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ISOTIMIC CURVES FOR DESCRIPTION AND CONTROL OF
INTENSITY PROFILE DYNAMICS OF SOLUTIONS TO THE

PARAXIAL WAVE EQUATION

Victor-Cristian Palea1 and Liliana Preda1

We propose a method of computing the initial condition for the
paraxial wave equation using the desired isotimic curves of the intensity
profile.
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1. Introduction

Laser beam dynamics relies on descriptive methods to characterize the
properties of the beam profile during propagation, most of which being based
on computing the solution to some partial differential equation (PDE) for some
given border and initial conditions. This approach, along with some further
introduced parameters, is considered to be the standard method for controlling
the propagation [1][2][3]. Although in principle the computation, be it analytic
or numeric, can help characterize the beam profile, it is not as useful when a
different approach is needed. Such different approaches have appeared in the
study of non-diffractive and self-accelerating beam, where the emphasis lays
on the choice for the initial condition, rather than on the solution of the PDE.
This approach is heavily related to soliton theory [4][5], while in the linear
regime it relies on the theoretical discovery of Airy function’s non-diffractive
and self-accelerating properties by Berry et. al. [6], and on the experimental
implementation and validation of the result from Siviloglou et. al. [7][8]. Be-
cause of this shift in perspective, other methods of describing the propagation
are needed. A different approach is presented by Kaganovsky et. al.[9] where
the emphasis is on the trajectory of the global intensity peak, the rest of the
profile being considered only as a by-product of their procedure. Although the
trajectory of the main intensity peak is well controlled by their approach, the
non-diffractive property emerges without having it emposed. This motivates us
to present a framework in which both trajectory and non-diffractive properties
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can be controlled. Thus we propose a method that allows for characterizing
the potentially non-diffractive and self-accelerating properties that arise from
an initial condition, properties which can also be used, at least in principle, to
generate an initial condition with a desired behaviour during propagation.

2. Theoretical aspects

In the paraxial approximation, the equation for the evolution of a slowly-
varying envelope[1] ψ of the beam’s electric field has the form

∂zψ(x, z) =
i

2k
∂2
xψ(x, z) (1)

where x and z are the transverse coordinate and the propagation distance
respectively, ∂βα is the partial derivative of order β with respect to α, and k is
the wavenumber. In order to solve the propagation equation an analytic initial
condition ψ0 is considered.

Starting with (1), by computing (1)·ψ∗+(1)∗ ·ψ the propagation equation
for the intensity profile is

∂z|ψ|2 =
i

2k

(
(∂2
xψ)ψ∗ − ψ(∂2

xψ
∗)
)

(2)

For an extreme case of non-diffractive solutions of the propagation equa-
tion (1) the profile |ψ|2 only shifts along the spatial axis during propagation.
This is equivalent to having a condition

|ψ|2(x, z) = |ψ|2(x− f(z)) (3)

∀z ∈ R, where f : R → R. Incidentally for f(z) = z2 a self-accelerating
solution as the Airy beam[6] is emposed by the same condition.

This approach is limited because the condition is applied ∀z ∈ R, and
does not allow for solutions that are nondiffractive and self-accelerating on
finite temporal domains. Because of this limitation we have considered revising
this approach starting from the condition (3).

Let ψ be a solution of PDE (1), then there exists at least one isotimic
curve Γ(s) = (g(s), h(s)) for which |ψ|2 (x = g(s), z = h(s)) = a,∀s ∈ R, where
a ∈ [0,max(|ψ|2)] is a constant. The isotimic curves are considered to be
parametric of parameter s. In a general 1+1 dimensional scenario they can be
defined using two functions g(s) and h(s). Based on the choices of g(s) and
h(s) the trajectory of the intensity profile |ψ|2 is approximated in the following.

