

h

∫
Ω

(uk+1 − uk)φdx+

∫
Ω

|∆uk+1|p−2∆uk+1∆φdx

− λ

∫
Ω

|uk+1|q−2uk+1 log(|uk+1|)φdx = 0. (7)

Proof. We introduce the following functionals on the space W 2,p
0 (Ω)

F [u] =
1

p

∫
Ω

|∆u|pdx,

G[u] =
1

2

∫
Ω

|u|2dx,

E[u] = −1

q

∫
Ω

|u|q log(|u|)dx+
1

q2

∫
Ω

|u|qdx,

H[u] = F [u] +
1

h
G[u] + λE[u]−

∫
Ω

fudx,

where f ∈ L2(Ω) is a known function. By the Sobolev imbedding theorem, the Young
inequality, the Poincaré inequality and the fact u−µ log u ≤ (eµ)−1, for u ≥ 1, µ > 0, we see
that for C1 > 0,

H[u]

=
1

p

∫
Ω

|∆u|pdx+
1

2h

∫
Ω

|u|2dx− λ

q

∫
Ω

|u|q log(|u|)dx+
λ

q2

∫
Ω

|u|qdx−
∫
Ω

fudx

≥1

p

∫
Ω

|∆u|pdx+
1

2h

∫
Ω

|u|2dx− λ

q

∫
{x∈Ω;|u(x)|≥1}

|u|q log(|u|)dx

+
λ

q2

∫
Ω

|u|qdx−
∫
Ω

fudx

≥1

p

∫
Ω

|∆u|pdx+
1

2h

∫
Ω

|u|2dx− (eµ)−1λ

q

∫
Ω

|u|q+µdx+
λ

q2

∫
Ω

|u|qdx−
∫
Ω

fudx

≥1

p

∫
Ω

|∆u|pdx+
1

2h

∫
Ω

|u|2dx− ε

∫
Ω

|∇u|pdx+
λ

q2

∫
Ω

|u|qdx−
∫
Ω

fudx− C

≥ 1

2p

∫
Ω

|∆u|pdx− C1

∫
Ω

|f |2dx− C.

Recalling u|∂Ω = 0 and the Lp theory for elliptic equation([5]), we know

∥u∥W 2,p ≤ C∥∆u∥Lp .

Hence H[u] → +∞, if ∥u∥W 2,p → +∞, which shows that H[u] satisfies the coercive condi-

tion. Furthermore, H[u] is weakly lower semicontinuous on W 2,p
0 (Ω). So, it follows from the

theory in [2] that there exists u∗ ∈ W 2,p
0 (Ω), such that

H[u∗] = infH[u],

and u∗ is the weak solution of the Euler equation corresponding to H[u], namely

1

h
u+∆(|∆u|p−2∆u)− λ|u|q−2u log(|u|) = f.
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Choosing f = 1
huk, we obtain the desired conclusion. The proof is complete. �

Now, we construct an approximate solution uh of the problem (1)-(3) by defining

uh(x, t) = uk(x), kh < t ≤ (k + 1)h, k = 0, 1, · · · , N − 1,

uh(x, 0) = u0(x).

The desired solution of the problem (1)-(3) will be obtained as the limit of some subsequence
of {uh}. To this purpose, we need some uniform estimates on uh.

Lemma 2.2. If uk be a weak solution of the problem (5)-(6), the following estimates hold

h

N∑
k=1

∫
Ω

|∆uk|pdx ≤ C, (8)

sup
0<t<T

∫
Ω

|∆uh(x, t)|pdx ≤ C, (9)

where C is a constant independent of h, k.

Proof. i) Taking φ = uk+1 in the integral equality (7), we deduce

1

h

∫
Ω

|uk+1|2dx+

∫
Ω

|∆uk+1|pdx

=
1

h

∫
Ω

uk+1ukdx+ λ

∫
Ω

|uk+1|q log(|uk+1|)dx. (10)

Using the Young inequality (ab ≤ 1
2a

2 + 1
2b

2), we see that

1

h

∫
Ω

|uk+1|2dx+

∫
Ω

|∆uk+1|pdx

≤ 1

2h

∫
Ω

|uk|2dx+
1

2h

∫
Ω

|uk+1|2dx+ λ

∫
Ω

|uk+1|q log(|uk+1|)dx,

that is

1

2h

∫
Ω

|uk+1|2dx+

∫
Ω

|∆uk+1|pdx− λ

∫
Ω

|uk+1|q log(|uk+1|)dx

≤ 1

2h

∫
Ω

|uk|2dx. (11)

Summing up these inequalities for k from 0 to N − 1, we have

h

N∑
k=1

∫
Ω

|∆uk|pdx− hλ

N∑
k=1

∫
Ω

|uk|q log(|uk|)dx ≤ 1

2

∫
Ω

|u0|2dx.

