U.P.B. Sci. Bull,, Series C, Vol. 87, Iss. 4, 2025 ISSN 2286 — 3540

PARALLEL PIPELINED SPIKE ENCODING ALGORITHMS
FOR SNN ON FIELD-PROGRAMMABLE GATE ARRAY
(FPGA)

Xueyan ZHONG'"", Hongbing PAN?

Different from the traditional software-based spike coding mode, this paper
proposes a parallel-pipelined approach to encode the MNIST dataset into spikes on a
Field-Programmable Gate Array (FPGA). MNIST images undergo edge extension,
normalization, integer data processing, parallel-pipeline convolution, and pixel value
trimming. The resulting new pixel values are interpolated and converted into cell
membrane voltage values. Leveraging the inverse relationship between membrane
voltage and firing period, these voltage values are transformed into period values.
Finally, within a fixed duration, spike sequences are generated by comparing the
duration step counter with the period values. The period values obtained via this
method are highly similar to the pixel values of the original image, well preserving
the features of the digital image and ensuring high accuracy. Meanwhile, the FPGA-
based parallel-pipeline operation mode improves computational speed, reduces
overall resource consumption, and enables good hardware transplantability.

Keywords: Spiking Neural Network; Spike Encoding; Hardware Implementation;
FPGA; Parallel-Pipeline

1. Introduction

Unlike traditional Artificial Neural Networks (ANNs), Spiking Neural
Networks (SNNs) are designed to mimic the biological brain, exhibiting higher
biological plausibility and being widely regarded as the "third generation of neural
networks" [1]. However, modeling the biological brain involves multiple
professional fields and 1s highly complex. Compared with mature traditional
artificial neural networks, SNNs are still in the early stages of development. How
to construct SNN models reasonably and effectively remains one of the key
challenges in current research [2].

The SNN model adopted in this paper has a three-layer structure, as shown
in Fig.1. It uses the Leaky Integrate-and-Fire (LIF) neuron model as network nodes,
with intermediate synaptic information transmitted in the form of spikes. The
overall structure is divided into three parts: the spike encoding layer, the neural
network layer, and the classification layer. The spike encoding layer encodes each
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pixel of an image into spikes; after encoding, the spikes are input to the neural
network layer for training; finally, the classification layer completes the task of
image category discrimination [3-4].

pixel
AN

Pulse Coding \Q\O

Layer

Level One

STDP Algorithm

Neural Network

Layer Level Tw Lateral Inhibition

o

Classification v v v
| Lafyer Q Q o Q/
v o v

Fig.1. Structure of Neural Network

The input spike encoding method is a core component of the SNN model. It
not only determines the conversion of input information but also needs to preserve
the key features of input samples. Additionally, the spike encoding method directly
affects subsequent learning algorithms and network architecture design [5].
Through research on biological neural systems, the academic community has
summarized several commonly used spike coding methods, including frequency
coding, temporal coding, phase coding, and population coding [6-8].

In frequency coding, each input neuron corresponds to a pixel value (or
feature value), and the higher the pixel value, the higher the spike firing frequency.
In temporal coding, the higher the pixel value, the earlier the input neuron emits
spikes. In phase coding, the timing of spike emission is determined by the phase of
a reference signal. In population coding, a single pixel value is encoded by the
collective spike activity of a group of neurons, with the combination of spikes from
multiple neurons representing a specific feature [9-10]. Among these methods,
temporal coding is prone to noise interference, which distorts the information
expressed in spike sequences and is not conducive to hardware implementation.
Phase coding requires longer time steps to accommodate multiple distinct phases,
and the middle convolutional layer neurons need more steps to improve the anti-
interference ability of phase signals, which increases runtime. Population coding
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for a single node requires multiple neurons, making it difficult to connect with the
next layer of nodes in SNNs. Therefore, this paper selects frequency coding, which
is easy to implement in hardware, to generate spike sequences [11-13].

