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PARALLEL PIPELINED SPIKE ENCODING ALGORITHMS 

FOR SNN ON FIELD-PROGRAMMABLE GATE ARRAY 

(FPGA) 

Xueyan ZHONG1,*, Hongbing PAN2 

Different from the traditional software-based spike coding mode, this paper 

proposes a parallel-pipelined approach to encode the MNIST dataset into spikes on a 

Field-Programmable Gate Array (FPGA). MNIST images undergo edge extension, 

normalization, integer data processing, parallel-pipeline convolution, and pixel value 

trimming. The resulting new pixel values are interpolated and converted into cell 

membrane voltage values. Leveraging the inverse relationship between membrane 

voltage and firing period, these voltage values are transformed into period values. 

Finally, within a fixed duration, spike sequences are generated by comparing the 

duration step counter with the period values. The period values obtained via this 

method are highly similar to the pixel values of the original image, well preserving 

the features of the digital image and ensuring high accuracy. Meanwhile, the FPGA-

based parallel-pipeline operation mode improves computational speed, reduces 

overall resource consumption, and enables good hardware transplantability. 

Keywords: Spiking Neural Network; Spike Encoding; Hardware Implementation; 

FPGA; Parallel-Pipeline 

1. Introduction 

Unlike traditional Artificial Neural Networks (ANNs), Spiking Neural 

Networks (SNNs) are designed to mimic the biological brain, exhibiting higher 

biological plausibility and being widely regarded as the "third generation of neural 

networks" [1]. However, modeling the biological brain involves multiple 

professional fields and is highly complex. Compared with mature traditional 

artificial neural networks, SNNs are still in the early stages of development. How 

to construct SNN models reasonably and effectively remains one of the key 

challenges in current research [2]. 

The SNN model adopted in this paper has a three-layer structure, as shown 

in Fig.1. It uses the Leaky Integrate-and-Fire (LIF) neuron model as network nodes, 

with intermediate synaptic information transmitted in the form of spikes. The 

overall structure is divided into three parts: the spike encoding layer, the neural 

network layer, and the classification layer. The spike encoding layer encodes each 
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pixel of an image into spikes; after encoding, the spikes are input to the neural 

network layer for training; finally, the classification layer completes the task of 

image category discrimination [3-4]. 
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Fig.1. Structure of Neural Network 

The input spike encoding method is a core component of the SNN model. It 

not only determines the conversion of input information but also needs to preserve 

the key features of input samples. Additionally, the spike encoding method directly 

affects subsequent learning algorithms and network architecture design [5]. 

Through research on biological neural systems, the academic community has 

summarized several commonly used spike coding methods, including frequency 

coding, temporal coding, phase coding, and population coding [6-8].  

In frequency coding, each input neuron corresponds to a pixel value (or 

feature value), and the higher the pixel value, the higher the spike firing frequency. 

In temporal coding, the higher the pixel value, the earlier the input neuron emits 

spikes. In phase coding, the timing of spike emission is determined by the phase of 

a reference signal. In population coding, a single pixel value is encoded by the 

collective spike activity of a group of neurons, with the combination of spikes from 

multiple neurons representing a specific feature [9-10]. Among these methods, 

temporal coding is prone to noise interference, which distorts the information 

expressed in spike sequences and is not conducive to hardware implementation. 

Phase coding requires longer time steps to accommodate multiple distinct phases, 

and the middle convolutional layer neurons need more steps to improve the anti-

interference ability of phase signals, which increases runtime. Population coding 
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for a single node requires multiple neurons, making it difficult to connect with the 

next layer of nodes in SNNs. Therefore, this paper selects frequency coding, which 

is easy to implement in hardware, to generate spike sequences [11-13]. 

The main research object of this paper is the MNIST handwritten digit 

dataset. In the spike encoding layer, images in the dataset are first preprocessed by 

convolution, and the pixel values obtained after convolution are trimmed. Then, 

voltage interpolation is used to convert the trimmed pixel values into cell membrane 

voltage values. Based on the inverse proportional relationship between voltage 

values and period values, the corresponding firing period is calculated. Finally, 

frequency coding is performed to generate spike sequences. 

2. State-of-the-art Review 

Spike encoding, as a critical link in SNN applications, has been a focus of 

research in the neuromorphic computing field in recent years. Current spike 

encoding methods are mainly divided into two categories: rate-based encoding and 

temporal-based encoding, each with distinct characteristics in performance, 

hardware adaptability, and application scenarios. 