On the other hand, by (10), we derive

1

h

∫
Ω

|uk+1|2dx+

∫
Ω

|∆uk+1|pdx

≤ 1

2h

∫
Ω

|uk|2dx+
1

2h

∫
Ω

|uk+1|2dx+

∫
{x∈Ω;|uk+1(x)|≥1}

|uk+1|q log(|uk+1|)dx.
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The fact u−α log u ≤ (eα)−1, for u ≥ 1, α > 0 yields

1

2h

∫
Ω

|uk+1|2dx+

∫
Ω

|∆uk+1|pdx

≤ 1

2h

∫
Ω

|uk|2dx+ λ(eα)−1

∫
{x∈Ω;|uk+1(x)|≥1}

|uk+1|q+αdx

≤ 1

2h

∫
Ω

|uk|2dx+
1

2

∫
Ω

|∆uk+1|pdx. (12)

Summing (12) on k from 0 to N −1 and canceling the same terms on both sides, that yields

h

N∑
k=1

∫
Ω

|∆uk|pdx ≤ 2

∫
Ω

|u0|2dx.

Therefore, (8) holds.
ii) Choosing φ = uk+1 − uk in the (7) and integrating by parts, we know

1

h

∫
Ω

|uk+1 − uk|2dx+

∫
Ω

|∆uk+1|p−2∆uk+1∆(uk+1 − uk)dx

=λ

∫
Ω

|uk+1|q−2uk+1 log(|uk+1|)(uk+1 − uk)dx

=λ

∫
{x∈Ω;|uk+1(x)|≥1}

|uk+1|q−2uk+1 log(|uk+1|)(uk+1 − uk)dx

+ λ

∫
{x∈Ω;|uk+1(x)|<1}

|uk+1|q−2uk+1 log(|uk+1|)(uk+1 − uk)dx

≤λ

∫
{x∈Ω;|uk+1(x)|≥1}

|uk+1|q−2uk+1 log(|uk+1|)(uk+1 − uk)dx

+ λC(h)

∫
{x∈Ω;|uk+1(x)|<1}

|uk+1|2q−2−2αdx+
1

2h

∫
Ω

|uk+1 − uk|2dx.

Since the first term of the left hand side of the above equality is nonnegative, it follows that∫
Ω

|∆uk+1|pdx ≤
∫
Ω

|∆uk+1|p−2∆uk+1∆ukdx

+ λ

∫
{x∈Ω;|uk+1(x)|≥1}

|uk+1|q log(|uk+1|)dx

− λ

∫
{x∈Ω;|uk+1(x)|≥1}

|uk+1|q−2uk+1 log(|uk+1|)ukdx

+ λC(h)

∫
{x∈Ω;|uk+1(x)|<1}

|uk+1|2q−2−2αdx

≤p− 1

p
ε

∫
Ω

|∆uk+1|pdx+
1

p
ε−(p−1)

∫
Ω

|∆uk|pdx

+ λ

∫
{x∈Ω;|uk+1(x)|≥1}

|uk+1|q log(|uk+1|)dx

− λ

∫
{x∈Ω;|uk+1(x)|≥1}

|uk+1|q−2uk+1 log(|uk+1|)ukdx

+ λC(h)

∫
{x∈Ω;|uk+1(x)|<1}

|uk+1|2q−2−2βdx

=
p− 1

p
ε

∫
Ω

|∆uk+1|pdx+
1

p
ε−(p−1)

∫
Ω

|∆uk|pdx+ I1 + I2 + I3.
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Noting that

I1 ≤
∫
{x∈Ω;|uk+1(x)|≥1}

|uk+1|q+αdx ≤
∫
Ω

|uk+1|q+αdx,

taking α = p− q, we obtain

I1 ≤
∫
Ω

|uk+1|pdx.