The main research object of this paper is the MNIST handwritten digit
dataset. In the spike encoding layer, images in the dataset are first preprocessed by
convolution, and the pixel values obtained after convolution are trimmed. Then,
voltage interpolation is used to convert the trimmed pixel values into cell membrane
voltage values. Based on the inverse proportional relationship between voltage
values and period values, the corresponding firing period is calculated. Finally,
frequency coding is performed to generate spike sequences.

2. State-of-the-art Review

Spike encoding, as a critical link in SNN applications, has been a focus of
research in the neuromorphic computing field in recent years. Current spike
encoding methods are mainly divided into two categories: rate-based encoding and
temporal-based encoding, each with distinct characteristics in performance,
hardware adaptability, and application scenarios.

2.1. Rate-based Encoding Methods

Rate-based encoding methods map input feature intensity (e.g., image pixel
values) to the firing rate of neurons. Representative algorithms include the Sliding
Window (SW) algorithm [14] and Ben’s Spiker Algorithm (BSA) [15].

The SW algorithm divides the input time window into multiple sub-
windows and adjusts the spike firing frequency based on the average feature value
within each sub-window. It has the advantage of simple logic but suffers from low
encoding precision—since the average value in the sub-window smooths out local
feature details, leading to the loss of fine-grained information.

The BSA algorithm optimizes the spike generation mechanism by setting
adaptive thresholds, improving the response speed to feature changes. However, it
requires additional threshold adjustment modules, which increases hardware
resource consumption. When implemented on FPGA, both algorithms have
relatively low classification accuracy (usually below 97.5%), and their
computational speed is limited by serial data processing, making it difficult to meet
the real-time requirements of high-throughput tasks [16].

2.2. Temporal-based Encoding Methods

Temporal-based encoding methods encode information through the timing
of spike firing or the width of spike pulses. Typical algorithms include Step-forward
(SF) encoding [17] and Pulse Width Modulated-Based (PWMB) encoding [18].

SF encoding determines the spike firing time based on the order of feature
value magnitudes, which can effectively preserve temporal feature information.
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However, it is highly sensitive to noise—even small noise interference can cause
significant deviations in spike timing, reducing system robustness.

PWMB encoding modulates the width of spike pulses according to feature
intensity. It has high encoding precision (achieving a classification accuracy of up
to 98% on FPGA) but requires precise control of pulse width, resulting in complex
hardware circuits and high dynamic power consumption (up to 262.43 mW).
Additionally, the long pulse duration increases computational time, making it
unsuitable for low-latency application scenarios [19].

2.3. Challenges in Hardware Implementation

Existing spike encoding algorithms face two key challenges in hardware
implementation:

Trade-off between encoding accuracy and resource consumption: High-
precision encoding methods (e.g., PWMB) often require complex arithmetic units
and storage modules, leading to increased usage of logic elements and power
consumption. Mismatch with FPGA’s parallel computing advantages: Most
traditional algorithms are designed based on software serial logic, failing to fully
utilize FPGA’s pipeline and parallel computing capabilities, resulting in low
computational efficiency [20].

To address these issues, this paper proposes a parallel-pipelined spike
encoding method. By optimizing the data preprocessing process (including edge
extension, normalization, and integerization) and designing a parallel-pipelined
convolution structure, efficient parallel processing of image data is achieved on
FPGA. Meanwhile, through the inverse proportional mapping between membrane
voltage and firing period, high encoding accuracy is ensured while simplifying
hardware circuits, reducing resource consumption and power usage.

3. Theoretical Approach

3.1. Core Principle of Parallel-Pipelined Convolution

The MNIST dataset consists of 28 * 28 pixel values. In order to extract
features from the image, it is convolved with a 5 * 5 convolution kernel. After
convolution, the pixel values are reduced to 24 * 24. To ensure 28 * 28 pixel values,
fill the edge of the original 28 * 28 image data with a circle of 0 and expand it to 32
* 32. Then, normalize the pixels and perform convolution operations. The result of
maximizing the image features is to make the image blurry. Therefore, it is
necessary to trim the image.