Because the amplitude is constant on an isotimic curve by definition,
then it is true that

∇x,z|ψ|2 · TΓ = 0 (4)

where ∇x,z is the gradient in the (x, z) space, “ · ” is the scalar product and
TΓ(s) = (∂sg(s), ∂sh(s)) is the tangent of the isotimic curve. Written explicitly,
condition (4) becomes

∂sg · ∂x|ψ|2 + ∂sh · ∂z|ψ|2 = 0. (5)
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Introducing equation (2) in (5) gives

∂sg · ∂x|ψ|2 +
i

2k
∂sh ·

(
(∂2
xψ)ψ∗ − ψ(∂2

xψ
∗)
)

= 0 (6)

which is the condition that relates the propagation equation (1) with the iso-
timic curves introduced by condition (4). Using this equation, for a set of
isotimic curves, the solution ψ can be derived. We present in the following
section how (6) can be used on some simple scenarios.

Unlike condition (3), equation (6) allows for a more general description
of the isotimic curves. In principle, if the equations for the isotimic curves
are known, equation (6) can be used in order to generate both diffractive and
non-diffractive scenarios, which is not as straightforward from (3).

We have to remark that by Γ(s) = (g(s), h(s)) we refer to parametric
curves that have the following properties:
(1) Any 2 isotimic curves Γ1 and Γ2 are non-intersecting unless Γ1 ≡ Γ2.
(2) Let Γ be an isotimic curve, it can either be a point, a closed curve, or an

open curve that extends from −∞ to ∞ on the z-axis.
(3) We consider curves Γ that do not self-intersect.

The analysis that follows focuses on the non-diffractive scenario of (3)
where all the isotimic curves are open and are given by Γ(z) = (x0 + g(z), z)
where x0 is used to define the intersection of the curve Γ with the x-axis. Based
on the choice of x0 different curves are defined, so it is conveninent to label din
dependency as Γx0 since we are interested in the entire set of isotimic curves
that help to characterize our solution. For this particular case equations (5)
and (6) become

∂zg · ∂x|ψ|2 + ∂z|ψ|2 = 0 (7)

and

∂zg · ∂x|ψ|2 +
i

2k

(
(∂2
xψ)ψ∗ − ψ(∂2

xψ
∗)
)

= 0 (8)

respectively.
We are interested in computing an initial condition that will generate at

least an approximate solution to the one emposed by the isotimic curves. For
this we write g(z) as a Taylor series around z = 0. This is introduced in (7)
which gives (

∞∑
n=0

zn

n!
∂n+1
z g(z = 0)

)
· ∂x|ψ|2 + ∂z|ψ|2 = 0 (9)

Next we evaluate equation (9) at z = 0 which gives condition(
∂zg · ∂x|ψ|2 + ∂z|ψ|2

)∣∣
z=0

= 0 (10)

or

∂zg(0) · ∂x|ψ0|2 +
i

2k

(
(∂2
xψ0)ψ∗0 − ψ0(∂2

xψ
∗
0)
)

= 0. (11)

Next we apply ∂z on (9) and evaluate at z = 0 with gives a second
condition that involves ∂2

zg(0). By repeating this process an infinite number
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of conditions can be derived. If they are satisfied by the initial condition ψ0,
the solution should propagate according to the choice of g(z), which defines
the isotimic curves.

3. Applying the method

This section is meant to showcase two situations on which the method is
applied in order to offer a better understanding of it and how we consider that
it can be used. First we describe how using the isotimic curves to manipulate
a Gaussian beam’s direction of propagation by enforcing an amplitude profile
for which the phase is computed, then we generate the amplitude for an initial
condition that generates a non-diffractive self-accelerating profile similar to the
Airy beam[1] by assuming a constant phase.

3.1. Linear curves

In this example we apply the method on an initial condition for which
|ψ0(x)| = e−x

2/2σ2
in order to change the direction the beam propagates. If the

phase is left constant, then tre result is the well known Gaussian beam[10].
This change of direction easily translates to the isotimic curves

Γx0(z) = (x0 + z · ∂zg(0), z) (12)

Based on the choice of ∂zg(0) the slope of the isotimic curve in the (x, z) plane
is defined, also changing the direction the gaussian beam propagate.