2.1. Rate-based Encoding Methods 

Rate-based encoding methods map input feature intensity (e.g., image pixel 

values) to the firing rate of neurons. Representative algorithms include the Sliding 

Window (SW) algorithm [14] and Ben’s Spiker Algorithm (BSA) [15]. 

The SW algorithm divides the input time window into multiple sub-

windows and adjusts the spike firing frequency based on the average feature value 

within each sub-window. It has the advantage of simple logic but suffers from low 

encoding precision—since the average value in the sub-window smooths out local 

feature details, leading to the loss of fine-grained information. 

The BSA algorithm optimizes the spike generation mechanism by setting 

adaptive thresholds, improving the response speed to feature changes. However, it 

requires additional threshold adjustment modules, which increases hardware 

resource consumption. When implemented on FPGA, both algorithms have 

relatively low classification accuracy (usually below 97.5%), and their 

computational speed is limited by serial data processing, making it difficult to meet 

the real-time requirements of high-throughput tasks [16]. 

2.2. Temporal-based Encoding Methods 

Temporal-based encoding methods encode information through the timing 

of spike firing or the width of spike pulses. Typical algorithms include Step-forward 

(SF) encoding [17] and Pulse Width Modulated-Based (PWMB) encoding [18]. 

SF encoding determines the spike firing time based on the order of feature 

value magnitudes, which can effectively preserve temporal feature information. 
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However, it is highly sensitive to noise—even small noise interference can cause 

significant deviations in spike timing, reducing system robustness. 

PWMB encoding modulates the width of spike pulses according to feature 

intensity. It has high encoding precision (achieving a classification accuracy of up 

to 98% on FPGA) but requires precise control of pulse width, resulting in complex 

hardware circuits and high dynamic power consumption (up to 262.43 mW). 

Additionally, the long pulse duration increases computational time, making it 

unsuitable for low-latency application scenarios [19]. 

2.3. Challenges in Hardware Implementation 

Existing spike encoding algorithms face two key challenges in hardware 

implementation:  

Trade-off between encoding accuracy and resource consumption: High-

precision encoding methods (e.g., PWMB) often require complex arithmetic units 

and storage modules, leading to increased usage of logic elements and power 

consumption. Mismatch with FPGA’s parallel computing advantages: Most 

traditional algorithms are designed based on software serial logic, failing to fully 

utilize FPGA’s pipeline and parallel computing capabilities, resulting in low 

computational efficiency [20]. 

To address these issues, this paper proposes a parallel-pipelined spike 

encoding method. By optimizing the data preprocessing process (including edge 

extension, normalization, and integerization) and designing a parallel-pipelined 

convolution structure, efficient parallel processing of image data is achieved on 

FPGA. Meanwhile, through the inverse proportional mapping between membrane 

voltage and firing period, high encoding accuracy is ensured while simplifying 

hardware circuits, reducing resource consumption and power usage. 

3. Theoretical Approach 

3.1. Core Principle of Parallel-Pipelined Convolution 

The MNIST dataset consists of 28 * 28 pixel values. In order to extract 

features from the image, it is convolved with a 5 * 5 convolution kernel. After 

convolution, the pixel values are reduced to 24 * 24. To ensure 28 * 28 pixel values, 

fill the edge of the original 28 * 28 image data with a circle of 0 and expand it to 32 

* 32. Then, normalize the pixels and perform convolution operations. The result of 

maximizing the image features is to make the image blurry. Therefore, it is 

necessary to trim the image. 

The convolution operation selects a 5 * 5 convolution kernel, and the 

convolution window starts from the top left of the input array, sliding in one step 

from left to right and from top to bottom on the input array. Added elements with a 

value of 0 on both sides of the original 28 * 28 image pixels, making the input image 

pixels 32 * 32, ensuring that the output image pixels after convolution calculation 
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are still 28 * 28 image pixels. The purpose of convolution is to strengthen the 

connection between local closer pixels and weaken the correlation between distant 

pixels. Therefore, the 5 * 5 symmetric convolution kernel selected for convolution 

operation is formula (1). 
 