The convolution operation selects a 5 * 5 convolution kernel, and the
convolution window starts from the top left of the input array, sliding in one step
from left to right and from top to bottom on the input array. Added elements with a
value of 0 on both sides of the original 28 * 28 image pixels, making the input image
pixels 32 * 32, ensuring that the output image pixels after convolution calculation
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are still 28 * 28 image pixels. The purpose of convolution is to strengthen the
connection between local closer pixels and weaken the correlation between distant
pixels. Therefore, the 5 * 5 symmetric convolution kernel selected for convolution
operation is formula (1).

Coo Co1 Co2 Co3 Coa Cy C3 Cp (3 Cy
Ci0 C11 C12 C13 Ci4 C3 C € C C3
kernel =| C20 €21 C22 €23 Ca|=|C € Co C1 Cz | (1)

C3p0 C31 C32 C33 C34 C3 C € Cp (3
Ca0 C41 Ca2 Ca3 Cypn

The middle value of the convolutional kernel is a larger positive value, and
the farther away from the middle, the smaller the positive value. Based on the
distance, the nearby data connection is strengthened, while the edge value is
negative. The farther away from the middle, the smaller the negative value,
weakening the correlation of the farther data. At the same time, for the convenience
of FPGA binary calculation, the values are selected as exponential multiples of 2.

1 1 1
2 4 4 4 2
s 1
4 4 8 4 4
1 5 5 1
-2 2 2 2
4 8 8 4 2)
r1r s 1 1
4 4 8 4 4
B T S S
2 4 4 4 2

The pixel values obtained from convolution operations can easily exceed
the range of the original pixel values of the image. To solve this problem, we
convert the convolution kernel into decimals, which means dividing each value in
the convolution kernel by the sum of the convolution kernel. The sum of the
convolution kernel is 5.5, which is calculated by formula (3).

kernel_sum = Z::g:;:g cij(cij > 0) (3)

Considering that the index value of 2 closest to 5.5 is 4, so choose

kernel_sum equals 4, so that a shifter can replace division calculation. The final
convolution kernel is
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For ease of calculation, after the convolution calculation is completed, then
divide by the kernel_sum, i.c.
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the pixel value of the 5 * 5 convolution window, m is the horizontal sliding count,
n is the vertical sliding count. v,,, is the new pixel value after the convolution
operation. Formula (5) is represented by the product term
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1

_ 1 is4j=4
Vimn = kernel_sumzi:OJ=0 Am+in+j X Cij (6)

3.2. Spike frequency encoding

Experiments in biological systems such as tactile and auditory systems have
shown that the firing frequency of neurons is proportional to external stimuli but
has saturation values. Therefore, frequency encoding is used to obtain spikes. In
this paper, voltage interpolation is used to calculate the voltage of the neuron cell
corresponding to the current pixel value. In a custom duration T, the voltage value
is converted into the neuron firing period value, the spike is obtained using
frequency encoding. The maximum voltage value val_max of a neuron cell is
defined as 6, and when this value is reached, nerve spikes are generated. The
minimum voltage value val_min of a neuron cell is defined as 1, which is the
resting membrane voltage of the neuron cell. Therefore, the formula for converting
each convolutional trimmed pixel value wy,, into the voltage value of the
corresponding neuron cell is :

val, ~=(val _max—val min) xw,+val min (7)

The formula (7) indicates that the range of neuron voltage values is [1,6].
The defined duration T is 400 intervals, that is T = 400. The spike release period

of the neuron p;, , = UL and the spike period range is [66,400]. In order to avoid

almn’
spikes generated by the resting membrane voltage within the duration T, the
formula was improved by adding 5 time intervals to the original interval, that is

_T+5
l7m,n_‘/Y l (8)

The spike period range is changed to [67,405], ensuring that the voltage
value close to the saturation value of the neuron was not significantly affected.