Since we enforce the amplitude of the beam, the control will be made on
the phase φ(x) at z = 0 by considering the ansatz

ψ0(x) = A(x)eiφ(x). (13)

The condition resulting from enforcing the isotimic curves arises from
evaluation (11) by introducing the ansatz (13), which gives

2k · ∂zg(0)∂xA = 2∂xφ∂xA+ A∂2
xφ (14)

where we assume that A(x) 6= 0.
The naive finite difference implementation of (14) is

φi+2 = φi+1
4Ai

Ai+2 + 2Ai+1 − Ai
+ φi

Ai+2 − 2Ai+1 − Ai
Ai+2 + 2Ai+1 − Ai

+

+ k∂zg(0)∆x
Ai+2 − Ai

Ai+2 + 2Ai+1 − Ai
(15)

where ∆x is the step for the transverse grid, φi = φ(i∆x), Ai = A(i∆x), and
the derivatives have been approximated using

∂xA(i∆x) ≈ Ai+1 − Ai−1

2∆x
,
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Fig. 1. The real part and amplitude of the initial condition for
a tilted Gaussian beam after the phase φ is applied.

∂xφ(i∆x) ≈ φi+1 − φi−1

2∆x
,

and

∂2
xφ(i∆x) ≈ φi+1 − 2φi + φi−1

∆x2
.

The parameters used for computing the phase are φi=0 = φi=1 = 0,
∆x = 6 · 10−3µm, λ = 0.635µm since k = 2π/λ and ∂zg(0) = 2. The resulting
initial condition is given in figure 1.

The solution is computed using the Crank-Nicolson scheme on (1) with
∆z = 4 ·10−4µm for the propagation axis. The intensity profile of the solution
is given in artibrary units in figure 2. Qualitatively it can be seen that the
trajectory of the intensity maximum is tilted.

For a quantitative analysis we fit the trajectory of the maximum with
a linear function f(z) = az + b. Our result for the solution in figure 2 gives
a = 1.99 which is comparable with the input value of ∂zg(0) = 2.

Although diffraction is still present during propagation, it is important
to mention that the control was applied only by using eq. (11). All the other
conditions that appear from eq. (9) by applying ∂z and evaluating at z = 0
(and repeating this process) are not considered. Thus, even if the result is a
very rough approximation, it can still easily showcase the tilt of the trajectory.
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Fig. 2. The intensity plot of the numerical solution for a tilted
Gaussian beam. The red line gives the trajectory of the intensity
maximum.

3.2. Parabolic curves

In this example we apply the method in order to generate an initial
condition that corresponds to a finite non-diffractive and self-accelerated profile
using parabolic isotimic curves.

Using our approach, any curve Γ has to be of the form

Γx0(z) =

(
x0 +

z2

2
∂2
zg(0), z

)
(16)

which makes ∂2
zg(0) a parameter that can be chosen by the user. Using these

conditions we derive the restrictions for the initial condition.
Next we use ∂zg(0) = 0 based on the choice for the isotimic curves of (16)

and equation (11) from which the first restriction ∂z|ψ|2(x0, 0) = 0,∀x0 ∈ R is
derived. One class of functions that satisfy this restriction is the class of real
functions so ψ0(x) = ψ∗0(x),∀x ∈ R. Applying ∂z on equation (8) gives

∂2
zg · ∂x|ψ|2 + ∂zg · ∂z∂x|ψ|2 + ∂2

z |ψ|2 = 0. (17)

By evaluating equation (17) at z = 0 and considering ∂zg(0) = 0, equation
(17) becomes

∂2
zg(0)∂x|ψ|2(x0, 0) + ∂2

z |ψ|2(x0, 0) = 0 (18)
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Next we use (2) in (18) and that ψ0 ∈ R which gives

∂4
xψ0(x0) =

(∂2
xψ0(x0))2

ψ0(x0)
+ 4k2∂2

zg(0)∂xψ0(x0). (19)