In addition, by the Hölder inequality, we derive

|I2| ≤λ
q − 1

q
ε1

∫
{x∈Ω;|uk+1(x)|≥1}

|uk+1|q log(|uk+1|)dx

+ λ
1

q
ε
−(q−1)
1

∫
{x∈Ω;|uk+1(x)|≥1}

|uk|q log(|uk+1|)dx

=Ia + Ib.

Similar to the proof of the I1,

Ia ≤ λ
q − 1

q
ε1

∫
Ω

|uk+1|q+αdx ≤ λ
q − 1

q
ε1

∫
Ω

|uk+1|pdx.

It follows from the Young inequality,

Ib ≤λ
1

q
ε
−(q−1)
1

∫
{x∈Ω;|uk+1(x)|≥1}

|uk|q|uk+1|αdx

≤λ
1

q
ε
−(q−1)
1

q

p
ε2

∫
{x∈Ω;|uk+1(x)|≥1}

|uk|pdx

+ λ
1

q
ε
−(q−1)
1

p− q

p
ε
− q

p−q

2

∫
{x∈Ω;|uk+1(x)|≥1}

|uk+1|pdx

≤λ
1

q
ε
−(q−1)
1

q

p
ε2

∫
Ω

|uk|pdx

+ λ
1

q
ε
−(q−1)
1

p− q

p
ε
− q

p−q

2

∫
Ω

|uk+1|pdx.

For I3, by q > p
2 + 1, we have

I3 ≤ λC(h, β)

∫
Ω

|uk+1|pdx.

On the other hand, using the Poincaré inequality, we know∫
Ω

|u|pdx ≤ C

∫
Ω

|∆u|pdx.

Combining the above estimates, we obtain(
1− p− 1

p
ε− λ

q − 1

q
ε1C − λC − λ

1

q
ε−(q−1) p− q

p
ε
− q

p−q

2 C − λC(h, β)C

)∫
Ω

|∆uk+1|pdx

≤
(
1

p
ε−(p−1) − λ

1

q
ε−(q−1) q

p
ε2C

)∫
Ω

|∆uk|pdx.

Chosing suitable ε, ε1, ε2 and letting λ sufficiently small, we have

1− p− 1

p
ε− λ

q − 1

q
ε1C − λC − λ

1

q
ε−(q−1) p− q

p
ε
− q

p−q

2 C − λC(h, β)C

=
1

p
ε−(p−1) − λ

1

q
ε−(q−1) q

p
ε2C ≡ γ.
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For any m with 1 ≤ m ≤ N − 1, summing up the above inequality for k from 0 to m − 1,
we get ∫

Ω

|∆um|pdx ≤
∫
Ω

|∆u0|pdx.

Hence (9) holds. �

Lemma 2.3. Let uk+1 be the weak solution of the problem (5)-(6). Then the following
estimate holds

−Ch ≤
∫
Ω

|uk+1|2dx−
∫
Ω

|uk|2dx ≤ 0, (13)

where C is a constant independent of h.

Proof. To prove the first inequality, choosing φ = uk as a test function in (7), integrating
by parts, we derive

1

h

∫
Ω

|uk|2dx =
1

h

∫
Ω

uk+1ukdx+

∫
Ω

|∆uk+1|p−2∆uk+1∆ukdx

+ λ

∫
Ω

|uk+1|q−2 log(|uk+1|)uk+1ukdx.

The Hölder inequality and the estimate (9) imply

1

h

∫
Ω

|uk|2dx ≤ 1

h

∫
Ω

uk+1ukdx+
p− 1

p

∫
Ω

|∆uk+1|p +
1

p

∫
Ω

|∆uk|pdx

+ C

∫
Ω

|uk+1|pdx+ C

∫
Ω

|uk|pdx

≤ 1

2h

∫
Ω

|uk+1|2dx+
1

2h

∫
Ω

|uk|2dx+ C.

So, we obtain

−Ch ≤
∫
Ω

|uk+1|2dx−
∫
Ω

|uk|2dx.

In addition, using (12) again, we see that∫
Ω

|uk+1|2dx−
∫
Ω

|uk|2dx ≤ 0.