4. Implementation

4.1. Hardware Platform and Toolchain

The hardware implementation platform of this paper is the Zynq UltraScale
+ ZCU104 Evaluation Board, with the main control chip being XCZU7EV-
2FFVCI1156E. This chip integrates a 64-bit ARM Cortex-A53 processor and an
FPGA programmable logic unit, supporting high-speed parallel computing and
flexible hardware customization [25]. The development toolchain includes:

Xilinx Vivado 2022.1: Used for FPGA logic design, synthesis,
implementation, and bitstream generation. MATLAB R2023a: Used for
preprocessing the MNIST dataset (e.g., normalization, edge extension) and
verifying the correctness of the encoding algorithm. Xilinx Power Estimator (XPE):
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Used for measuring FPGA power consumption (including static and dynamic
power).
4.2. Module Design of the Encoding System

The entire spike encoding system is divided into five functional modules,
connected through AXI4-Stream interfaces to realize high-speed data transmission.

4.2.1. Data Preprocessing Module

This module completes two core functions: edge extension and
normalization.

Edge extension: The input MNIST image data (28x28 8-bit integers) is
written into a 32x32 register array through the AXI4-Lite interface. The edge
extension logic automatically fills the peripheral registers with Os to form a 32x32
extended image. Normalization: The 8-bit pixel values are converted into 16-bit
fixed-point numbers (4-bit integer + 12-bit decimal) by shifting left by 12 bits
(equivalent to multiplying by 4096), avoiding decimal division operations and
reducing resource consumption [26].

The pixels in the MNIST dataset are 8-bit binary integers, which are
normalized by dividing the pixels by 256. The data is shifted 8 bits to the right to
realize normalization on FPGA, and the normalized pixel value is 8-bit binary
decimals. Considering that the decimal operation in the FPGA is complex and
consumes resources, we use the normalized numerical integer operation. The data
is defined to be lower eight bits as decimal part, and the ninth bit above includes
the ninth digit as the integer part, so that the original pixel value does not need to
be divided, saving resources. All 28*28 pixel values are stored in 32 256-bit pixel
registers. During storage, it is necessary to extend the edge of the 28 * 28 image to
a 32 * 32 image. Clear all registers to zero, store pixel data from the 17th bit of the
third register, the upper 16 bits of all 32 registers do not store pixel data, which
defaults to 0. The extension of image is shown in Fig.2.

[ofofoJof~[ofofafo]
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Fig.2. Edge Extension of Image.

The structure of parallel pipelining for pixel convolution extraction is shown
in Fig.3. During the storage process of pixel values into the pixel registers, when
the fifth register of pixel is filled with pixel values, data in five rows and five
columns in front are read out in parallel and stored in the pixel2conv register. The
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storage of pixel values and convolution operations are carried out in parallel. After
the convolution calculation of the pixel value in the first convolution window is
completed, the convolution window moves back one step, reading the new
convolution window pixel values into the pixel2conv register for the next
convolution operation.
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Fig.3. Parallel pipelining for pixel convolution extraction.

4.2.2. Parallel-Pipelined Convolution Module

This module consists of a pixel2conv register bank, a 5%5 convolution
kernel register, and a 5-layer parallel adder tree.

Data reading: The pixel2conv register bank reads 5x5 pixel blocks from the
preprocessed 32x32 image in parallel and latches them.

Kernel multiplication: The convolution kernel register stores the 16-bit
fixed-point kernel values (Formula (4)) and outputs them to the multiplier array in
parallel. The multiplier array calculates the product of each pixel and the
corresponding kernel element in parallel. Parallel accumulation: The products are
sent to the 5-layer parallel adder tree for accumulation. The first layer uses 13
adders (with one input supplemented by 0), the second layer uses 7 adders, the third
layer uses 4 adders, the fourth layer uses 2 adders, and the fifth layer uses 1 adder.
This structure reduces the critical path delay of accumulation [27]. Result
adjustment: After accumulation, the result is shifted right by 2 bits (equivalent to
dividing by 4, since kernel sum=4) to obtain the 16-bit fixed-point convolution
result (Vim,n).

