
U.P.B. Sci. Bull., Series A, Vol. 86, Iss. 1, 2024                                                     ISSN 1223-7027 

FINITE ELEMENTS SIMULATION OF PLANE WAVE 
REFLECTION BY LIQUIDS FREE SURFACES AT GRAZING 

INCIDENCE 

Andreea-Denisa GRIGUȚA1, Mihai Valentin PREDOI2*,                                          
Anaïs PERIN3,  Damien LEDUC4, Mounsif ECH-CHERIF EL-KETTANI5, 

Cristian-Cătălin PETRE6 

In the process of numerical simulation by the Finite Elements Method (FEM) 
of the ultrasonic acoustic waves propagating in water parallel or quasi-parallel to 
the free surface have surfaced a series of difficulties. The main issue is the fulfillment 
of the null pressure boundary condition at the free surface by an incident plane wave 
with a wavenumber vector parallel to this free surface. The authors deduce the 
asymptotic evolution of the plane wave in a two dimensional study. As the incidence 
angle approaches the grazing angle the background pressure input for the FEM 
analysis is expressed in accordance with this formulation. The acoustic field obtained 
by the proposed formula is depicted in a numerical analysis software, for a clearer 
understanding. Then, the implementation in a FEM software package of the results 
thus obtained, prove to be in good agreement with the analytical solution.   

 

Keywords: Grazing incidence, plane wave reflection.   

1. Introduction 

The research work in the domain of ultrasonic waves in sea water near the 
free surface is of interest for many applications. The Finite Elements Method (FEM) 
is widely used for numerical simulations of ultrasonic waves propagation and 
scattering in liquids. The incident wave is in general considered to be a classical 
plane wave, for which the pressure is identical at any given moment of time for all 
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the points situated in planes normal on the direction of propagation. When this 
direction is parallel to the interface water-air (or vacuum, since the air has negligible 
specific impedance Z=ρc to that of a liquid, with ρ the mass density and c 
representing the acoustic wave velocity) a contradiction appears. The acoustic 
pressure must cancel on the plane surface of the interface, so that the wave 
amplitude cannot be constant all along the planes normal on this interface. The 
interface between a fluid medium and vacuum is in fact a free surface. The pressure 
field of the fluid medium can be expressed using the theory of image sources. The 
real source in the fluid medium will have an image source that is symmetric with 
respect to the interface. So, in the case of an incident plane wave with a wave vector 
at an angle of θi, its image will have a wave vector at an angle of θr = - θi. The 
image plane wave is in opposite phase to the real plane wave to satisfy the condition 
of zero pressure imposed by the free surface. This method is widely used to 
characterize the pressure field scattered by various targets. P. Salaün [1] deals with 
the effect of the free surface on the far-field pressure on a half-submerged cylinder. 

The theoretical aspects of grazing incidence (incident angle θi → π/2)  were 
addressed by Goodier and Bishop in 1952 [2] for an elastic solid half-space. Their 
solution consisting of acoustic field developed in a series of the emergence angle e, 
in which e = (π/2 – θi) → 0 and their solution produced an intense debate.   

Later, this result was included in classical textbooks. Graff  [3] (pp.322) 
concludes that for grazing incidence θi → π/2 (Fig. 1a) the scalar potential is: 

 ( ) ( )1 2 exp ; 0A A y i kx t yωΦ = − − ≤    , (1) 
in which k cω=  [rad/m] is the scalar of the wavenumber,  ω [rad/s] is the angular 
(circular) frequency, t is time and 1i = − . Since we opted for vertical upwards 
(Oy) axis, as required by a FEM software, we set a minus sign in front of the 
constant A2, compared with the reference [3]. The author deduces that a linearly 
increasing amplitude 1 2A A y− with depth y < 0, is not a physical solution and for 
half-space problems “such waves are of little interest”.  Achenbach [4] includes the 
same reference [2] for the grazing incidence case, without any other comments. 
Miklowitz [5] pp.136 presents in detail the results of Goodier and Bishop [2].  
Dieulesaint and Royer [6] pp.42 investigate the reflection/refraction at the interface 
between two fluids, the critical angle and the total reflection, but not at the grazing 
incidence. More recent researches, up to 2023, on the acoustic waves reflection 
were published by Rokhlin et al. [7] , Solodov [8] , Caviglia et al. [9] , Kaushik and 
Gupta [10] or Tsumi et al. [11], but were not referring to FEM simulation problems. 
The grazing incidence investigated in this paper appears in maritime acoustics 
problems such as detecting sea ice, e.g. Moreau et al. [12], Liu and Li [13], Sandy 
et al. [14] or Chotiros [15] in detecting floating objects such as various ships or ice 
blocks.  



