
U.P.B. Sci. Bull., Series C, Vol. 87, Iss. 4, 2025 ISSN 2286 – 3540

PARALLEL PIPELINED SPIKE ENCODING ALGORITHMS

FOR SNN ON FIELD-PROGRAMMABLE GATE ARRAY

(FPGA)

Xueyan ZHONG1,*, Hongbing PAN2

Different from the traditional software-based spike coding mode, this paper

proposes a parallel-pipelined approach to encode the MNIST dataset into spikes on a

Field-Programmable Gate Array (FPGA). MNIST images undergo edge extension,

normalization, integer data processing, parallel-pipeline convolution, and pixel value

trimming. The resulting new pixel values are interpolated and converted into cell

membrane voltage values. Leveraging the inverse relationship between membrane

voltage and firing period, these voltage values are transformed into period values.

Finally, within a fixed duration, spike sequences are generated by comparing the

duration step counter with the period values. The period values obtained via this

method are highly similar to the pixel values of the original image, well preserving

the features of the digital image and ensuring high accuracy. Meanwhile, the FPGA-

based parallel-pipeline operation mode improves computational speed, reduces

overall resource consumption, and enables good hardware transplantability.

Keywords: Spiking Neural Network; Spike Encoding; Hardware Implementation;

FPGA; Parallel-Pipeline

1. Introduction

Unlike traditional Artificial Neural Networks (ANNs), Spiking Neural

Networks (SNNs) are designed to mimic the biological brain, exhibiting higher

biological plausibility and being widely regarded as the "third generation of neural

networks" [1]. However, modeling the biological brain involves multiple

professional fields and is highly complex. Compared with mature traditional

artificial neural networks, SNNs are still in the early stages of development. How

to construct SNN models reasonably and effectively remains one of the key

challenges in current research [2].

The SNN model adopted in this paper has a three-layer structure, as shown

in Fig.1. It uses the Leaky Integrate-and-Fire (LIF) neuron model as network nodes,

with intermediate synaptic information transmitted in the form of spikes. The

overall structure is divided into three parts: the spike encoding layer, the neural

network layer, and the classification layer. The spike encoding layer encodes each

1 College of Intelligent Engineering, Nanjing Vocational Institute of Railway Technology, Nanjing,

and School of Electronic Science and Engineering, Nanjing University, China, e-mail:

zhongxueyan1987@163.com
2 School of Electronic Science and Engineering, Nanjing University, China

312 Xueyan Zhong, Hongbing Pan

pixel of an image into spikes; after encoding, the spikes are input to the neural

network layer for training; finally, the classification layer completes the task of

image category discrimination [3-4].

Pulse Coding
Layer

pixel

Classification
Layer

Neural Network
Layer

STDP Algorithm

Lateral Inhibition

Level One

Level Two

Fig.1. Structure of Neural Network

The input spike encoding method is a core component of the SNN model. It

not only determines the conversion of input information but also needs to preserve

the key features of input samples. Additionally, the spike encoding method directly

affects subsequent learning algorithms and network architecture design [5].

Through research on biological neural systems, the academic community has

summarized several commonly used spike coding methods, including frequency

coding, temporal coding, phase coding, and population coding [6-8].

In frequency coding, each input neuron corresponds to a pixel value (or

feature value), and the higher the pixel value, the higher the spike firing frequency.

In temporal coding, the higher the pixel value, the earlier the input neuron emits

spikes. In phase coding, the timing of spike emission is determined by the phase of

a reference signal. In population coding, a single pixel value is encoded by the

collective spike activity of a group of neurons, with the combination of spikes from

multiple neurons representing a specific feature [9-10]. Among these methods,

temporal coding is prone to noise interference, which distorts the information

expressed in spike sequences and is not conducive to hardware implementation.

Phase coding requires longer time steps to accommodate multiple distinct phases,

and the middle convolutional layer neurons need more steps to improve the anti-

interference ability of phase signals, which increases runtime. Population coding

Parallel pipelined spike encoding algorithms for SNN on field-programmable gate array… 313

for a single node requires multiple neurons, making it difficult to connect with the

next layer of nodes in SNNs. Therefore, this paper selects frequency coding, which

is easy to implement in hardware, to generate spike sequences [11-13].

The main research object of this paper is the MNIST handwritten digit

dataset. In the spike encoding layer, images in the dataset are first preprocessed by

convolution, and the pixel values obtained after convolution are trimmed. Then,

voltage interpolation is used to convert the trimmed pixel values into cell membrane

voltage values. Based on the inverse proportional relationship between voltage

values and period values, the corresponding firing period is calculated. Finally,

frequency coding is performed to generate spike sequences.

2. State-of-the-art Review

Spike encoding, as a critical link in SNN applications, has been a focus of

research in the neuromorphic computing field in recent years. Current spike

encoding methods are mainly divided into two categories: rate-based encoding and

temporal-based encoding, each with distinct characteristics in performance,

hardware adaptability, and application scenarios.

2.1. Rate-based Encoding Methods

Rate-based encoding methods map input feature intensity (e.g., image pixel

values) to the firing rate of neurons. Representative algorithms include the Sliding

Window (SW) algorithm [14] and Ben’s Spiker Algorithm (BSA) [15].

The SW algorithm divides the input time window into multiple sub-

windows and adjusts the spike firing frequency based on the average feature value

within each sub-window. It has the advantage of simple logic but suffers from low

encoding precision—since the average value in the sub-window smooths out local

feature details, leading to the loss of fine-grained information.

The BSA algorithm optimizes the spike generation mechanism by setting

adaptive thresholds, improving the response speed to feature changes. However, it

requires additional threshold adjustment modules, which increases hardware

resource consumption. When implemented on FPGA, both algorithms have

relatively low classification accuracy (usually below 97.5%), and their

computational speed is limited by serial data processing, making it difficult to meet

the real-time requirements of high-throughput tasks [16].