In FPGA, the convolutional kernel element value is defined as 16 bits, with
the upper 4 bits being integer bits and the lower 12 bits being decimal bits. The
product term of the corresponding pixel value @p4in4j and the corresponding
convolutional kernel element ¢;; is Multyyinyj , that is multy,;ne; =
Amyin+j X Qj,j. MUlty ;i ny; is defined as 24 bits, the high 4 bits are integer bits,
and the low 20 bits are decimal bits. Considering FPGA memory usage and
computational complexity, the low 8 bits of the decimal are discarded, while the
high 16 bits are retained. The multiplication operation and low 8-bit data discarding
are performed in parallel.
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To improve the running speed, the accumulation operation is carried out in
a parallel pipeline manner. As shown in Fig.4, the accumulation of product terms is
divided into 5 layers. In the first layer, there are 25 product terms as inputs. The
product terms are added in pairs, requiring at least 13 adders. So, one of the inputs
of the last adder is supplemented with 0 inputs. Similarly, the second layer allocates
7 adders, the third layer has 4 adders, the fourth layer has 2 adders, and the fifth
layer has 1 adder. In this way, the five layer adders run in parallel pipeline to obtain
the accumulation result. The cumulative result is divided by kernel_sum to obtain
the new pixel value after convolution. Since kernel_sum is given a value of 4,
dividing by 4 in FPGA binary operations is equivalent to shifting two bits to the
right, so a right shifter is used to obtain the new pixel value v, ,,.

Pixels to convolution

X ‘ am,n ‘ am,n+1 ‘ am,n+2 ‘ am,n+3 ‘ am,n+4 ‘ am+1,n ‘ ‘amm,mz‘am+4,n+3‘am¢4,n+4‘
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Fig.4. Architecture for parallel pipelining convolution computing

4.2.3. Pixel Trimming Module

The convolution result vm,n ranges from (-1,1) as shown on the left of Fig.5.
To avoid the complexity of negative value operations on FPGA, this module trims
all negative values to 0, resulting in a trimmed pixel value wmn, with a range of
[0,1).

Fig.5. Comparison of images before and after trimming.
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4.2.4. Voltage-Period Conversion Module

This module realizes the conversion from the trimmed pixel value W to
the neuron firing period pmn, following three steps:

Voltage calculation: According to Formula (7), calculate the product of
(valmax—valmin) and wmn. The product result is a 32-bit number (8-bit integer + 24-
bit decimal); after discarding the lower 12 bits of the decimal part, it is converted
into a 16-bit fixed-point number. Adding this number to valmin (1) gives the
membrane voltage valmn. Integerization of division: According to Formula (8), shift
(T+5) (405) and valm,n left by 12 bits. Use a dedicated divider IP core to perform
integer division, obtaining the period value pm,n.

Data storage: The period value pm, (ranging from [67,405]) is stored in a 9-
bit register [29]. As shown in Fig.6, period value is obtained on FPGA. In the
structure, the pixel value after convolutional trimming w,, ,, is 16 bits, keeping the
high 4 bits as integer bits and the low 12 bits as decimal bits. The maximum and
minimum voltage values of neurons are defined as 16 bits, with the high 4 bits as
integer bits and the low 12 bits as decimal bits. The high 8 bits in the 32 bits of the
product term(val_max — val_min) X wy, ,,, are integer bits, and the low 24 bits
are decimal bits. Due to the value range of [0,5), all the high 4 bits of the integer bit
can be discarded. All calculated data only retains 12 decimal bits, so the low 12 bits
of the 24 decimal bits of the product term are discarded here, and the product term
is simplified to 16 bits. val,,, can be obtained by adding the product term to
val_min .When calculating the period using formula (8), FPGA consumes
resources for decimal division calculation. Therefore, the integer calculation is used
to replace decimal division calculation. Identify 16 bits val,, , as integers, which
is equivalent to shifting val,, , to the left by 12 bits. The dividend (T + 5) is also
shifted left by 12 bits. 12 bits are sufficient for store the dividend (T + 5). Adding
the left shifted 12 bits, the register for the shifted dividend (T + 5) is defined as 24
bits, and the quotient range is [67,405]. A 9-bit register is sufficient for the quotient.