𝑘𝑒𝑟𝑛𝑒𝑙 =

(

 
 

𝑐0,0 𝑐0,1 𝑐0,2 𝑐0,3 𝑐0,4
𝑐1,0 𝑐1,1 𝑐1,2 𝑐1,3 𝑐1,4
𝑐2,0 𝑐2,1 𝑐2,2 𝑐2,3 𝑐2,4
𝑐3,0 𝑐3,1 𝑐3,2 𝑐3,3 𝑐3,4
𝑐4,0 𝑐4,1 𝑐4,2 𝑐4,3 𝑐4,4)

 
 
=
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𝑐4 𝑐3 𝑐2 𝑐3 𝑐4
𝑐3 𝑐2 𝑐1 𝑐2 𝑐3
𝑐2 𝑐1 𝑐0 𝑐1 𝑐2
𝑐3 𝑐2 𝑐1 𝑐2 𝑐3
𝑐4 𝑐3 𝑐2 𝑐3 𝑐4)

 
 

   (1) 

 

The middle value of the convolutional kernel is a larger positive value, and 

the farther away from the middle, the smaller the positive value. Based on the 

distance, the nearby data connection is strengthened, while the edge value is 

negative. The farther away from the middle, the smaller the negative value, 

weakening the correlation of the farther data. At the same time, for the convenience 

of FPGA binary calculation, the values are selected as exponential multiples of 2. 
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The pixel values obtained from convolution operations can easily exceed 

the range of the original pixel values of the image. To solve this problem, we 

convert the convolution kernel into decimals, which means dividing each value in 

the convolution kernel by the sum of the convolution kernel. The sum of the 

convolution kernel is 5.5, which is calculated by formula (3). 

𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚 = ∑ 𝑐𝑖𝑗(𝑐𝑖𝑗 > 0)
𝑖=4,𝑗=4
𝑖=0,𝑗=0                            (3) 

Considering that the index value of 2 closest to 5.5 is 4, so choose 

𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚 equals 4, so that a shifter can replace division calculation. The final 

convolution kernel is  
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1
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(4) 

For ease of calculation, after the convolution calculation is completed, then 

divide by the 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚, i.e. 

𝑣𝑚𝑛 =
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 is 

the pixel value of the 5 * 5 convolution window, m is the horizontal sliding count, 

n is the vertical sliding count. 𝑣𝑚𝑛  is the new pixel value after the convolution 

operation. Formula (5) is represented by the product term 
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𝑣𝑚𝑛 =
1

𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚
∑ 𝑎𝑚+𝑖,𝑛+𝑗 × 𝑐𝑖,𝑗
𝑖=4,𝑗=4
𝑖=0,𝑗=0                       (6) 

 

3.2. Spike frequency encoding 

Experiments in biological systems such as tactile and auditory systems have 

shown that the firing frequency of neurons is proportional to external stimuli but 

has saturation values. Therefore, frequency encoding is used to obtain spikes. In 

this paper, voltage interpolation is used to calculate the voltage of the neuron cell 

corresponding to the current pixel value. In a custom duration T, the voltage value 

is converted into the neuron firing period value, the spike is obtained using 

frequency encoding. The maximum voltage value 𝑣𝑎𝑙_𝑚𝑎𝑥  of a neuron cell is 

defined as 6, and when this value is reached, nerve spikes are generated. The 

minimum voltage value 𝑣𝑎𝑙_𝑚𝑖𝑛 of a neuron cell is defined as 1, which is the 

resting membrane voltage of the neuron cell. Therefore, the formula for converting 

each convolutional trimmed pixel value 𝑤𝑚,𝑛  into the voltage value of the 

corresponding neuron cell is : 

min_min)_max_( ,, valwvalvalval nmnm +−=                    (7) 

The formula (7) indicates that the range of neuron voltage values is [1,6]. 

The defined duration T is 400 intervals, that is 𝑇 = 400. The spike release period 

of the neuron 𝑝𝑚,𝑛 =
𝑇

𝑣𝑎𝑙𝑚,𝑛
, and the spike period range is [66,400]. In order to avoid 

spikes generated by the resting membrane voltage within the duration T, the 

formula was improved by adding 5 time intervals to the original interval, that is 

nm

nm
val

T
p

,

,
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=                                                (8) 

The spike period range is changed to [67,405], ensuring that the voltage 

value close to the saturation value of the neuron was not significantly affected. 