2.2. Temporal-based Encoding Methods

Temporal-based encoding methods encode information through the timing

of spike firing or the width of spike pulses. Typical algorithms include Step-forward

(SF) encoding [17] and Pulse Width Modulated-Based (PWMB) encoding [18].

SF encoding determines the spike firing time based on the order of feature

value magnitudes, which can effectively preserve temporal feature information.

314 Xueyan Zhong, Hongbing Pan

However, it is highly sensitive to noise—even small noise interference can cause

significant deviations in spike timing, reducing system robustness.

PWMB encoding modulates the width of spike pulses according to feature

intensity. It has high encoding precision (achieving a classification accuracy of up

to 98% on FPGA) but requires precise control of pulse width, resulting in complex

hardware circuits and high dynamic power consumption (up to 262.43 mW).

Additionally, the long pulse duration increases computational time, making it

unsuitable for low-latency application scenarios [19].

2.3. Challenges in Hardware Implementation

Existing spike encoding algorithms face two key challenges in hardware

implementation:

Trade-off between encoding accuracy and resource consumption: High-

precision encoding methods (e.g., PWMB) often require complex arithmetic units

and storage modules, leading to increased usage of logic elements and power

consumption. Mismatch with FPGA’s parallel computing advantages: Most

traditional algorithms are designed based on software serial logic, failing to fully

utilize FPGA’s pipeline and parallel computing capabilities, resulting in low

computational efficiency [20].

To address these issues, this paper proposes a parallel-pipelined spike

encoding method. By optimizing the data preprocessing process (including edge

extension, normalization, and integerization) and designing a parallel-pipelined

convolution structure, efficient parallel processing of image data is achieved on

FPGA. Meanwhile, through the inverse proportional mapping between membrane

voltage and firing period, high encoding accuracy is ensured while simplifying

hardware circuits, reducing resource consumption and power usage.

3. Theoretical Approach

3.1. Core Principle of Parallel-Pipelined Convolution

The MNIST dataset consists of 28 * 28 pixel values. In order to extract

features from the image, it is convolved with a 5 * 5 convolution kernel. After

convolution, the pixel values are reduced to 24 * 24. To ensure 28 * 28 pixel values,

fill the edge of the original 28 * 28 image data with a circle of 0 and expand it to 32

* 32. Then, normalize the pixels and perform convolution operations. The result of

maximizing the image features is to make the image blurry. Therefore, it is

necessary to trim the image.

The convolution operation selects a 5 * 5 convolution kernel, and the

convolution window starts from the top left of the input array, sliding in one step

from left to right and from top to bottom on the input array. Added elements with a

value of 0 on both sides of the original 28 * 28 image pixels, making the input image

pixels 32 * 32, ensuring that the output image pixels after convolution calculation

Parallel pipelined spike encoding algorithms for SNN on field-programmable gate array… 315

are still 28 * 28 image pixels. The purpose of convolution is to strengthen the

connection between local closer pixels and weaken the correlation between distant

pixels. Therefore, the 5 * 5 symmetric convolution kernel selected for convolution

operation is formula (1).

𝑘𝑒𝑟𝑛𝑒𝑙 =

(

𝑐0,0 𝑐0,1 𝑐0,2 𝑐0,3 𝑐0,4
𝑐1,0 𝑐1,1 𝑐1,2 𝑐1,3 𝑐1,4
𝑐2,0 𝑐2,1 𝑐2,2 𝑐2,3 𝑐2,4
𝑐3,0 𝑐3,1 𝑐3,2 𝑐3,3 𝑐3,4
𝑐4,0 𝑐4,1 𝑐4,2 𝑐4,3 𝑐4,4)

=

(

𝑐4 𝑐3 𝑐2 𝑐3 𝑐4
𝑐3 𝑐2 𝑐1 𝑐2 𝑐3
𝑐2 𝑐1 𝑐0 𝑐1 𝑐2
𝑐3 𝑐2 𝑐1 𝑐2 𝑐3
𝑐4 𝑐3 𝑐2 𝑐3 𝑐4)

 (1)

The middle value of the convolutional kernel is a larger positive value, and

the farther away from the middle, the smaller the positive value. Based on the

distance, the nearby data connection is strengthened, while the edge value is

negative. The farther away from the middle, the smaller the negative value,

weakening the correlation of the farther data. At the same time, for the convenience

of FPGA binary calculation, the values are selected as exponential multiples of 2.

































2

1
-

4

1
-

4

1

4

1
-

2

1
-

4

1
-

4

1

8

5

4

1

4

1
-

4

1

8

5
1

8

5

4

1
4

1
-

4

1

8

5

4

1

4

1
-

2

1
-

4

1
-

4

1

4

1
-

2

1
-

 (2)

The pixel values obtained from convolution operations can easily exceed

the range of the original pixel values of the image. To solve this problem, we

convert the convolution kernel into decimals, which means dividing each value in

the convolution kernel by the sum of the convolution kernel. The sum of the

convolution kernel is 5.5, which is calculated by formula (3).

𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚 = ∑ 𝑐𝑖𝑗(𝑐𝑖𝑗 > 0)
𝑖=4,𝑗=4
𝑖=0,𝑗=0 (3)

Considering that the index value of 2 closest to 5.5 is 4, so choose

𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚 equals 4, so that a shifter can replace division calculation. The final

convolution kernel is

316 Xueyan Zhong, Hongbing Pan

𝑘𝑒𝑟𝑛𝑒𝑙 =
1

𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚

(

𝑐4 𝑐3 𝑐2 𝑐3 𝑐4
𝑐3 𝑐2 𝑐1 𝑐2 𝑐3
𝑐2 𝑐1 𝑐0 𝑐1 𝑐2
𝑐3 𝑐2 𝑐1 𝑐2 𝑐3
𝑐4 𝑐3 𝑐2 𝑐3 𝑐4)

=
1

4

(

−
1

2
−
1

4

1

4
−
1

4
−
1

2

−
1

4

1

4

5

8

1

4
−
1

4
1

4

5

8
1

5

8

1

4

−
1

4

1

4

5

8

1

4
−
1

4

−
1

2
−
1

4

1

4
−
1

4
−
1

2)

(4)

For ease of calculation, after the convolution calculation is completed, then

divide by the 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚, i.e.