‘ Wm,n ‘ ‘ val_max-val_min ‘

116
32
Discard the higher 4 bits D?El _
. val_min
and lower 12 bits 16 16
h 4 \ 4
[ T+5 | [ Add1 |
] 24 } 16
\ 4
Shift left by 12 bits | left shift | [valmn |

24 } 16
v
Div
9

Fig.6. Hardware structure of period value.
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4.2.5. Spike Generation Module

This module includes a step counter (step _count) and a comparator, with
the following working process:

Initialize the step counter to 0; increment by 1 every clock cycle. When
step count equals the period value pm,n, the comparator outputs a spike signal (high
level), and the step counter resets to 0. If step_count does not reach the period value,
the comparator outputs a low level. Repeat the above process until the step counter
reaches the duration T (400), generating the spike sequence corresponding to the
current pixel.

The spike signals of all pixels are output in parallel through the AXI4-
Stream interface for subsequent SNN training and classification [30]. As show in
Fig.7, in the duration T = 400, when the step calculation step count equal to the
period value of the pixel, the pixel generates a nerve spike at this step. At the same
time the step count resets to 0. If step_count is not reach period value, it increases
by one. And so on until the step counter equal to 400.

step_count+1

‘ pmn ‘ ‘step_count‘ &l
9 9 0

cmp(==) [N

Y.

Fig.7. Flowchart of spike generation.

5. Testing Methodology

5.1. Test Dataset

The test dataset uses the standard MNIST handwritten digit dataset, which
includes 60,000 training samples and 10,000 test samples. Each sample is a 28x28
grayscale image with pixel values ranging from 0 to 255. To verify the
generalization ability of the algorithm:

10% of the training samples (6,000 images) are randomly selected as the
validation set, used to adjust hyperparameters (e.g., convolution kernel values,
duration T). The entire test set (10,000 images) is used for final performance
evaluation, ensuring the objectivity of the results [31].

5.2. Evaluation Indicators

The evaluation indicators of the algorithm include two categories: encoding
accuracy indicators and hardware performance indicators.
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5.2.1. Encoding Accuracy Indicators

These indicators measure the similarity between the period value image
(after inverse normalization) and the original pixel image, including:
Root Mean Square Error (RMSE): Reflects the overall error between the two
images, calculated by Formula (9):

1 .
RMSE = \/MZIIW YV (Pixpy — Premn)? ©)

where Pixm,n is the normalized pixel value of the original image, Prem,n is
the inverse-normalized period value (reciprocal of the period value normalized to
[0,1]), and MxN is the number of pixels (28x28=784).
Average Absolute Error (aAE): Reflects the average error between
corresponding pixels of the two images, calculated by:

aAE = ave(|Pixy, — Preg,|) (10)

Lower RMSE and aAE values indicate higher similarity between the period

value image and the original image, meaning the encoding method better preserves
image features [32].

5.2.2. Hardware Performance Indicators

These indicators evaluate the performance of the algorithm on FPGA,
including:

Power consumption: Total on-chip power consumption (including static
power and dynamic power), measured using Xilinx Power Estimator (XPE). Logic
element usage: Number of FPGA logic elements occupied by the encoding system,
obtained via Vivado’s "Report Utilization" function.

Maximum working frequency: Highest clock frequency at which the FPGA
logic can run stably, measured using the Signal Tap II logic analyzer. Calculation
time: Time required to encode a single image, calculated as the number of clock
cycles multiplied by the clock period.

Classification accuracy: Accuracy of the SNN classification network using
the encoded spike sequences, obtained by training the network for 100 epochs on
the MNIST training set and testing on the test set [33].