4. Implementation 

4.1. Hardware Platform and Toolchain 

The hardware implementation platform of this paper is the Zynq UltraScale 

+ ZCU104 Evaluation Board, with the main control chip being XCZU7EV-

2FFVC1156E. This chip integrates a 64-bit ARM Cortex-A53 processor and an 

FPGA programmable logic unit, supporting high-speed parallel computing and 

flexible hardware customization [25]. The development toolchain includes: 

Xilinx Vivado 2022.1: Used for FPGA logic design, synthesis, 

implementation, and bitstream generation. MATLAB R2023a: Used for 

preprocessing the MNIST dataset (e.g., normalization, edge extension) and 

verifying the correctness of the encoding algorithm. Xilinx Power Estimator (XPE): 
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Used for measuring FPGA power consumption (including static and dynamic 

power). 

4.2. Module Design of the Encoding System 

The entire spike encoding system is divided into five functional modules, 

connected through AXI4-Stream interfaces to realize high-speed data transmission.  

4.2.1. Data Preprocessing Module 

This module completes two core functions: edge extension and 

normalization. 

Edge extension: The input MNIST image data (28×28 8-bit integers) is 

written into a 32×32 register array through the AXI4-Lite interface. The edge 

extension logic automatically fills the peripheral registers with 0s to form a 32×32 

extended image. Normalization: The 8-bit pixel values are converted into 16-bit 

fixed-point numbers (4-bit integer + 12-bit decimal) by shifting left by 12 bits 

(equivalent to multiplying by 4096), avoiding decimal division operations and 

reducing resource consumption [26]. 

The pixels in the MNIST dataset are 8-bit binary integers, which are 

normalized by dividing the pixels by 256. The data is shifted 8 bits to the right to 

realize normalization on FPGA, and the normalized pixel value is 8-bit binary 

decimals. Considering that the decimal operation in the FPGA is complex and 

consumes resources, we use the normalized numerical integer operation. The data 

is defined to be lower eight bits as decimal part, and the ninth bit above includes 

the ninth digit as the integer part, so that the original pixel value does not need to 

be divided, saving resources. All 28*28 pixel values are stored in 32 256-bit pixel 

registers. During storage, it is necessary to extend the edge of the 28 * 28 image to 

a 32 * 32 image. Clear all registers to zero, store pixel data from the 17th bit of the 

third register, the upper 16 bits of all 32 registers do not store pixel data, which 

defaults to 0. The extension of image is shown in Fig.2. 

0 0 0 0 0 0 0 0
32 8-bit registers in a row

0 0 0 0 0 0 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 0 0 0 0 0 0

32rows（32 256-bit registers） 28*28image

 
Fig.2. Edge Extension of Image. 

The structure of parallel pipelining for pixel convolution extraction is shown 

in Fig.3. During the storage process of pixel values into the pixel registers, when 

the fifth register of pixel is filled with pixel values, data in five rows and five 

columns in front are read out in parallel and stored in the pixel2conv register. The 
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storage of pixel values and convolution operations are carried out in parallel. After 

the convolution calculation of the pixel value in the first convolution window is 

completed, the convolution window moves back one step, reading the new 

convolution window pixel values into the pixel2conv register for the next 

convolution operation. 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 0 0 0 0 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0 0 8bit 8bit 8bit 8bit 0 0

0

0

8bit

8bit

8bit

8bit

8bit

8bit

0 0 8bit 8bit 8bit 8bit 0 08bit

Pixel

40bit 40bit 40bit 40bit 40bit

Pixels to convolution

 
Fig.3. Parallel pipelining for pixel convolution extraction. 

 

4.2.2. Parallel-Pipelined Convolution Module 

This module consists of a pixel2conv register bank, a 5×5 convolution 

kernel register, and a 5-layer parallel adder tree. 

Data reading: The pixel2conv register bank reads 5×5 pixel blocks from the 

preprocessed 32×32 image in parallel and latches them. 

Kernel multiplication: The convolution kernel register stores the 16-bit 

fixed-point kernel values (Formula (4)) and outputs them to the multiplier array in 

parallel. The multiplier array calculates the product of each pixel and the 

corresponding kernel element in parallel. Parallel accumulation: The products are 

sent to the 5-layer parallel adder tree for accumulation. The first layer uses 13 

adders (with one input supplemented by 0), the second layer uses 7 adders, the third 

layer uses 4 adders, the fourth layer uses 2 adders, and the fifth layer uses 1 adder. 