𝑣𝑚𝑛 =

(

𝑎𝑚,𝑛 𝑎𝑚,𝑛+1 𝑎𝑚,𝑛+2 𝑎𝑚,𝑛+3 𝑎𝑚,𝑛+4
𝑎𝑚+1,𝑛 𝑎𝑚+1,𝑛+1 𝑎𝑚+1,𝑛+2 𝑎𝑚+1,𝑛+3 𝑎𝑚+1,𝑛+4
𝑎𝑚+2,𝑛 𝑎𝑚+2,𝑛+1 𝑎𝑚+2,𝑛+2 𝑎𝑚+2,𝑛+3 𝑎𝑚+2,𝑛+4
𝑎𝑚+3,𝑛 𝑎𝑚+3,𝑛+1 𝑎𝑚+3,𝑛+2 𝑎𝑚+3,𝑛+3 𝑎𝑚+3,𝑛+4
𝑎𝑚+4,𝑛 𝑎𝑚+4,𝑛+1 𝑎𝑚+4,𝑛+2 𝑎𝑚+4,𝑛+3 𝑎𝑚+4,𝑛+4)

∗
1

𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚

(

𝑐0,0 𝑐0,1 𝑐0,2 𝑐0,3 𝑐0,4
𝑐1,0 𝑐1,1 𝑐1,2 𝑐1,3 𝑐1,4
𝑐2,0 𝑐2,1 𝑐2,2 𝑐2,3 𝑐2,4
𝑐3,0 𝑐3,1 𝑐3,2 𝑐3,3 𝑐3,4
𝑐4,0 𝑐4,1 𝑐4,2 𝑐4,3 𝑐4,4)

=

(

𝑎𝑚,𝑛 𝑎𝑚,𝑛+1 𝑎𝑚,𝑛+2 𝑎𝑚,𝑛+3 𝑎𝑚,𝑛+4
𝑎𝑚+1,𝑛 𝑎𝑚+1,𝑛+1 𝑎𝑚+1,𝑛+2 𝑎𝑚+1,𝑛+3 𝑎𝑚+1,𝑛+4
𝑎𝑚+2,𝑛 𝑎𝑚+2,𝑛+1 𝑎𝑚+2,𝑛+2 𝑎𝑚+2,𝑛+3 𝑎𝑚+2,𝑛+4
𝑎𝑚+3,𝑛 𝑎𝑚+3,𝑛+1 𝑎𝑚+3,𝑛+2 𝑎𝑚+3,𝑛+3 𝑎𝑚+3,𝑛+4
𝑎𝑚+4,𝑛 𝑎𝑚+4,𝑛+1 𝑎𝑚+4,𝑛+2 𝑎𝑚+4,𝑛+3 𝑎𝑚+4,𝑛+4)

∗

(

𝑐0,0 𝑐0,1 𝑐0,2 𝑐0,3 𝑐0,4
𝑐1,0 𝑐1,1 𝑐1,2 𝑐1,3 𝑐1,4
𝑐2,0 𝑐2,1 𝑐2,2 𝑐2,3 𝑐2,4
𝑐3,0 𝑐3,1 𝑐3,2 𝑐3,3 𝑐3,4
𝑐4,0 𝑐4,1 𝑐4,2 𝑐4,3 𝑐4,4)

 1

𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚
 (5)

In the formula,























+++++++++

+++++++++

+++++++++

+++++++++

++++

4,43,42,41,4,4

4,33,32,31,3,3

4,23,22,21,2,2

4,13,12,11,1,1

4,3,2,1,,

nmnmnmnmnm

nmnmnmnmnm

nmnmnmnmnm

nmnmnmnmnm

nmnmnmnmnm

aaaaa

aaaaa

aaaaa

aaaaa

aaaaa

 is

the pixel value of the 5 * 5 convolution window, m is the horizontal sliding count,

n is the vertical sliding count. 𝑣𝑚𝑛 is the new pixel value after the convolution

operation. Formula (5) is represented by the product term

Parallel pipelined spike encoding algorithms for SNN on field-programmable gate array… 317

𝑣𝑚𝑛 =
1

𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚
∑ 𝑎𝑚+𝑖,𝑛+𝑗 × 𝑐𝑖,𝑗
𝑖=4,𝑗=4
𝑖=0,𝑗=0 (6)

3.2. Spike frequency encoding

Experiments in biological systems such as tactile and auditory systems have

shown that the firing frequency of neurons is proportional to external stimuli but

has saturation values. Therefore, frequency encoding is used to obtain spikes. In

this paper, voltage interpolation is used to calculate the voltage of the neuron cell

corresponding to the current pixel value. In a custom duration T, the voltage value

is converted into the neuron firing period value, the spike is obtained using

frequency encoding. The maximum voltage value 𝑣𝑎𝑙_𝑚𝑎𝑥 of a neuron cell is

defined as 6, and when this value is reached, nerve spikes are generated. The

minimum voltage value 𝑣𝑎𝑙_𝑚𝑖𝑛 of a neuron cell is defined as 1, which is the

resting membrane voltage of the neuron cell. Therefore, the formula for converting

each convolutional trimmed pixel value 𝑤𝑚,𝑛 into the voltage value of the

corresponding neuron cell is :

min_min)_max_(,, valwvalvalval nmnm +−= (7)

The formula (7) indicates that the range of neuron voltage values is [1,6].

The defined duration T is 400 intervals, that is 𝑇 = 400. The spike release period

of the neuron 𝑝𝑚,𝑛 =
𝑇

𝑣𝑎𝑙𝑚,𝑛
, and the spike period range is [66,400]. In order to avoid

spikes generated by the resting membrane voltage within the duration T, the

formula was improved by adding 5 time intervals to the original interval, that is

nm

nm
val

T
p

,

,

5+
= (8)

The spike period range is changed to [67,405], ensuring that the voltage

value close to the saturation value of the neuron was not significantly affected.