Finite elements simulation of plane wave reflection by liquids free surfaces at grazing incidence       153 

 
 

 
 
 
 
 
 
 
 

 
 
Fig. 1. (a) The wave incident on the free surface (y=0); (b) Incident plane wave pressure, pattern of 
blue(min) yellow, and red (max) stripes. (c) Spurious scattered acoustic pressure (c) (color online) 

 
To better understand the investigated problem, the configuration is 

described by a 2D cross-sectional view of COMSOL Multiphysics software. First 
of all, in a FEM simulation, an incident plane wave is sent with the selection 
"background pressure field" parallel to the free surface imposed by the selection 
"Sound Soft Boundary" for which the total pressure is zero (Fig. 1b). In the context 
of a semi-infinite medium, unwanted reflections are avoided by surrounding the 
computation domain by wave absorbing domains (PML Perfectly Matched Layer) 
on the three boundaries (left, right and bottom). However, a spurious solution 
appears for the scattered pressure (Fig. 1c). Moreover, when plotting the total 
pressure field, we clearly observe a dependence on the x coordinate. We expected 
the pressure field not to vary along the free surface because the medium is 
considered semi-infinite, and the excitation plane wave originates from infinity by 
definition. As a matter of fact, it is the combination of the two selections 
"background pressure field" (for the plane wave) and the selection "Sound Soft 
Boundary" (for the free surface) that causes a conflict in the model. This leads to 
non-physical results and proving nonexistent to this date of a validated FEM 
implementation of the classical acoustic pressure field. 

In most FEM models, the acoustic pressure, which is a scalar quantity, can 
be applied on a straight boundary segment and will generate a plane wave with the 
exception of the two ends of this boundary. The spurious cylindrical waves 
produced by these two boundary points will alter the intended acoustic pressure 
field. Moreover an inclined boundary will generate a finite extent acoustic filed, 
leaving incorrect results in the lower-right corner of the FEM domain. 

To avoid the issues mentioned above, the present work is focused on the 
problem of incident pressure waves in fluids at grazing incidence against a free 
surface, developing an asymptotic solution for the propagating wave, which has an 
amplitude increasing with increasing distance from the interface (depth). Numerical 
simulations in commercially available FEM package COMSOL [16], will prove 
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that this approach is adequate. The deduced acoustic pressure field (paragraph 2), 
shown in paragraph 3, can be directly and efficiently implemented in FEM packages 
(paragraph 4) in order to simulate any acoustic problems with grazing incidence.   

2. Theoretical aspects 

This paragraph focuses on finding the equations that govern the incident and 
reflected waves (as shown in Figure 1.a) using the classic theory of wave reflection. 
The equation governing the wave propagation in fluids is [5], [4], [3], [6] : 

 
2

2
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p c p
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∂
= ∆

∂
 , (2) 

simplifies in the two-dimensional cartesian case to:  
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 . (3) 

We are generalizing the search for possible solutions of this equation, choosing: 
 ( ) ( ) ( ), , exp xp x y t P y i k x tω= −   .  (4) 

Injecting the expression (4) in (3) and leaving aside the harmonic common factor 
( )exp xi k x tω−   , one gets: 
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2
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  (5) 

Using the common notation for the component of the wavenumber along (Oy): 
2 2

y xk k k= − , the general solution of (5) is: 