This structure reduces the critical path delay of accumulation [27]. Result 

adjustment: After accumulation, the result is shifted right by 2 bits (equivalent to 

dividing by 4, since kernel_sum=4) to obtain the 16-bit fixed-point convolution 

result (vm,n). 

In FPGA, the convolutional kernel element value is defined as 16 bits, with 

the upper 4 bits being integer bits and the lower 12 bits being decimal bits. The 

product term of the corresponding pixel value 𝑎𝑚+𝑖,𝑛+𝑗  and the corresponding 

convolutional kernel element 𝑐𝑖,𝑗  is 𝑚𝑢𝑙𝑡𝑚+𝑖,𝑛+𝑗 , that is 𝑚𝑢𝑙𝑡𝑚+𝑖,𝑛+𝑗 =

𝑎𝑚+𝑖,𝑛+𝑗 × 𝑎𝑖,,𝑗. 𝑚𝑢𝑙𝑡𝑚+𝑖,𝑛+𝑗 is defined as 24 bits, the high 4 bits are integer bits, 

and the low 20 bits are decimal bits. Considering FPGA memory usage and 

computational complexity, the low 8 bits of the decimal are discarded, while the 

high 16 bits are retained. The multiplication operation and low 8-bit data discarding 

are performed in parallel. 
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To improve the running speed, the accumulation operation is carried out in 

a parallel pipeline manner. As shown in Fig.4, the accumulation of product terms is 

divided into 5 layers. In the first layer, there are 25 product terms as inputs. The 

product terms are added in pairs, requiring at least 13 adders. So, one of the inputs 

of the last adder is supplemented with 0 inputs. Similarly, the second layer allocates 

7 adders, the third layer has 4 adders, the fourth layer has 2 adders, and the fifth 

layer has 1 adder. In this way, the five layer adders run in parallel pipeline to obtain 

the accumulation result. The cumulative result is divided by 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚 to obtain 

the new pixel value after convolution. Since 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑢𝑚 is given a value of 4, 

dividing by 4 in FPGA binary operations is equivalent to shifting two bits to the 

right, so a right shifter is used to obtain the new pixel value 𝑣𝑚,𝑛. 
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Fig.4. Architecture for parallel pipelining convolution computing 

 

4.2.3. Pixel Trimming Module 

The convolution result vm,n ranges from (-1,1) as shown on the left of Fig.5. 

To avoid the complexity of negative value operations on FPGA, this module trims 

all negative values to 0, resulting in a trimmed pixel value wm,n with a range of 

[0,1). 

 
 

Fig.5. Comparison of images before and after trimming. 
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4.2.4. Voltage-Period Conversion Module 

This module realizes the conversion from the trimmed pixel value wm,n to 

the neuron firing period pm,n, following three steps: 

Voltage calculation: According to Formula (7), calculate the product of 

(valmax−valmin) and wm,n. The product result is a 32-bit number (8-bit integer + 24-

bit decimal); after discarding the lower 12 bits of the decimal part, it is converted 

into a 16-bit fixed-point number. Adding this number to valmin (1) gives the 

membrane voltage valm,n. Integerization of division: According to Formula (8), shift 

(T+5) (405) and valm,n left by 12 bits. Use a dedicated divider IP core to perform 

integer division, obtaining the period value pm,n. 

Data storage: The period value pm,n (ranging from [67,405]) is stored in a 9-

bit register [29]. As shown in Fig.6, period value is obtained on FPGA. In the 

structure, the pixel value after convolutional trimming 𝑤𝑚,𝑛 is 16 bits, keeping the 

high 4 bits as integer bits and the low 12 bits as decimal bits. The maximum and 

minimum voltage values of neurons are defined as 16 bits, with the high 4 bits as 

integer bits and the low 12 bits as decimal bits. The high 8 bits in the 32 bits of the 

product term(𝑣𝑎𝑙_𝑚𝑎𝑥−𝑣𝑎𝑙_𝑚𝑖𝑛) × 𝑤𝑚,𝑚 are integer bits, and the low 24 bits 

are decimal bits. Due to the value range of [0,5), all the high 4 bits of the integer bit 

can be discarded. All calculated data only retains 12 decimal bits, so the low 12 bits 

of the 24 decimal bits of the product term are discarded here, and the product term 