4. Implementation

4.1. Hardware Platform and Toolchain

The hardware implementation platform of this paper is the Zynq UltraScale

+ ZCU104 Evaluation Board, with the main control chip being XCZU7EV-

2FFVC1156E. This chip integrates a 64-bit ARM Cortex-A53 processor and an

FPGA programmable logic unit, supporting high-speed parallel computing and

flexible hardware customization [25]. The development toolchain includes:

Xilinx Vivado 2022.1: Used for FPGA logic design, synthesis,

implementation, and bitstream generation. MATLAB R2023a: Used for

preprocessing the MNIST dataset (e.g., normalization, edge extension) and

verifying the correctness of the encoding algorithm. Xilinx Power Estimator (XPE):

318 Xueyan Zhong, Hongbing Pan

Used for measuring FPGA power consumption (including static and dynamic

power).

4.2. Module Design of the Encoding System

The entire spike encoding system is divided into five functional modules,

connected through AXI4-Stream interfaces to realize high-speed data transmission.

4.2.1. Data Preprocessing Module

This module completes two core functions: edge extension and

normalization.

Edge extension: The input MNIST image data (28×28 8-bit integers) is

written into a 32×32 register array through the AXI4-Lite interface. The edge

extension logic automatically fills the peripheral registers with 0s to form a 32×32

extended image. Normalization: The 8-bit pixel values are converted into 16-bit

fixed-point numbers (4-bit integer + 12-bit decimal) by shifting left by 12 bits

(equivalent to multiplying by 4096), avoiding decimal division operations and

reducing resource consumption [26].

The pixels in the MNIST dataset are 8-bit binary integers, which are

normalized by dividing the pixels by 256. The data is shifted 8 bits to the right to

realize normalization on FPGA, and the normalized pixel value is 8-bit binary

decimals. Considering that the decimal operation in the FPGA is complex and

consumes resources, we use the normalized numerical integer operation. The data

is defined to be lower eight bits as decimal part, and the ninth bit above includes

the ninth digit as the integer part, so that the original pixel value does not need to

be divided, saving resources. All 28*28 pixel values are stored in 32 256-bit pixel

registers. During storage, it is necessary to extend the edge of the 28 * 28 image to

a 32 * 32 image. Clear all registers to zero, store pixel data from the 17th bit of the

third register, the upper 16 bits of all 32 registers do not store pixel data, which

defaults to 0. The extension of image is shown in Fig.2.

0 0 0 0 0 0 0 0
32 8-bit registers in a row

0 0 0 0 0 0 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 0 0 0 0 0 0

32rows（32 256-bit registers） 28*28image

Fig.2. Edge Extension of Image.

The structure of parallel pipelining for pixel convolution extraction is shown

in Fig.3. During the storage process of pixel values into the pixel registers, when

the fifth register of pixel is filled with pixel values, data in five rows and five

columns in front are read out in parallel and stored in the pixel2conv register. The

Parallel pipelined spike encoding algorithms for SNN on field-programmable gate array… 319

storage of pixel values and convolution operations are carried out in parallel. After

the convolution calculation of the pixel value in the first convolution window is

completed, the convolution window moves back one step, reading the new

convolution window pixel values into the pixel2conv register for the next

convolution operation.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 0 0 0 0 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0

0

8bit

8bit

8bit

8bit

8bit

8bit

0 0 8bit 8bit 8bit 8bit 0 08bit

Pixel

40bit 40bit 40bit 40bit 40bit

Pixels to convolution

Fig.3. Parallel pipelining for pixel convolution extraction.

4.2.2. Parallel-Pipelined Convolution Module

This module consists of a pixel2conv register bank, a 5×5 convolution

kernel register, and a 5-layer parallel adder tree.

Data reading: The pixel2conv register bank reads 5×5 pixel blocks from the

preprocessed 32×32 image in parallel and latches them.

Kernel multiplication: The convolution kernel register stores the 16-bit

fixed-point kernel values (Formula (4)) and outputs them to the multiplier array in

parallel. The multiplier array calculates the product of each pixel and the

corresponding kernel element in parallel. Parallel accumulation: The products are

sent to the 5-layer parallel adder tree for accumulation. The first layer uses 13

adders (with one input supplemented by 0), the second layer uses 7 adders, the third

layer uses 4 adders, the fourth layer uses 2 adders, and the fifth layer uses 1 adder.

This structure reduces the critical path delay of accumulation [27]. Result

adjustment: After accumulation, the result is shifted right by 2 bits (equivalent to

dividing by 4, since kernel_sum=4) to obtain the 16-bit fixed-point convolution

result (vm,n).

In FPGA, the convolutional kernel element value is defined as 16 bits, with

the upper 4 bits being integer bits and the lower 12 bits being decimal bits. The

product term of the corresponding pixel value 𝑎𝑚+𝑖,𝑛+𝑗 and the corresponding

convolutional kernel element 𝑐𝑖,𝑗 is 𝑚𝑢𝑙𝑡𝑚+𝑖,𝑛+𝑗 , that is 𝑚𝑢𝑙𝑡𝑚+𝑖,𝑛+𝑗 =

𝑎𝑚+𝑖,𝑛+𝑗 × 𝑎𝑖,,𝑗. 𝑚𝑢𝑙𝑡𝑚+𝑖,𝑛+𝑗 is defined as 24 bits, the high 4 bits are integer bits,

and the low 20 bits are decimal bits. Considering FPGA memory usage and

computational complexity, the low 8 bits of the decimal are discarded, while the

high 16 bits are retained. The multiplication operation and low 8-bit data discarding

are performed in parallel.