The proof is complete. �

Proof of Theorem 2.1. First, we define the operatorAt byAt(∆uh) = |∆uk|p−2∆uk, ∆
huh =

uk+1 − uk, where kh < t ≤ (k + 1)h, k = 0, 1, · · · , N − 1. By the equation (5) and (8) in
Lemma 2.2, we know that

1

h
∆huh is bounded in L∞(0, T ; (W 2,p(Ω))′). (14)

Combining (7), (9), with (14) and employing the compactness results ([15]), we conclude
that there exists a subsequence of {uh} (which we denote as the original sequence), such
that

uh ⋆
⇀ u, in L∞(0, T ;W 2,p(Ω)),

uh → u, in C(0, T ;L2(Ω)),

1

h
(uk+1 − uk)

⋆
⇀

∂u

∂t
, in L∞(0, T ; (W 2,p(Ω))′),

At(∆uh)
⋆
⇀ w, in L∞(0, T ;Lp′

(Ω)),
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where p′ is the conjugate exponent of p. Therefore, by (7), we know that, for any φ ∈
C∞

0 (QT ), ∫∫
QT

(
1

h
∆huhφ+At(∆uh)∆φ− λ|uh|p−2uh log |uh|φ

)
dxdt = 0.

Sending h → 0 yields

∂u

∂t
+∆w − λ|u|p−2u log |u| = 0, (15)

in the sense of distributions.
Now, we prove that w = |∆u|p−2∆u a.e. in QT . Set

fh(t) =
t− kh

2h

(∫
Ω

|uk+1|2dx−
∫
Ω

|uk|2dx
)
+

1

2

∫
Ω

|uk|2dx,

where kh < t ≤ (k + 1)h, k = 0, 1, · · · , N − 1. It follows from (11) that

1

2

∫
Ω

|uk|2dx− Ch ≤ fh(t) ≤
1

2

∫
Ω

|uk|2dx,

and

−C ≤ f ′
h(t) ≤ 0.

According to the Ascoli–Arzela theorem, there exists a function f(t) ∈ C([0, T ]), such that

lim
h→0

fh(t) = f(t) uniformly for t ∈ [0, T ].

Using (13), we have

lim
h→0

1

2

∫
Ω

|uh|2dx = f(t) uniformly for t ∈ [0, T ]. (16)

It follows from (11) that

1

2

∫
Ω

|uN |2dx+

∫∫
QT

|∆uh|pdxdt− λ

∫∫
QT

|uh|q log(|uh|)dxdt ≤ 1

2

∫
Ω

|u0|2dx.

Passing to limits as h → 0 in above inequality and using (16), we obtain

lim
h→0

(∫∫
QT

|∆uh|pdxdt− λ

∫∫
QT

|uh|q log(|uh|)dxdt
)

≤f(0)− f(T )

= lim
ε→0

1

ε

∫ T−ε

0

(f(t)− f(t+ ε))dt

= lim
ε→0

lim
h→0

1

2ε

∫ T−ε

0

∫
Ω

(|uh(x, t)|2 − |uh(x, t+ ε)|2)dxdt.

Consider the functional G[u] = 1
2

∫
Ω
|u|2dx. Obviously, G[u] is convex and δG[u]

δu = u. Thus,
we get

1

2

∫
Ω

|uh(x, t)|2dx− 1

2

∫
Ω

|uh(x, t+ ε)|2dx

≤
∫
Ω

(uh(x, t)− uh(x, t+ ε))uh(x, t)dx,
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that is

lim
h→0

1

2ε

∫ T−ε

0

∫
Ω

(|uh(x, t)|2 − |uh(x, t+ ε)|2)dxdt

≤1

ε

∫ T−ε

0

∫
Ω

(u(x, t)− u(x, t+ ε))udxdt.

Therefore

lim
h→0

∫∫
QT

(∫∫
QT

|∆uh|pdxdt− λ

∫∫
QT

|uh|q log(|uh|)dxdt
)

≤ −
∫ T

0

⟨∂u
∂t

, u⟩dt,

where ⟨·, ·⟩ denotes inner product. From (15), we conclude that

lim
h→0

∫∫
QT

|∆uh|pdxdt ≤
∫ T

0

∫
Ω

w∆udxdt. (17)

Again by δF [u]
δu = ∆(|∆u|p−2∆u) and the convexity of F [u], for any g ∈ L∞(0, T ;W 2,p

0 (Ω)),
we know

1

p

∫∫
QT

|∆g|pdxdt− 1

p

∫∫
QT

|∆uh|pdxdt ≥
∫∫

QT

(|∆uh|p−2∆uh)∆(g − uh)dxdt.