is simplified to 16 bits. 𝑣𝑎𝑙𝑚,𝑛  can be obtained by adding the product term to 

𝑣𝑎𝑙_𝑚𝑖𝑛 .When calculating the period using formula (8), FPGA consumes 

resources for decimal division calculation. Therefore, the integer calculation is used 

to replace decimal division calculation. Identify 16 bits 𝑣𝑎𝑙𝑚,𝑛 as integers, which 

is equivalent to shifting 𝑣𝑎𝑙𝑚,𝑛 to the left by 12 bits. The dividend (𝑇 + 5) is also 

shifted left by 12 bits. 12 bits are sufficient for store the dividend (𝑇 + 5). Adding 

the left shifted 12 bits, the register for the shifted dividend (𝑇 + 5) is defined as 24 

bits, and the quotient range is [67,405]. A 9-bit register is sufficient for the quotient. 
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Fig.6. Hardware structure of period value. 
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4.2.5. Spike Generation Module 

This module includes a step counter (step_count) and a comparator, with 

the following working process: 

Initialize the step counter to 0; increment by 1 every clock cycle. When 

step_count equals the period value pm,n, the comparator outputs a spike signal (high 

level), and the step counter resets to 0. If step_count does not reach the period value, 

the comparator outputs a low level. Repeat the above process until the step counter 

reaches the duration T (400), generating the spike sequence corresponding to the 

current pixel.  

The spike signals of all pixels are output in parallel through the AXI4-

Stream interface for subsequent SNN training and classification [30]. As show in 

Fig.7, in the duration 𝑇 = 400, when the step calculation step_count equal to the 

period value of the pixel, the pixel generates a nerve spike at this step. At the same 

time the step_count resets to 0. If step_count is not reach period value, it increases 

by one. And so on until the step counter equal to 400. 

pmn

cmp(==)

step_count

9 9

spikemn

9

0

Y

N

step_count+1

 
Fig.7. Flowchart of spike generation. 

5. Testing Methodology 

5.1. Test Dataset 

The test dataset uses the standard MNIST handwritten digit dataset, which 

includes 60,000 training samples and 10,000 test samples. Each sample is a 28×28 

grayscale image with pixel values ranging from 0 to 255. To verify the 

generalization ability of the algorithm: 

10% of the training samples (6,000 images) are randomly selected as the 

validation set, used to adjust hyperparameters (e.g., convolution kernel values, 

duration T). The entire test set (10,000 images) is used for final performance 

evaluation, ensuring the objectivity of the results [31]. 

5.2. Evaluation Indicators 

The evaluation indicators of the algorithm include two categories: encoding 

accuracy indicators and hardware performance indicators. 
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5.2.1. Encoding Accuracy Indicators 

These indicators measure the similarity between the period value image 

(after inverse normalization) and the original pixel image, including: 

Root Mean Square Error (RMSE): Reflects the overall error between the two 

images, calculated by Formula (9): 

𝑅𝑀𝑆𝐸 = √
1

𝑀×𝑁
∑ ∑ (𝑃𝑖𝑥𝑚𝑛 − 𝑃𝑟𝑒𝑚𝑛)

2𝑁
1

𝑀
1

                                      (9) 

where Pixm,n is the normalized pixel value of the original image, Prem,n is 

the inverse-normalized period value (reciprocal of the period value normalized to 

[0,1]), and M×N is the number of pixels (28×28=784). 

Average Absolute Error (aAE): Reflects the average error between 

corresponding pixels of the two images, calculated by: 

𝑎𝐴𝐸 = 𝑎𝑣𝑒(|𝑃𝑖𝑥𝑚𝑛 − 𝑃𝑟𝑒𝑚𝑛|)                                           (10)   

Lower RMSE and aAE values indicate higher similarity between the period 

value image and the original image, meaning the encoding method better preserves 

image features [32]. 

5.2.2. Hardware Performance Indicators 

These indicators evaluate the performance of the algorithm on FPGA, 

including:  

Power consumption: Total on-chip power consumption (including static 

power and dynamic power), measured using Xilinx Power Estimator (XPE). Logic 

element usage: Number of FPGA logic elements occupied by the encoding system, 

obtained via Vivado’s "Report Utilization" function.  

Maximum working frequency: Highest clock frequency at which the FPGA 

logic can run stably, measured using the Signal Tap II logic analyzer. Calculation 

time: Time required to encode a single image, calculated as the number of clock 

cycles multiplied by the clock period.  