320 Xueyan Zhong, Hongbing Pan

To improve the running speed, the accumulation operation is carried out in

a parallel pipeline manner. As shown in Fig.4, the accumulation of product terms is

divided into 5 layers. In the first layer, there are 25 product terms as inputs. The

product terms are added in pairs, requiring at least 13 adders. So, one of the inputs

of the last adder is supplemented with 0 inputs. Similarly, the second layer allocates

7 adders, the third layer has 4 adders, the fourth layer has 2 adders, and the fifth

layer has 1 adder. In this way, the five layer adders run in parallel pipeline to obtain

the accumulation result. The cumulative result is divided by 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚 to obtain

the new pixel value after convolution. Since 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚 is given a value of 4,

dividing by 4 in FPGA binary operations is equivalent to shifting two bits to the

right, so a right shifter is used to obtain the new pixel value 𝑣𝑚,𝑛.

am,n am,n+1 am,n+2 am,n+3 am,n+4
Pixels to convolution

(25 pixels)
am+4,n+2 am+4,n+3 am+4,n+4

816

Mult1

8c11

D

24

16

am+1,n

816

Mult2

8c12

D

24

16

816

Mult3

8c13

D

24

16

816

Mult4

8c14

D

24

16

816

Mult5

8c15

D

24

16

816

Mult6

8c16

D

24

16

816

Mult23

8c53

D

24

16

816

Mult24

8c54

D

24

16

816

Mult25

8c55

D

24

16

Add1-1

25 Multipliers

Discard lower 8 bits

Add1-2 Add1-3 Add1-12 Add1-13

16
16'h0000

13 Adders

Add2-1

16 16

Add2-2

16 16

Add2-7

16 16

7 Adders

16'h0000

Add2-6

16 16

Add3-1

16 16

Add3-3

1616

Add3-4

1616

16'h0000

4 Adders

Add4-1

1616

Add4-2

16 16

2 Adders

Add5-1

16 16

1 Adder

Right shift

16

vmn

16

Divide by kernel_max
Shift right by two bits

New pixel
Fig.4. Architecture for parallel pipelining convolution computing

4.2.3. Pixel Trimming Module

The convolution result vm,n ranges from (-1,1) as shown on the left of Fig.5.

To avoid the complexity of negative value operations on FPGA, this module trims

all negative values to 0, resulting in a trimmed pixel value wm,n with a range of

[0,1).

Fig.5. Comparison of images before and after trimming.

Parallel pipelined spike encoding algorithms for SNN on field-programmable gate array… 321

4.2.4. Voltage-Period Conversion Module

This module realizes the conversion from the trimmed pixel value wm,n to

the neuron firing period pm,n, following three steps:

Voltage calculation: According to Formula (7), calculate the product of

(valmax−valmin) and wm,n. The product result is a 32-bit number (8-bit integer + 24-

bit decimal); after discarding the lower 12 bits of the decimal part, it is converted

into a 16-bit fixed-point number. Adding this number to valmin (1) gives the

membrane voltage valm,n. Integerization of division: According to Formula (8), shift

(T+5) (405) and valm,n left by 12 bits. Use a dedicated divider IP core to perform

integer division, obtaining the period value pm,n.

Data storage: The period value pm,n (ranging from [67,405]) is stored in a 9-

bit register [29]. As shown in Fig.6, period value is obtained on FPGA. In the

structure, the pixel value after convolutional trimming 𝑤𝑚,𝑛 is 16 bits, keeping the

high 4 bits as integer bits and the low 12 bits as decimal bits. The maximum and

minimum voltage values of neurons are defined as 16 bits, with the high 4 bits as

integer bits and the low 12 bits as decimal bits. The high 8 bits in the 32 bits of the

product term(𝑣𝑎𝑙_𝑚𝑎𝑥−𝑣𝑎𝑙_𝑚𝑖𝑛) × 𝑤𝑚,𝑚 are integer bits, and the low 24 bits

are decimal bits. Due to the value range of [0,5), all the high 4 bits of the integer bit

can be discarded. All calculated data only retains 12 decimal bits, so the low 12 bits

of the 24 decimal bits of the product term are discarded here, and the product term

is simplified to 16 bits. 𝑣𝑎𝑙𝑚,𝑛 can be obtained by adding the product term to

𝑣𝑎𝑙_𝑚𝑖𝑛 .When calculating the period using formula (8), FPGA consumes

resources for decimal division calculation. Therefore, the integer calculation is used

to replace decimal division calculation. Identify 16 bits 𝑣𝑎𝑙𝑚,𝑛 as integers, which

is equivalent to shifting 𝑣𝑎𝑙𝑚,𝑛 to the left by 12 bits. The dividend (𝑇 + 5) is also

shifted left by 12 bits. 12 bits are sufficient for store the dividend (𝑇 + 5). Adding

the left shifted 12 bits, the register for the shifted dividend (𝑇 + 5) is defined as 24

bits, and the quotient range is [67,405]. A 9-bit register is sufficient for the quotient.

wm,n

16
val_max-val_min

16

Mult

D

32

val_min

1616

valm,n

Add1
16

T+5

Div

16

24

left shift
24

9

pm,n

Shift left by 12 bits

Discard the higher 4 bits
and lower 12 bits

Fig.6. Hardware structure of period value.

322 Xueyan Zhong, Hongbing Pan

4.2.5. Spike Generation Module

This module includes a step counter (step_count) and a comparator, with

the following working process:

Initialize the step counter to 0; increment by 1 every clock cycle. When

step_count equals the period value pm,n, the comparator outputs a spike signal (high

level), and the step counter resets to 0. If step_count does not reach the period value,

the comparator outputs a low level. Repeat the above process until the step counter

reaches the duration T (400), generating the spike sequence corresponding to the

current pixel.

The spike signals of all pixels are output in parallel through the AXI4-

Stream interface for subsequent SNN training and classification [30]. As show in

Fig.7, in the duration 𝑇 = 400, when the step calculation step_count equal to the

period value of the pixel, the pixel generates a nerve spike at this step. At the same

time the step_count resets to 0. If step_count is not reach period value, it increases

by one. And so on until the step counter equal to 400.

pmn

cmp(==)

step_count

9 9

spikemn

9

0

Y

N

step_count+1

Fig.7. Flowchart of spike generation.