By (17) and the fact that F (u) is weakly lower semicontinuous, letting h → 0 in the above
equality, we have

1

p

∫∫
QT

|∆g|pdxdt− 1

p

∫∫
QT

|∆u|pdxdt

≥−
∫ ∫

QT

w∆(u− g)dxdt.

Replacing g by εg + u, we see that

1

ε
(F [u+ εg]− F [u]) ≥

∫∫
QT

w∆gdxdt.

Letting ε → 0, which implies that∫∫
QT

δF [u]

δu
gdxdt =

∫∫
|∆u|p−2∆u∆gdxdt ≥

∫∫
QT

w∆gdxdt.

Due to the arbitrariness of g, we get the opposite inequality of the above inequality. There-
fore

w = |∆u|p−2∆u.

The strong convergence of uh in C(0, T ;L2(Ω)) and the fact that uh(x, 0) = u0(x)
implies that u satisfies the initial value condition. The proof is complete. �

3. Large time behavior

This section is devoted to the large time behavior of solutions. To this purpose, we
first show that

Theorem 3.1. Suppose that u be a weak solution obtained in Theorem 2.1, then for any
0 ≤ ρ ∈ C2(Ω),

1

2

∫
Ω

ρ(x)|u(x, t)|2dx− 1

2

∫
Ω

ρ(x)|u0(x)|2dx

=λ

∫∫
Qt

ρ|u|q log(|u(x, τ)|)dxdτ −
∫∫

Qt

|∆u|p−2∆u∆(ρ(x)u(x, τ))dxdτ, (18)

where Qt = Ω× (0, t).
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Proof. In the proof of Theorem 2.1, we know that

f(t) =
1

2

∫
Ω

|u(x, t)|2dx ∈ C([0, T ]).

Similarly, we can also easily prove that for any 0 ≤ ρ(x) ∈ C2(Ω),

fρ(t) =
1

2

∫
Ω

ρ(x)|u(x, t)|2dx ∈ C([0, T ]).

Consider the functional

Φρ[v] =
1

2

∫
Ω

ρ(x)|v(x)|2dx.

It is easy to see that Φρ[v] is a convex functional on L2(Ω).
For any τ ∈ (0, T ) and h > 0, we have

Φρ[u(τ + h)]− Φρ[u(τ)] ≥ ⟨u(τ + h)− u(τ), ρ(x)u(x, τ)⟩.

By
δΦρ[v]

δv = ρ(x)v, for any fixed t1, t2 ∈ [0, T ], t1 < t2, integrating the above inequality with
respect to τ over (t1, t2) , we have∫ t2+h

t2

Φρ[u(τ)]dτ −
∫ t1+h

t1

Φρ[u(τ)]dτ ≥
∫ t2

t1

⟨u(τ + h)− u(τ), ρ(x)u⟩dτ.

Multiplying the both side of the above inequality by 1
h , and letting h → 0, we obtain

Φρ[u(t2)]− Φρ[u(t1)] ≥
∫ t2

t1

⟨∂u
∂t

, ρ(x)u⟩dτ.

Similarly, we have

Φρ[u(τ)]− Φρ[u(τ − h)] ≤ ⟨(u(τ)− u(τ − h)), ρ(x)u⟩.
Thus

Φρ[u(t2)]− Φρ[u(t1)] ≤
∫ t2

t1

⟨∂u
∂t

, ρ(x)u⟩dτ,

and hence

Φρ[u(t2)]− Φρ[u(t1)] =

∫ t2

t1

⟨∂u
∂t

, ρ(x)u⟩dτ.

Taking t1 = 0, t2 = t, we get from the definition of solutions that

Φρ[u(t)]− Φρ[u(0)]

=

∫ t

0

⟨−∆(|∆u|p−2∆u) + λ|u|q−2u log(|u|), ρ(x)u(τ)⟩dτ

=−
∫ t

0

⟨|∆u|p−2∆u,∆[ρ(x)u(τ)]⟩dτ +

∫ t

0

⟨λ|u|q−2u log(|u|), ρ(x)u(τ)⟩dτ.