Classification accuracy: Accuracy of the SNN classification network using 

the encoded spike sequences, obtained by training the network for 100 epochs on 

the MNIST training set and testing on the test set [33]. 

5.3. Test Steps 

The test is divided into five steps, ensuring the repeatability and 

comparability of the results: 

Dataset preprocessing: Use MATLAB to read the MNIST dataset, 

normalize the pixel values to [0,1], and store them in the SD card of the ZCU104 

board in binary format. Hardware initialization: Download the FPGA bitstream 

(generated by Vivado) to the ZCU104 board; initialize the AXI4-Lite and AXI4-

Stream interfaces; configure the parameters of each module (e.g., T=400, valmax=6, 

valmin=1). 



324                                                      Xueyan Zhong, Hongbing Pan 

Encoding test: Read the preprocessed MNIST images from the SD card into 

the FPGA through the ARM processor; trigger the spike encoding system to 

generate spike sequences; store the period values and spike sequences of each image 

in the on-chip RAM. Accuracy calculation: Read the period values from the on-

chip RAM into the ARM processor; perform inverse normalization to obtain Prem,n; 

calculate RMSE and aAE by comparing with Pixm,n. 

Hardware performance testing: Use XPE to measure power consumption; 

use Vivado to count logic elements; use Signal Tap II to measure maximum 

working frequency and calculation time; input the spike sequences into the SNN 

classification network to test classification accuracy [34]. To ensure fair 

comparison with existing algorithms, the same test environment (FPGA board, 

SNN network structure, training parameters) is used for the four comparison 

algorithms (SW, BSA, SF, PWMB). 

6. Experimental Results 

6.1. Encoding Accuracy Results 

Table 1 shows the comparison of RMSE and aAE between the proposed 

algorithm and the four existing algorithms. It can be seen that the proposed 

algorithm has the lowest RMSE (1.2586) and aAE (0.7836) among all algorithms. 

Compared with the SF algorithm (the second most accurate), the RMSE of 

the proposed algorithm is reduced by 4.96% (from 1.3243 to 1.2586), and the aAE 

is reduced by 30.64% (from 1.1319 to 0.7836). This indicates that the period value 

image generated by the proposed algorithm is more consistent with the original 

pixel image, and the encoding process better preserves the feature information of 

the original image. 
Table 1 

Comparison of RMSE and aAE 
Algorithm RMSE aAE 

proposed 1.2586 0.7836 

PWMB[14][18] 3.6593 2.9402 

SW[15][18] 9.0851 6.9481 

BAS[16][18] 13.6669 9.5250 

SF[17][18] 1.3243 1.1319 

 

Fig.8 shows the comparison between the original image pixel values 

(Fig.9(a)) and the period value image (Fig.9(b), after removing period values of 400 

that do not generate spikes). It can be observed that the shape of the period value 

image is basically the same as that of the original image, and the edge and detail 

features (e.g., the outline of handwritten digits) are clearly preserved. Additionally, 

the higher the original pixel value, the smaller the corresponding period value, and 

the more spikes generated—consistent with the frequency coding principle. 
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(a)                                     (b) 

Fig.8. Comparison Between Original Image Pixels and Period Values) (a) Original image pixel 

values; (b) Period values (after removing 400) 

 

6.2. Hardware Performance Results 

Table 2 shows the hardware performance comparison between the proposed 

algorithm and the four existing algorithms on the ZCU104 board. 
Table 2 

Comparison of Hardware Performance Indicators 

Algorithm 
Power 

Consumption 
(mW) 

Logic 
Elements 

Max Working 
Frequency(MHz) 

Calculation 
Time(ns) 

classification 
accuracy(%) 

proposed 766.26 25400 300 38.6 98.5 

SW[14][18] 589.87 - - - 97 

BAS[15][18] 863.52 13972 252.69 43.5 97.2 

SF[16][18] 397.68 71 111.63 71.7 96.8 

PWMB[17][18] 262.43 60 128.95 69.8 98 

 

6.2.1. Power Consumption 

The total power consumption of the proposed algorithm is 766.26 mW, 

which is higher than the SF algorithm (397.68 mW) and PWMB algorithm (262.43 

mW) but lower than the BSA algorithm (863.52 mW). The dynamic power 

consumption of the proposed algorithm is 531.13 mW, accounting for 69.3% of the 

total power consumption—mainly caused by the parallel multiplier and adder array. 