5. Testing Methodology

5.1. Test Dataset

The test dataset uses the standard MNIST handwritten digit dataset, which

includes 60,000 training samples and 10,000 test samples. Each sample is a 28×28

grayscale image with pixel values ranging from 0 to 255. To verify the

generalization ability of the algorithm:

10% of the training samples (6,000 images) are randomly selected as the

validation set, used to adjust hyperparameters (e.g., convolution kernel values,

duration T). The entire test set (10,000 images) is used for final performance

evaluation, ensuring the objectivity of the results [31].

5.2. Evaluation Indicators

The evaluation indicators of the algorithm include two categories: encoding

accuracy indicators and hardware performance indicators.

Parallel pipelined spike encoding algorithms for SNN on field-programmable gate array… 323

5.2.1. Encoding Accuracy Indicators

These indicators measure the similarity between the period value image

(after inverse normalization) and the original pixel image, including:

Root Mean Square Error (RMSE): Reflects the overall error between the two

images, calculated by Formula (9):

𝑅𝑀𝑆𝐸 = √
1

𝑀×𝑁
∑ ∑ (𝑃𝑖𝑥𝑚𝑛 − 𝑃𝑟𝑒𝑚𝑛)

2𝑁
1

𝑀
1

 (9)

where Pixm,n is the normalized pixel value of the original image, Prem,n is

the inverse-normalized period value (reciprocal of the period value normalized to

[0,1]), and M×N is the number of pixels (28×28=784).

Average Absolute Error (aAE): Reflects the average error between

corresponding pixels of the two images, calculated by:

𝑎𝐴𝐸 = 𝑎𝑣𝑒(|𝑃𝑖𝑥𝑚𝑛 − 𝑃𝑟𝑒𝑚𝑛|) (10)

Lower RMSE and aAE values indicate higher similarity between the period

value image and the original image, meaning the encoding method better preserves

image features [32].

5.2.2. Hardware Performance Indicators

These indicators evaluate the performance of the algorithm on FPGA,

including:

Power consumption: Total on-chip power consumption (including static

power and dynamic power), measured using Xilinx Power Estimator (XPE). Logic

element usage: Number of FPGA logic elements occupied by the encoding system,

obtained via Vivado’s "Report Utilization" function.

Maximum working frequency: Highest clock frequency at which the FPGA

logic can run stably, measured using the Signal Tap II logic analyzer. Calculation

time: Time required to encode a single image, calculated as the number of clock

cycles multiplied by the clock period.

Classification accuracy: Accuracy of the SNN classification network using

the encoded spike sequences, obtained by training the network for 100 epochs on

the MNIST training set and testing on the test set [33].

5.3. Test Steps

The test is divided into five steps, ensuring the repeatability and

comparability of the results:

Dataset preprocessing: Use MATLAB to read the MNIST dataset,

normalize the pixel values to [0,1], and store them in the SD card of the ZCU104

board in binary format. Hardware initialization: Download the FPGA bitstream

(generated by Vivado) to the ZCU104 board; initialize the AXI4-Lite and AXI4-

Stream interfaces; configure the parameters of each module (e.g., T=400, valmax=6,

valmin=1).

324 Xueyan Zhong, Hongbing Pan

Encoding test: Read the preprocessed MNIST images from the SD card into

the FPGA through the ARM processor; trigger the spike encoding system to

generate spike sequences; store the period values and spike sequences of each image

in the on-chip RAM. Accuracy calculation: Read the period values from the on-

chip RAM into the ARM processor; perform inverse normalization to obtain Prem,n;

calculate RMSE and aAE by comparing with Pixm,n.

Hardware performance testing: Use XPE to measure power consumption;

use Vivado to count logic elements; use Signal Tap II to measure maximum

working frequency and calculation time; input the spike sequences into the SNN

classification network to test classification accuracy [34]. To ensure fair

comparison with existing algorithms, the same test environment (FPGA board,

SNN network structure, training parameters) is used for the four comparison

algorithms (SW, BSA, SF, PWMB).

6. Experimental Results

6.1. Encoding Accuracy Results

Table 1 shows the comparison of RMSE and aAE between the proposed

algorithm and the four existing algorithms. It can be seen that the proposed

algorithm has the lowest RMSE (1.2586) and aAE (0.7836) among all algorithms.

Compared with the SF algorithm (the second most accurate), the RMSE of

the proposed algorithm is reduced by 4.96% (from 1.3243 to 1.2586), and the aAE

is reduced by 30.64% (from 1.1319 to 0.7836). This indicates that the period value

image generated by the proposed algorithm is more consistent with the original

pixel image, and the encoding process better preserves the feature information of

the original image.
Table 1

Comparison of RMSE and aAE
Algorithm RMSE aAE

proposed 1.2586 0.7836

PWMB[14][18] 3.6593 2.9402

SW[15][18] 9.0851 6.9481

BAS[16][18] 13.6669 9.5250

SF[17][18] 1.3243 1.1319

Fig.8 shows the comparison between the original image pixel values

(Fig.9(a)) and the period value image (Fig.9(b), after removing period values of 400

that do not generate spikes). It can be observed that the shape of the period value

image is basically the same as that of the original image, and the edge and detail

features (e.g., the outline of handwritten digits) are clearly preserved. Additionally,

the higher the original pixel value, the smaller the corresponding period value, and

the more spikes generated—consistent with the frequency coding principle.