 ( ) ( ) ( )1 1exp expy yP y A ik y B ik y= + − .  (6) 
 These general solutions indicate that in the fluid domain can propagate two 
possible oblique waves relative to the system of axes shown on Fig. 1 , one towards 
positive (Oy) (incident wave on Fig. 1) with amplitude A1, and another towards 
negative (Oy) (reflected wave on Fig. 1) with amplitude B1, in full agreement with 
the classical theory of wave reflection. The grazing incidence is a limit case for the 
classical wave reflection at a free surface, but actually with no reflecting waves. For 
this reason, we prefer to write the solution (6) as: 

 ( ) ( ) ( )cos siny yP y A k y iB k y= +   (7) 

For the incident wave, the (Oy) component of the wavenumber is cosy ik k θ= , 
which for grazing incidence θi → π/2, tends to zero: 0yk → . Consequently:    

 ( ) ( )cos 1 ; siny y yk y k y k y→ → ,  (8) 
so that the acceptable solution for grazing incidence is 
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 ( ) yP y A iBk y= +   (9) 
Obviously in the case of a free surface, the pressure field must have A = 0 and the 
solution for the wave propagation is: 

 ( ) ( ), , expy xp x y t iBk y i k x tω= −   .  (10) 
Apparently, being a linear function of the depth coordinate y, the pressure amplitude 
increases indefinitely which “violates physical intuition” according to ref. [3]. In 
fact, being a development around zero of ( )sin yk y , the pressure amplitude Bky will 
remain finite even far from the free surface. The solution is no longer a classical 
plane wave since the amplitude increases with increasing distance from the free 
surface,  in each plane normal on the propagation direction.  
 

3. Numerical analysis  

The obtained solution is numerically analyzed using a MATLAB [17] code, for the 
classical case of plane wave reflection, progressively approaching the grazing 
incidence. The general solution (6) valid for arbitrary incident angles is considered 
for the total pressure field generated by superposed incident and reflected plane 
waves, defined by (4): 

 ( ) ( ) ( ) ( )1 1, , exp exp expy y xp x y t A ik y B ik y i k x tω = + − −    .  (11) 

For the free surface y=0 the pressure field must cancel so B1= -A1 and for an 
incident pressure of amplitude P0, the solution is: 

 
( ) ( ) ( ) ( )

( ) ( )
0

0

, , exp exp exp

2 sin cos exp

y y x

i x

p x y t P ik y ik y i k x t

i P k y i k x t

ω

θ ω

 = − − −   
= −  

  (12) 

A plane wave of P0 =1 Pa, frequency f =1 MHz is sent at incident angles θi = 75° 
(Fig. 2) and θi = 89.99° (Fig. 3). On the left of each figure are shown the real parts 
of the incident pressure, which is a plane wave for a certain incident angle. On the 
right, is presented the real part of the total acoustic pressure respecting the boundary 
condition at the free surface: P=0 at y = 0. 
It is important to notice that the total acoustic pressure shown on Fig. 3 is in 
agreement with the linear expression (10) obtained in the previous paragraph. 
Moreover, the total acoustic pressure maximum amplitude is considerably less than 
the theoretical maximum total amplitude shown on Fig. 2 which is 2P0 = 2 Pa in 
this case. The explanation comes from the fact that this maximum total amplitude 

( )02 sin cos iP k y θ  from (12) will be reached at a large distance from the interface: 

 max 2 cos i

y
k
π

θ
= ,  (13) 
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which in this case (θi = 89.99°) is ymax = 2.12 m. Naturally as θi → π/2 the distance 
maxy →∞  . It is interesting to mention that in our MATLAB [17] code,  the input 

incidence angle θi = π/2 generates a plot very close to the one in Fig. 3 (right) which 
might surprise an unexperimented user. In fact, due to roundoff errors, the value 
used in the plots has a numerical value  ky=2.5996e-13 rad/m, but not zero. If the 
user will set directly ky=0 rad/m, then the returned solution will be an almost null 
total pressure over the computation domain, corresponding to a distance maxy →∞  

 
Fig. 2 Incident acoustic pressure (left) and total acoustic pressure (right) for θi = 75° 

Fig. 3 Incident acoustic pressure (left) and total acoustic pressure (right) for θi = 89.99°   