5.3. Test Steps

The test is divided into five steps, ensuring the repeatability and
comparability of the results:

Dataset preprocessing: Use MATLAB to read the MNIST dataset,
normalize the pixel values to [0,1], and store them in the SD card of the ZCU104
board in binary format. Hardware initialization: Download the FPGA bitstream
(generated by Vivado) to the ZCU104 board; initialize the AXI4-Lite and AXI4-
Stream interfaces; configure the parameters of each module (e.g., T=400, valmax=6,
valmin=1).
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Encoding test: Read the preprocessed MNIST images from the SD card into
the FPGA through the ARM processor; trigger the spike encoding system to
generate spike sequences; store the period values and spike sequences of each image
in the on-chip RAM. Accuracy calculation: Read the period values from the on-
chip RAM into the ARM processor; perform inverse normalization to obtain Premn;
calculate RMSE and aAE by comparing with Pixm .

Hardware performance testing: Use XPE to measure power consumption;
use Vivado to count logic elements; use Signal Tap II to measure maximum
working frequency and calculation time; input the spike sequences into the SNN
classification network to test classification accuracy [34]. To ensure fair
comparison with existing algorithms, the same test environment (FPGA board,
SNN network structure, training parameters) is used for the four comparison
algorithms (SW, BSA, SF, PWMB).

6. Experimental Results

6.1. Encoding Accuracy Results

Table 1 shows the comparison of RMSE and aAE between the proposed
algorithm and the four existing algorithms. It can be seen that the proposed
algorithm has the lowest RMSE (1.2586) and aAE (0.7836) among all algorithms.

Compared with the SF algorithm (the second most accurate), the RMSE of
the proposed algorithm is reduced by 4.96% (from 1.3243 to 1.2586), and the aAE
is reduced by 30.64% (from 1.1319 to 0.7836). This indicates that the period value
image generated by the proposed algorithm is more consistent with the original
pixel image, and the encoding process better preserves the feature information of
the original image.

Table 1
Comparison of RMSE and aAE

Algorithm RMSE aAE
proposed 1.2586 0.7836
PWMBJ14][18] 3.6593 2.9402
SWI15][18] 9.0851 6.9481
BAS[16][18] 13.6669 9.5250
SF[17][18] 1.3243 1.1319

Fig.8 shows the comparison between the original image pixel values
(Fig.9(a)) and the period value image (Fig.9(b), after removing period values of 400
that do not generate spikes). It can be observed that the shape of the period value
image is basically the same as that of the original image, and the edge and detail
features (e.g., the outline of handwritten digits) are clearly preserved. Additionally,
the higher the original pixel value, the smaller the corresponding period value, and
the more spikes generated—consistent with the frequency coding principle.
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(a) (b)
Fig.8. Comparison Between Original Image Pixels and Period Values) (a) Original image pixel
values; (b) Period values (after removing 400)

6.2. Hardware Performance Results

Table 2 shows the hardware performance comparison between the proposed
algorithm and the four existing algorithms on the ZCU104 board.

Table 2
Comparison of Hardware Performance Indicators
Power . . . classification
. . Logic Max Working Calculation o
Algorithm Con(sll:lr‘l,lvl;twn Elements Frequency(MHz) Time(ns) accuracy(%)
proposed 766.26 25400 300 38.6 98.5
SW[14][18] 589.87 - - - 97
BAS[15][18] 863.52 13972 252.69 43.5 97.2
SF[16][18] 397.68 71 111.63 71.7 96.8
PWMBJ[17][18] 262.43 60 128.95 69.8 98

6.2.1. Power Consumption

The total power consumption of the proposed algorithm is 766.26 mW,
which is higher than the SF algorithm (397.68 mW) and PWMB algorithm (262.43
mW) but lower than the BSA algorithm (863.52 mW). The dynamic power
consumption of the proposed algorithm is 531.13 mW, accounting for 69.3% of the
total power consumption—mainly caused by the parallel multiplier and adder array.
However, compared with the BSA algorithm, the total power consumption is
reduced by 11.26%, showing a certain advantage in power efficiency.