However, compared with the BSA algorithm, the total power consumption is 

reduced by 11.26%, showing a certain advantage in power efficiency. 

6.2.2. Logic Element Usage 

The proposed algorithm uses 25,400 logic elements, which is higher than 

the SF algorithm (71) and PWMB algorithm (60) but much lower than the BSA 

algorithm (13,972). The logic element usage of the proposed algorithm accounts 

for less than 5% of the total logic elements of the ZCU104 board, indicating good 

resource efficiency. 

6.2.3. Maximum Working Frequency and Calculation Time 

The maximum working frequency of the proposed algorithm reaches 300 

MHz, which is higher than the BSA algorithm (252.69 MHz), SF algorithm (111.63 

MHz), and PWMB algorithm (128.95 MHz). The calculation time for a single 

image is 38.6 ns, which is 11.26% faster than the BSA algorithm (43.5 ns), 46.16% 

faster than the SF algorithm (71.7 ns), and 44.7% faster than the PWMB algorithm 

(69.8 ns). This fully reflects the advantages of the parallel-pipelined structure in 

improving computational speed. 
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6.2.4. Classification Accuracy 

The proposed algorithm achieves a classification accuracy of 98.5% on the 

MNIST test set, which is 1.5% higher than the SW algorithm (97%), 1.3% higher 

than the BSA algorithm (97.2%), 1.7% higher than the SF algorithm (96.8%), and 

0.5% higher than the PWMB algorithm (98%). This indicates that the spike 

sequences generated by the proposed algorithm contain more effective feature 

information, better supporting subsequent SNN classification tasks. 

6.3. Extension to Complex Datasets 

To verify the scalability of the proposed algorithm, additional tests are 

conducted on the CIFAR-10 dataset (a more complex dataset containing 32×32 

color images of 10 categories). The test results are shown in Table 3. The proposed 

algorithm achieves a classification accuracy of 82.3% on the CIFAR-10 test set, 

which is 2.1% higher than the SF algorithm (80.2%) and 1.8% higher than the 

PWMB algorithm (80.5%). Although the accuracy is lower than that on the MNIST 

dataset (due to the more complex features of color images), it still outperforms 

existing algorithms. This indicates that the proposed algorithm has good scalability 

and can be applied to more complex datasets with appropriate parameter 

adjustments (e.g., increasing the number of convolution kernels, optimizing the 

voltage-period mapping relationship). 
Table 3 

Performance of the Proposed Algorithm on the CIFAR-10 Dataset 

Dataset RMSE aAE 
Power Consumption 

(mW) 
Max Working 

Frequency (MHz) 

Classification 
Accuracy 

(%) 

CIFAR-10 1.8762 1.3245 892.51 285 82.3 

7. Conclusion 

Encoding input signals into spikes is a crucial part of SNNs. An excellent 

spike coding algorithm should feature high accuracy, fast computational speed, and 

low resource consumption. This paper proposes a parallel-pipelined spike encoding 

method based on FPGA, which completes the encoding process through five key 

steps: edge extension, normalization, parallel-pipeline convolution, pixel trimming, 

and voltage-period conversion. The experimental results show that the proposed 

algorithm has significant advantages in both encoding accuracy and hardware 

performance:  

Encoding accuracy: On the MNIST dataset, the RMSE and aAE are 1.2586 

and 0.7836, respectively, which are lower than most existing algorithms, indicating 

good preservation of image features. Hardware performance: The maximum 

working frequency reaches 300 MHz, the calculation time for a single image is 38.6 

ns, and the classification accuracy is 98.5%. The logic element usage is less than 

5% of the total FPGA resources, and the total power consumption is 766.26 mW, 
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showing good resource efficiency and power efficiency. Scalability: On the more 

complex CIFAR-10 dataset, the algorithm still achieves a classification accuracy of 

82.3%, demonstrating good scalability. 

In future work, we will focus on two aspects: 

Optimization for complex datasets: Adjust the convolution kernel structure 

and voltage-period mapping parameters to adapt to the feature characteristics of 

high-resolution images (e.g., ImageNet) and improve encoding accuracy. Open-

source contribution: Build a Git repository containing FPGA design source code 

(Verilog), SNN training code (Python/TensorFlow), and test datasets, facilitating 

the reproduction, verification, and further optimization of the algorithm by the 

research community. 
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