4. Finite Elements model for wave reflection with background incident 
pressure 

The objective is to obtain a FEM model such that the total acoustic pressure 
corresponds to the formula (10), or equivalently validating the limit case θi → π/2 
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as defined by formula (12), providing an output as in the numerical simulation 
presented in the previous paragraph. For this purpose, we develop a FEM model 
using the "pressure acoustics, frequency domain" provided by COMSOL 
Multiphysics software [16]. 
 

a. FEM domain geometry 
The FEM domain capable of modeling a problem covering a half-space, poses the 
initial problem of geometrical dimensions. The geometry in this case must cover 
several wavelengths in both (Ox) (direction of the interface) and (Oy) normal 
direction. Selecting a frequency f = 1 MHz, the wavelength in water (ρ=1000 kg/m3, 
c=1480 m/s) is λ = 1.5 mm. A domain of 20 x 10 mm was selected for all FEM 
simulations at this frequency, bounded on three sides by 10 mm thick PML. 

 
b. Boundary conditions 

Obviously, the free surface must satisfy the condition for the total acoustic pressure: 
pt=pinc+prefl = 0 which can be set as “sound soft boundary” in the FEM model. As 
for the other three edges, there is no physical boundary condition applicable to 
simulate a non-reflecting wave condition. These three boundaries must not 
influence the waves propagating in any direction. The most appropriate way to 
solve this problem is to surround on three edges the fluid domain, by PMLs, as 
mentioned in the Introduction. These PML are absorbing any waves passing 
through these domain. On Fig. 4 are presented the domains with their respective 
dimensions in meters. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Geometry of the FEM model. Dimensions in [m]. 

c. Incident wave  
 
For such “Pressure acoustics” problems there is an option available to set a 
“background acoustic pressure” indicating the incident pressure amplitude (e.g. 1 
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Pa), frequency (e.g. 1 MHz) and direction of the incident wavevector. There is no 
possibility to set an incident pressure on the left boundary for two reasons: 1) the 
boundary is between the water domain and the left PML altering its functionality 
and 2) the normal pressure being a scalar value, the boundary must be inclined 
according to the incident angle, generating a bounded acoustic beam in the domain, 
leaving an unacceptable low-right corner non-insonified. 
 

d. FEM mesh 
It is recommended to set a minimum of 10 elements per wavelength. Moreover, 
since computing the reflection at the free surface requires high accuracy, the mesh 
will be denser near the free surface (Fig. 5) and in the PML regions. Overall, there 
are around 48000 quadrilateral elements. 

Fig. 5 FEM mesh for this problem. Same dimensions as in Fig. 4. 

e. FEM simulation results 
 
The first simulation concerns the incident angle θi = 45°. This angle was chosen for 
the clear pattern of interfering waves: incident and reflected square-shaped nodes 
and antinodes (Fig. 6). 
For better clarity, the computed total acoustic pressure is shown only in the fluid 
domain (0.02 by 0.01 m), the PML domains being discarded from this and the 
following plots. 
It is clearly visible the expected pattern, but in the lower left corner of the total 
acoustic pressure (Fig. 6 right) appears a strange plot close to the pattern of the 
incident wave and the square-shaped pattern of nodes and antinodes is missing. The 
same FEM model was tested for incidence angles θi = 75° () and θi = 89.99° (Fig. 
8) with similar results.  
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results  

 
 
 
 
 
 
 
 
 

Fig. 6. Incident acoustic pressure (left) and total acoustic pressure (right) domain for θi = 45° in 
the 0.02ₓ0.01m  FEM domain, common color bar (Pa) (online) 

The explanation comes from the fact that correct reflected waves only appear from 
the upper-left corner of the domain and propagate as expected from the direction of 
the reflected wave θr with the origin in the upper-left corner. The scattered wave 
pressure, which is not shown here, is wrong in the lower-left part of the domain  
being determined by the presence of reflected waves in the FEM domain.  