6.2.2. Logic Element Usage

The proposed algorithm uses 25,400 logic elements, which is higher than
the SF algorithm (71) and PWMB algorithm (60) but much lower than the BSA
algorithm (13,972). The logic element usage of the proposed algorithm accounts
for less than 5% of the total logic elements of the ZCU104 board, indicating good
resource efficiency.

6.2.3. Maximum Working Frequency and Calculation Time

The maximum working frequency of the proposed algorithm reaches 300
MHz, which is higher than the BSA algorithm (252.69 MHz), SF algorithm (111.63
MHz), and PWMB algorithm (128.95 MHz). The calculation time for a single
image is 38.6 ns, which is 11.26% faster than the BSA algorithm (43.5 ns), 46.16%
faster than the SF algorithm (71.7 ns), and 44.7% faster than the PWMB algorithm
(69.8 ns). This fully reflects the advantages of the parallel-pipelined structure in
improving computational speed.
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6.2.4. Classification Accuracy

The proposed algorithm achieves a classification accuracy of 98.5% on the
MNIST test set, which is 1.5% higher than the SW algorithm (97%), 1.3% higher
than the BSA algorithm (97.2%), 1.7% higher than the SF algorithm (96.8%), and
0.5% higher than the PWMB algorithm (98%). This indicates that the spike
sequences generated by the proposed algorithm contain more effective feature
information, better supporting subsequent SNN classification tasks.

6.3. Extension to Complex Datasets

To verify the scalability of the proposed algorithm, additional tests are
conducted on the CIFAR-10 dataset (a more complex dataset containing 32x32
color images of 10 categories). The test results are shown in Table 3. The proposed
algorithm achieves a classification accuracy of 82.3% on the CIFAR-10 test set,
which is 2.1% higher than the SF algorithm (80.2%) and 1.8% higher than the
PWMB algorithm (80.5%). Although the accuracy is lower than that on the MNIST
dataset (due to the more complex features of color images), it still outperforms
existing algorithms. This indicates that the proposed algorithm has good scalability
and can be applied to more complex datasets with appropriate parameter
adjustments (e.g., increasing the number of convolution kernels, optimizing the
voltage-period mapping relationship).

Table 3
Performance of the Proposed Algorithm on the CIFAR-10 Dataset
. . Classification
Dataset RMSE aAE Power Consumption Max Working Accuracy
(mW) Frequency (MHz) (%)
CIFAR-10 1.8762 1.3245 892.51 285 823

7. Conclusion

Encoding input signals into spikes is a crucial part of SNNs. An excellent
spike coding algorithm should feature high accuracy, fast computational speed, and
low resource consumption. This paper proposes a parallel-pipelined spike encoding
method based on FPGA, which completes the encoding process through five key
steps: edge extension, normalization, parallel-pipeline convolution, pixel trimming,
and voltage-period conversion. The experimental results show that the proposed
algorithm has significant advantages in both encoding accuracy and hardware
performance:

Encoding accuracy: On the MNIST dataset, the RMSE and aAE are 1.2586
and 0.7836, respectively, which are lower than most existing algorithms, indicating
good preservation of image features. Hardware performance: The maximum
working frequency reaches 300 MHz, the calculation time for a single image is 38.6
ns, and the classification accuracy is 98.5%. The logic element usage is less than
5% of the total FPGA resources, and the total power consumption is 766.26 mW,
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showing good resource efficiency and power efficiency. Scalability: On the more
complex CIFAR-10 dataset, the algorithm still achieves a classification accuracy of
82.3%, demonstrating good scalability.

In future work, we will focus on two aspects:

Optimization for complex datasets: Adjust the convolution kernel structure
and voltage-period mapping parameters to adapt to the feature characteristics of
high-resolution images (e.g., ImageNet) and improve encoding accuracy. Open-
source contribution: Build a Git repository containing FPGA design source code
(Verilog), SNN training code (Python/TensorFlow), and test datasets, facilitating
the reproduction, verification, and further optimization of the algorithm by the
research community.
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