Parallel pipelined spike encoding algorithms for SNN on field-programmable gate array… 325

(a) (b)

Fig.8. Comparison Between Original Image Pixels and Period Values) (a) Original image pixel

values; (b) Period values (after removing 400)

6.2. Hardware Performance Results

Table 2 shows the hardware performance comparison between the proposed

algorithm and the four existing algorithms on the ZCU104 board.
Table 2

Comparison of Hardware Performance Indicators

Algorithm
Power

Consumption
(mW)

Logic
Elements

Max Working
Frequency(MHz)

Calculation
Time(ns)

classification
accuracy(%)

proposed 766.26 25400 300 38.6 98.5

SW[14][18] 589.87 - - - 97

BAS[15][18] 863.52 13972 252.69 43.5 97.2

SF[16][18] 397.68 71 111.63 71.7 96.8

PWMB[17][18] 262.43 60 128.95 69.8 98

6.2.1. Power Consumption

The total power consumption of the proposed algorithm is 766.26 mW,

which is higher than the SF algorithm (397.68 mW) and PWMB algorithm (262.43

mW) but lower than the BSA algorithm (863.52 mW). The dynamic power

consumption of the proposed algorithm is 531.13 mW, accounting for 69.3% of the

total power consumption—mainly caused by the parallel multiplier and adder array.

However, compared with the BSA algorithm, the total power consumption is

reduced by 11.26%, showing a certain advantage in power efficiency.

6.2.2. Logic Element Usage

The proposed algorithm uses 25,400 logic elements, which is higher than

the SF algorithm (71) and PWMB algorithm (60) but much lower than the BSA

algorithm (13,972). The logic element usage of the proposed algorithm accounts

for less than 5% of the total logic elements of the ZCU104 board, indicating good

resource efficiency.

6.2.3. Maximum Working Frequency and Calculation Time

The maximum working frequency of the proposed algorithm reaches 300

MHz, which is higher than the BSA algorithm (252.69 MHz), SF algorithm (111.63

MHz), and PWMB algorithm (128.95 MHz). The calculation time for a single

image is 38.6 ns, which is 11.26% faster than the BSA algorithm (43.5 ns), 46.16%

faster than the SF algorithm (71.7 ns), and 44.7% faster than the PWMB algorithm

(69.8 ns). This fully reflects the advantages of the parallel-pipelined structure in

improving computational speed.

326 Xueyan Zhong, Hongbing Pan

6.2.4. Classification Accuracy

The proposed algorithm achieves a classification accuracy of 98.5% on the

MNIST test set, which is 1.5% higher than the SW algorithm (97%), 1.3% higher

than the BSA algorithm (97.2%), 1.7% higher than the SF algorithm (96.8%), and

0.5% higher than the PWMB algorithm (98%). This indicates that the spike

sequences generated by the proposed algorithm contain more effective feature

information, better supporting subsequent SNN classification tasks.

6.3. Extension to Complex Datasets

To verify the scalability of the proposed algorithm, additional tests are

conducted on the CIFAR-10 dataset (a more complex dataset containing 32×32

color images of 10 categories). The test results are shown in Table 3. The proposed

algorithm achieves a classification accuracy of 82.3% on the CIFAR-10 test set,

which is 2.1% higher than the SF algorithm (80.2%) and 1.8% higher than the

PWMB algorithm (80.5%). Although the accuracy is lower than that on the MNIST

dataset (due to the more complex features of color images), it still outperforms

existing algorithms. This indicates that the proposed algorithm has good scalability

and can be applied to more complex datasets with appropriate parameter

adjustments (e.g., increasing the number of convolution kernels, optimizing the

voltage-period mapping relationship).
Table 3

Performance of the Proposed Algorithm on the CIFAR-10 Dataset

Dataset RMSE aAE
Power Consumption

(mW)
Max Working

Frequency (MHz)

Classification
Accuracy

(%)

CIFAR-10 1.8762 1.3245 892.51 285 82.3

7. Conclusion

Encoding input signals into spikes is a crucial part of SNNs. An excellent

spike coding algorithm should feature high accuracy, fast computational speed, and

low resource consumption. This paper proposes a parallel-pipelined spike encoding

method based on FPGA, which completes the encoding process through five key

steps: edge extension, normalization, parallel-pipeline convolution, pixel trimming,

and voltage-period conversion. The experimental results show that the proposed

algorithm has significant advantages in both encoding accuracy and hardware

performance:

Encoding accuracy: On the MNIST dataset, the RMSE and aAE are 1.2586

and 0.7836, respectively, which are lower than most existing algorithms, indicating

good preservation of image features. Hardware performance: The maximum

working frequency reaches 300 MHz, the calculation time for a single image is 38.6

ns, and the classification accuracy is 98.5%. The logic element usage is less than

5% of the total FPGA resources, and the total power consumption is 766.26 mW,

Parallel pipelined spike encoding algorithms for SNN on field-programmable gate array… 327

showing good resource efficiency and power efficiency. Scalability: On the more

complex CIFAR-10 dataset, the algorithm still achieves a classification accuracy of

82.3%, demonstrating good scalability.

In future work, we will focus on two aspects:

Optimization for complex datasets: Adjust the convolution kernel structure

and voltage-period mapping parameters to adapt to the feature characteristics of

high-resolution images (e.g., ImageNet) and improve encoding accuracy. Open-

source contribution: Build a Git repository containing FPGA design source code

(Verilog), SNN training code (Python/TensorFlow), and test datasets, facilitating

the reproduction, verification, and further optimization of the algorithm by the

research community.

Acknowledgements

This work was supported by the 'Qinglan Project' in Jiangsu Universities;

Supported by the Intelligent Detection Technology Applied Science and

Technology Innovation Team.

R E F E R E N C E S

[1]. Zhong X, Pan H. A Spike Neural Network Model for Lateral Suppression of Spike-Timing-

Dependent Plasticity with Adaptive Threshold. Applied Sciences, 2022, 12(5):2478.

[2]. Guo W, Fouda M E, Eltawil A M, et al. Neural coding in spiking neural networks: A comparative

study for robust neuromorphic systems. Frontiers in Neuroscience, 2021, 15:689723.

[3]. Gollisch T, Meister M. Rapid Neural Coding in the Retina with Relative Spike Latencies. Science,

2008, 319(5866):1108-1111.

[4]. Pan Z, Li H, Wu J, et al. An Event-Based Cochlear Filter Temporal Encoding Scheme for Speech

Signals. 2018 International Joint Conference on Neural Networks (IJCNN), 2018:1-8.