To test this result we have used the naive finite difference implentation
of equation (19),

ψi = 4ψi−1 − 6ψi−2 + 4ψi−3 − ψi−4 +
(ψi−1 − 2ψi−2 + ψi−3)2

ψi−2

+

+ 4k2∂2
t g(0)

ψi−1 − ψi−3

2
∆x3 (20)

where ∆x is the step for the transverse grid, ψi = ψ0(i∆x), and the derivatives
have been approximated using

∂4
xψ0(i∆x) ≈ ψi+2 − 4ψi+1 + 6ψi − 4ψi−1 + ψi−2

∆x4
,

∂2
xψ0(i∆x) ≈ ψi+1 − 2ψi + ψi−1

∆x2

and

∂xψ0(i∆x) ≈ ψi+1 − ψi−1

2∆x
.

The computation of the numerical initial condition requires some initial
data for equation (20) to be used, which we have considered to be ψi=0 = 1.8,
ψi=1 = 2, ψi=2 = 2, ψi=3 = 1.8 in artibrary units, ∆x = 6 · 10−3µm, λ =
0.635µm since k = 2π/λ and ∂2

zg(0) = 2µm−1. The resulting initial condition
is given in figure 3. The decay regions have been introduces to compensate
the absence of a perfectly matched layer on the boundaries of the transversal
spatial domain. The central region is computed using equation (20) with the
above mentioned parameters.

The computation of the numerical solution is made using the Crank-
Nicolson scheme on (1) with the additional parameter for the discrete space
along the propagation axis ∆z = 4 · 10−4µm. The intensity profile in arbitrary
units of the solution is given in figure 4. Qualitatively it can be seen that the
trajectory of the intensity maxima are curved and preserve their profile during
propagation for a finite distance.

For a quantitative analysis we compute the trajectories for all the lo-
cal intensity maxima and fit the resulting trajectories with a second order
polinomial f(z) = az2 + bz + c. Our result for the solution in figure 4 gives
a = 0.96µm−1 with a sample standard deviation σa = 9.51 · 10−16µm−1, which
corresponds to ∂2

zg(0) = 1.92µm−1 by taking in consideration the factorial from
the Taylor series. By direct comparison with the input value ∂2

zg(0) = 2µm−1,
we conclude that the values are comparable, which confirms our theoretical
approach.
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Fig. 3. The initial condition used for the computation of the
numerical solution.

As it can be seen in figure 4 the intensity profile preserves its shape on
a finite propagation distance. This is due to the limited transversal spatial
domain not because of the method. If we consider equation (19) to be in
artibrary units and that that

4k∂2
zg(0) = 2

then the Airy function[6] satisfies the condition. This implies that an initial
condition that generates an infinite nondiffractive self-accelerating could be
retrieved, at least theoretically, by evaluating (19).

4. Conclusions

In this paper we have introduced the isotimic curves as a method to both
describe the dynamics of the intensity profile in terms of shape preserving and
peak trajectories, and help generate initial conditions that satisfy some desired
dynamics. In section 3.1 we have used our method to computed the phase for
a Gaussian beam in order to tilt its propagation trajectory in a controlled
manner. The result from the numerical simulation recovered with a good
approximation the input parameter that was used to define the tilt. In section
3.2 we have used the method to generate an initial condition that satisfies
parabolic isotimic curves as a comparison with the known case of the Airy
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Fig. 4. The intensity plot of the numerical solution. The red
lines give the trajectories for some of the local intensity maxima.

beams. The control parameter has been considered the second order coefficient
of a second order polynomial. The numerical simulations have retrieved this
parameter with a good approximation.

The numerical results have matched the input data in both examples
although we have used only a very small number of the potentially infinite
number of conditions that can be derived from eq. (9). Considering the finite
spatial domain, our results indicate that at least for a relatively small propa-
gation distance, which depends on the choice of parameters in the simulation
and the size of the transverse domain, the approximate condition enforced by
the isotimic curves is satisfied.
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