The proof is complete. �

Theorem 3.2. Let u be the weak solution of the problem (1)-(3), p > 2. Then∫
Ω

|u(x, t)|2dx ≤ C3

(C1t+ C2)α
, Ci > 0 (i = 1, 2, 3) α =

2

p− 2
.

Proof. Taking ρ(x) = 1 in the equality (18), we have

1

2

∫
Ω

|u(x, t)|2dx− 1

2

∫
Ω

|u0(x)|2dx

=−
∫ t

0

∫
Ω

|∆u|pdxdt+ λ

∫∫
Qt

|u|q log(|u|)dxdt. (19)



A parabolic p-biharmonic equation 45

Let f(t) = 1
2

∫
Ω
|u(x, t)|2dx. By (3.2), we have

f ′(t) = −
∫
Ω

|∆u|pdx+ λ

∫
Ω

|u|q log(|u|)dx ≤ −1

2

∫
Ω

|∆u|pdx ≤ 0.

Noticing that u ∈ W 2,p
0 (Ω) and employing the Poincaré inequality, we see that∫
Ω

|u(x, t)|2dx ≤ C

∫
Ω

|∆u|2dx ≤ C

(∫
Ω

|∆u|pdx
)2/p

,

which implies f(t) ≤ C|f ′(t)|2/p.
Again by f ′(t) ≤ 0, we get f ′(t) ≤ −Cf(t)p/2, and hence∫

Ω

|u(x, t)|2dx ≤ 1

(C1t+ C2)α
, α =

2

p− 2
, Ci > 0, i = 1, 2.

The proof is complete. �

4. Finite speed of propagation of solutions

Theorem 4.1. If |σn(0)| ≤ b, and u is the weak solution of the problem (1)-(3), then for
any fixed t > 0, we have

σn(t)− σn(0) ≤ Ctα
(∫ t

0

∫
Ω

|∆u|pdxdt
)β

,

where C is a constant depending on p, n, b; σn(t) = sup{z;x ∈ supp u(·, t)}, z = xn;
α > 0, β > 0andb > 0 are constants independently of t.

To prove the theorem 4.1, we need the following lemma.

Lemma 4.1. ([1]) Let fs(z) =
∫∞
z

(x − z)sg(x)dx, 0 ≤ g(x) ∈ L1(R+), k > 0, α > 0 θ >

0, s ≥ 1, and 0 < h ≤ s < w = θh
θ−1 . Assume fs−h(0) is finite and

fs(z) ≤ kα(fs−h(z))
θ, ∀z ≥ 0.

Then the support of f0 is a bounded interval [0, l] and

l ≤ (w − s+ 1)k
α

(θ−1)(w−s) f0(0)
1

w−s .

Proof of Theorem 4.1. Without loss of generality, we assume σn(t) > 0. Taking ρ(x) =
(z − z0)

s
+, z0 ≥ b, s ≥ 2p in (18), we see that

1

2

∫
Ω

(z − z0)
s
+|u(x, t)|2dx

=−
∫ t

0

∫
Ω

|∆u|p−2∆u∆[(z − z0)
s
+u]dxdτ + λ

∫∫
Qt

(z − z0)
s
+|u(τ)|q log(|u(τ)|)dxdτ

≡I.

A simple calculation shows that

I =−
∫ t

0

∫
Ω

|∆u|p−2∆u∆[(z − z0)
s
+u]dxdτ − λ

∫∫
Qt

(z − z0)
s
+|u(τ)|pdxdτ

=−
∫ t

0

∫
Ω

(z − z0)
s
+|∆u|pdxdτ − 2

∫ t

0

∫
Ω

∇[(z − z0)
s
+]∇u|∆u|p−2∆udxdτ

−
∫ t

0

∫
Ω

s(s− 1)(z − z0)
s−2
+ u|∆u|p−2∆udxdτ

+ λ

∫∫
Qt

(z − z0)
s
+|u(τ)|q log(|u(τ)|)dxdτ.
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The Hölder inequality implies

I ≤−
∫ t

0

∫
Ω

(z − z0)
s
+|∆u|pdxdτ +

1

4

∫ t

0

∫
Ω

(z − z0)
s
+|∆u|pdxdτ

+ C1

∫ t

0

∫
Ω

(z − z0)
s−p
+ |∇u|pdxdτ +

1

4

∫ t

0

∫
Ω

|∆u|p(z − z0)
s
+dxdτ

+ C2

∫ t

0

∫
Ω

(z − z0)
s−2p
+ |u|pdxdτ + Cλ

∫ t

0

∫
Ω

(z − z0)
s
+|u(τ)|pdxdτ

≤− 1

2

∫ t

0

∫
Ω

(z − z0)
s
+|∆u|pdxdτ + C1

∫ t

0

∫
Ω

(z − z0)
s−p
+ |∇u|pdxdτ

+ C2

∫ t

0

∫
Ω

(z − z0)
s−2p
+ |u|pdxdτ.