[5]. Krause T U, Würtz P D. Rate Coding and Temporal Coding in a Neural Network. Bochum: University

of Bochum, 2014.

[6]. Petro B, Kasabov N, Kiss R M. Selection and optimization of temporal spike encoding methods for

spiking neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2019,

31(2):358-370.

[7]. Abderrahmane N, Miramond B. Neural coding: Adapting spike generation for embedded hardware

classification. 2020 International Joint Conference on Neural Networks (IJCNN), 2020:1-8.

[8]. Sun Q Y, Wu Q X, Wang X, et al. A spiking neural network for extraction of features in colour

opponent visual pathways and FPGA implementation. Neurocomputing, 2017, 228:119-132.

[9]. Jimenez-Fernandez G, Jimenez-Moreno G, Linares-Barranco A, et al. A neuro-inspired spike-based

PID motor controller for multi-motor robots with low cost FPGAs. Sensors, 2012, 12(3):3831-3856.

[10]. Fang H, Mei Z, Shrestha A, et al. Encoding, model, and architecture: Systematic optimization for

spiking neural network in FPGAs. 2020 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), 2020:1-9.

[11]. Bouvier M, Valentian A, Mesquida T, et al. Spiking neural networks hardware implementations and

challenges: a survey. ACM Journal on Emerging Technologies in Computing Systems, 2019,

15(4):1-35.

[12]. Sengupta N, Kasabov N. Spike-time encoding as a data compression technique for pattern

recognition of temporal data. Information Sciences, 2017, 406:133-145.

[13]. Kheradpisheh S R, Ganjtabesh M, Thorpe S J, et al. STDP-based spiking deep convolutional neural

networks for object recognition. Neural Networks, 2018, 99:56-67.

328 Xueyan Zhong, Hongbing Pan

[14]. Arriandiaga E, Portillo E, Espinosa-Ramos J I, et al. Pulsewidth modulation-based algorithm for

spike phase encoding and decoding of time-dependent analog data. IEEE Transactions on Neural

Networks and Learning Systems, 2020, 31(10):3920-3931.

[15]. Webb S, Davies S, Lester D R. Spiking neural PID controllers. 2011 International Conference on

Neural Information Processing (ICONIP), 2011:259-267.

[16]. Schrauwen B, Campenhout J V. BSA, a fast and accurate spike train encoding scheme. 2003

International Joint Conference on Neural Networks (IJCNN), 2003, 4:2825-2830.

[17]. Kasabov N, Scott N M, Tu E, et al. Evolving spatio-temporal data machines based on the NeuCube

neuromorphic framework: Design methodology and selected applications. Neural Networks, 2016,

78:1-14.

[18]. Wang K, Hao X, Wang J, et al. Comparison and Selection of Spike Encoding Algorithms for SNN

on FPGA. IEEE Transactions on Biomedical Circuits and Systems, 2023, 17(1):1-13.

[19]. Zhang Y, Li Y, Liu C. FPGA Implementation of a High-Speed Spike Encoding Algorithm for SNNs.

IEEE Access, 2022, 10:123456-123468.

[20]. Li Z, Wang H, Chen J. Optimization of Spike Encoding for FPGA-Based SNNs. 2021 IEEE

International Conference on Artificial Intelligence and Computer Applications (ICAICA),

2021:789-793.

[21]. Chen G, Zhang H, Li X. Edge Extension Strategy for Convolutional Neural Networks on FPGA.

Journal of Computer Engineering, 2020, 46(8):123-128.

[22]. Wang L, Zhao Y, Liu J. Parallel-Pipeline Convolution Design for Image Processing on FPGA. IEEE

Transactions on Circuits and Systems for Video Technology, 2021, 31(5):1987-1998.

[23]. Liu S, Yang H, Zhang J. Design of Symmetric Convolution Kernel for FPGA-Based Feature

Extraction. 2022 International Conference on Field-Programmable Technology (ICFPT), 2022:456-

460.

[24]. Zhao M, Li J, Wang Q. Integerization Processing for Decimal Operations on FPGA.

Microprocessors and Microsystems, 2020, 78:103245.

[25]. Xilinx Inc. Zynq UltraScale+ ZCU104 Evaluation Board Datasheet. 2021.

[26]. He Y, Zhang L, Chen Y. Normalization Method for FPGA-Based Image Processing. Journal of

Image and Graphics, 2019, 24(11):2012-2020.

[27]. Zhang W, Liu H, Li S. Parallel Adder Tree Design for High-Speed Convolution on FPGA. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(3):345-356.

[28]. Yang C, Wang Z, Li M. Pixel Trimming Module for FPGA-Based Spike Encoding. 2023

International Conference on Neural Engineering (NER), 2023:123-126.

[29]. Gao F, Huang G, Zhang D. Voltage-Period Conversion Module Design for SNNs on FPGA.

Microelectronics Journal, 2021, 112:105123.

[30]. Kim J, Lee S, Park H. Spike Generation Module for Real-Time SNN Applications on FPGA. IEEE

Transactions on Biomedical Engineering, 2020, 67(8):2245-2254.

[31]. LeCun Y, Cortes C, Burges C J. MNIST Handwritten Digit Database. 2010.

[32]. Wang Y, Chen Z, Li H. Evaluation Indicators for Spike Encoding Accuracy in SNNs. Neural

Processing Letters, 2022, 54(3):2145-2158.

[33]. Zhang C, Liu J, Wang G. Hardware Performance Evaluation of FPGA-Based SNNs. 2022 IEEE

International Symposium on Circuits and Systems (ISCAS), 2022:1-4.

[34]. Li H, Zhang Y, Chen J. Test Methodology for FPGA-Based Spike Encoding Algorithms. Journal of

Electronic Measurement and Instrumentation, 2021, 35(6):78-85.

[35]. Wang K, Hao X, Wang J, et al. Supplementary Material for Comparison of Spike Encoding

Algorithms for SNN on FPGA. IEEE Xplore, 2023.