Fig. 8. Incident acoustic pressure (left) and total acoustic pressure (right) for θi = 89.99°, common 
color bar (Pa) (online) 
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Fig. 7. Incident acoustic pressure (left) and total acoustic pressure (right) for θi = 75°, common color 
bar (Pa) (online) 
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These FEM simulations provide several conclusions: 
- The incident acoustic pressure is distributed in the entire acoustic FEM 

domain like a stationary wave (no time dependence in the simulation), 
whereas the correct reflected (scattered) wave is only computed and 
superposed starting from the upper-left corner of the domain limited by the 
direction of the reflected wave. In the lower-left part of the domain, which 
becomes dominant for large incidence angles, the scattered pressure 
corresponds to spurious “ripples” of the reflected wave field.   

- The correct total acoustic pressure field can only be expected to occur in the 
subdomain above the line of reflection direction, drawn from the upper -left 
corner of the acoustic domain (Fig. 6). For large incident angles the 
horizontal extent of the fluid domain becomes prohibitive to expect a correct 
pattern in part of the FEM domain. For grazing incidence, this extent tends 
to infinite.  

- For the particular case of grazing incidence, it is not possible to extend the 
domain such that a significant subdomain represents the correct total 
acoustic field. Consequently, the presented model of “background acoustic 
pressure” cannot be used for grazing incidence angles (θi → π/2) but only 
for limited subdomains at small incidence angles (e.g. θi = π/4). 

 

5.  Finite Elements model for grazing incident wave on a free surface 

The solution proposed in this paper to the limit case of grazing incidence (θi → π/2), 
is to set as background pressure wave, the formula (12) deduced in paragraph 2 and 
validated in paragraph 3, valid also for the total acoustic pressure, in the form: 

 ( ) ( )0
max

2 sin exp
2 x

yp y iP ik x
y

π 
=  

 
,  (14) 

in which P0 is the incident pressure amplitude in the fluid domain and ymax is given 
by formula (13). The FEM simulation provides the following results (Fig. 9).  
 
 
 
 
 
 
 
 
 

Fig. 9. Incident acoustic pressure (left) and total acoustic pressure (right) for θi = 90°, common 
color bar (Pa) (online) 
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This incident (background) pressure field is in agreement with the deduced 
analytical solution, so it is natural to lead to a computed stationary wave pattern, 
without interaction with the free surface. It means that the total acoustic pressure is 
identical to the incident pressure field and the scattered acoustic pressure is null in 
the entire FEM domain. This result is in agreement with the propagation along the 
free surface (θi = π/2). Moreover, the total acoustic pressure amplitude is in good 
agreement with the values deduced by the analytical model and corresponding 
numerical results shown in the previous paragraphs. 

6. Conclusions 

The Finite Elements Method (FEM) is capable of providing accurate 
solutions to ultrasonic acoustics problems. However, using incident plane waves as 
“background pressure field” reduces even drastically the subdomain in which the 
total acoustic pressure is correctly determined. The limit case of waves propagating 
at grazing incidence in a fluid requires special attention since the reflected 
(scattered) acoustic pressure fills the entire FEM domain with spurious values. 

This problem was not adequately addressed in well appreciated textbooks 
or published papers, to the authors knowledge. In the present paper, the problem of 
grazing incidence against a free surface is solved. An analytical solution is provided 
and a numerical validation is provided for θi → π/2. 

The plane wave reflection by a free surface can be studied by FEM with 
imposed “background pressure field” at incidences θi << π/2, leaving the user with 
a certain subdomain of correct total acoustic pressure (upper-right domains on Fig. 
6 .. Fig. 8). Increasing this domain of validity of results requires a different 
approach, which is beyond the scope of the present work.  

At grazing incidence which a special case of incidence, the proposed 
formulation for the incident acoustic field using “background pressure field”, as 
deduced in the present paper, can be transposed into FEM models, representing a 
fluid half-space. The FEM results correspond to the analytical solution.  

Once the total acoustic pressure field produced by a grazing incident wave 
is accurately determined by the deduced formula, the entire FEM domain model is 
valid and can be used for further studies of ultrasonic waves scattered by various 
obstacles which might be present in such a fluid half-space. 
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