In addition, the Hardy inequality [8] shows that∫
Ω

(z − z0)
s−2p
+ |u|pdx ≤

(
p

s− 2p+ 1

)p ∫
Ω

(z − z0)
s−p
+ |Dzu|pdx.

Therefore, we get

1

2

∫
Ω

(z − z0)
s
+|u|2dx+

1

2

∫ t

0

∫
Ω

(z − z0)
s
+|∆u|pdxdτ

≤C3

∫ t

0

∫
Ω

(z − z0)
s−p
+ |∇u|pdxdτ + C4

∫ t

0

∫
Ω

(z − z0)
s−p
+ |Dzu|pdxdτ

≤C

∫ t

0

∫
Ω

(z − z0)
s−p
+ |∇u|pdxdτ, (20)

which implies

sup
0<τ≤t

∫
Ω

(z − z0)
s
+|u|2dx ≤ C

∫∫
Qt

(z − z0)
s−p
+ |∇u|pdxdτ (21)

and ∫∫
Qt

(z − z0)
s
+|∆u|pdxdτ ≤ C

∫∫
Qt

(z − z0)
s−p
+ |∇u|pdxdτ. (22)

Combining the (21) with the Hardy inequality, we obtain

sup
0<τ≤t

∫
Ω

(z − z0)
s
+|u|2dx ≤ C

∫∫
Qt

(z − z0)
s
+|∆u|pdxdτ. (23)

Set

Es(z0) =

∫∫
Qt

(z − z0)
s
+|∆u|pdxdτ, E0(z0) =

∫ t

0

∫
Ω

|∆u|pdxdτ.

Using (22) and the weighted Nirenberg inequality, we see that

E2p+1(z0) ≤ C1

∫∫
Qt

(z − z0)
p+1
+ |∇u|pdxdτ

≤ C

∫ t

0

(∫
Ω

(z − z0)
p+1
+ |∆u|pdx

)a (∫
Ω

(z − z0)
p+1
+ |u|2dx

)(1−a)p/2

dτ,

where 1
p = 1

p+2 + a( 1p − 2
p+2 ) + (1− a) 12 , therefore

a =

1
p − 1

p+2 − 1
2

1
p − 2

p+2 − 1
2

< 1.
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It follows from (23), that

E2p+1(z0) ≤ C

(∫∫
Qt

(z − z0)
p+1
+ |∆u|pdxdτ

)(1−a)p/2 ∫ t

0

∫
Ω

((z − z0)
p+1
+ |∆u|pdx)adτ

≤ C[Ep+1(z0)]
(1−a)p/2

(∫∫
Qt

(z − z0)
p+1
+ |∆u|pdxdτ

)a

t1−a

≤ CEp+1(z0)
(1−a)p/2+at1−a.

We are going to obtain from the above inequality that ∆u = 0 a. e. for z0 > b and 0 < τ < t.
By (23), we know that u = 0 a. e. on the same set. By Lemma 4.1, we obtain Theorem 4.1.
The proof is complete. �

5. Conclusions

The parabolic equation with the logarithmic nonlinearity is important. The second
order parabolic equation with the logarithmic nonlinearity is diffusely studied. In this paper,
we study the higher order parabolic equation with the logarithmic nonlinearity. We study
the existence of weak solutions. The main difficulties for treating the problem are caused
by the nonlinearity of the principal part and the logarithmic nonlinearity. The method used
for treating the second order parabolic equation with the logarithmic nonlinearity seems not
applicable to the present situation. Our method is based on the variation methods. Using
the energy techniques, Hardy inequality and Poincaré inequality, we also obtain the large
time behavior and the finite speed of propagation of perturbations subsequently.
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