
U.P.B. Sci. Bull., Series A, Vol. 75, Iss. 3, 2013                                                  ISSN 1223-7027 
 

SOLUTIONS FOR OPTIMIZING THE MONTE CARLO 
OPTION PRICING METHOD’S IMPLEMENTATION USING 

THE COMPUTE UNIFIED DEVICE ARCHITECTURE 

Ion LUNGU1, Dana-Mihaela PETROŞANU2, Alexandru PÎRJAN3 

Finance-related problems require more and more computations; therefore, 
the problem of finding efficient implementations for option pricing models on 
modern architectures has become an important challenge. Although there are 
numerous implementations of the Monte Carlo method on central processing units, 
many of them face limitations arising from the necessary increased computational 
power. In this paper, we have implemented the Monte Carlo approach to option 
pricing using the Compute Unified Device Architecture and its optimization 
solutions.  

Keywords: financial options, Monte Carlo method, optimization solutions, 
CUDA, Kepler architecture. 

1. Introduction 

Option pricing, a very important problem encountered in financial 
engineering, has been based on a theoretically consistent framework ever since the 
Black-Scholes option pricing formula has been published [1]. Monte Carlo 
methods are useful in many theoretical and practical problems, covering a wide 
range of applications from different fields, such as: finance, business, 
computational mathematics, telecommunications, applied statistics, computational 
biology, medicine, engineering and physical sciences. 

Although there are numerous implementations of the Monte Carlo method 
on central processing units, many of them face limitations arising from the 
necessary computational power. The ability to implement the Monte Carlo 
method on parallel processing architectures from the latest generation (such as 
those implemented in graphics processors) offers a viable solution to overcome 
the limitations of computational architectures based on central processing units. A 
particular interest in our research was to develop solutions for optimizing the 
implementation of the Monte Carlo option pricing method using the latest 
                                                            
1Professor, Economic Informatics Department, Academy of Economic Studies, Bucharest, 
Romania, e-mail: ion.lungu@ie.ase.ro 
2Lecturer, Department of Mathematics-Informatics I, University POLITEHNICA of Bucharest, 
Romania, e-mail: danap@mathem.pub.ro  
3Teaching Assistant, IT, Statistics and Mathematics Department, Romanian-American University, 
Bucharest, Romania, e-mail: alex@pirjan.com  



106                              Ion Lungu, Dana-Mihaela Petroşanu, Alexandru Pîrjan   

graphics processing unit (GPU) architecture, Kepler, implemented in the GeForce 
GTX 680 processing unit. In the following, we depict the main theoretical notions 
of the Monte Carlo method.  

2. The Monte Carlo method  

Generally, the term “option” refers to an agreement between two parties, 
the option seller and the option buyer. Options are derivatives that give the option 
buyer the right and the option seller the obligation to carry out some operation (or 
exercise the option, or conclude a transaction) at some moment in the future, 
under previously established conditions [2]. Options can be classified according to 
the moment when they can be exercised. An option’s type can be either European 
or American. The American option may be exercised at any time before the expiry 
date, while the European option may be exercised only at the option’s expiry date, 
i.e. at a single pre-defined point in time.  

According to the Black-Scholes model, noting tS  the price of the 
underlying asset at the moment t , tS   follows a Brownian motion characterized 
by the constants μ (drift), ν (volatility) and satisfies the stochastic differential 
equation: 

                                tttt dWSdtSdS νμ +=                                           (1) 
where tW  is a Wiener random process so that  

                                          0WWX t −=                                                 (2) 
follows a normal distribution with average 0  and standard deviation T . 

The equation (1) can be written in its equivalent form: 

                                 t
t

t dWdt
S

dS νμ +=                                           (3) 

that can be interpreted as modelling the percentage variations 
t

t
S

dS  of the asset’s 

price as increments of the Brownian motion. The parameter ν  in this equation 
represents the standard variation of the asset’s prices or the asset’s price volatility 
and the coefficient μ  is the average profit rate. Choosing the interest rate equal to 
the average profit rate μ , we obtain the description of the risk-neutral dynamics 
of the asset’s prices. The solution of the equation (3) is:  

              )(
0 0WWT

t TeSS −+= νμ                                        (4) 
or, using the Wiener’s process definition, the solution may be written in its 
equivalent form:  



Solutions for optimizing the monte carlo option […] compute unified device architecture   107 

                                         )1,0(
0

),0(
0

NTTTNT
t eSeSS νμνμ ++ ==                 (5) 

In this case, the expected future value is given by: 

        TTTTNT
T eSeeSeEeSSE )5.0(

0
5.0

0
),0(

0
222

)()( νμνμνμ +==⋅=       (6) 
However, using the definition,  

rT
T eSSE 0)( =                                                   (7) 

where r  is the risk-free rate of return. Consequently, using relations (6) and (7) 
we obtain: 

                                                      25.0 νμ −= r                                                  (8) 
Introducing the relation (8) in (5) we obtain: 

)1,0()5.0(
0

2 NTTr
t eSS νν +−=                                       (9) 

The relation (9) represents the possible end stock price based on a random 
sample with distribution )1,0(N that describes the changing of the stock prices. At 
the end of the studied period, the possible prices of derivatives are derived from 
the underlying asset.  

In the case of a call option, the profit is given by: 
)0,max(),( XSTSV Tcall −=                                     (10) 

If, at the exercise date, the market stock price is greater than the strike price, the 
call option makes its holder a XST −  profit, otherwise the profit is zero.  

In the case of a put option, the profit is given by: 
                  )0,max(),( Tput SXTSV −=                                   (11) 

Based on the relation (11), if the strike price at the exercise date is greater than the 
market stock price, the put option makes its holder a TSX −  profit and zero 
otherwise. 
 In order to mathematically estimate the expectations for ),( TSVcall  and 

),( TSVput , one can use the Monte Carlo numeric integration. There are generated 
N numeric samples with the normal distribution )1,0(N  that corresponds to the 
underlying Wiener process, and consequently the average of the possible end-
period stock profits ),( TSVi , corresponding to each of the sample values, is: 

N

TSV
TSV

N

i
i

mediu

∑
== 1

),(
),(                                       (12) 



108                              Ion Lungu, Dana-Mihaela Petroşanu, Alexandru Pîrjan   

This is the essence of the Monte Carlo approach to option pricing. 
Introducing a discount factor rTe− for the approximate future price, one can 
obtain an approximation of the actual value of the derivative price: 

rT
mediuactual eTSVSV −= ),()0,(                              (13) 

In the case of the above considered example (European option), one can 
obtain analytical solutions (closed forms) to calculate )),(( TSVE call and 

)),(( TSVE put  using the Black-Scholes formula [1], [3]. These closed-form 
solutions will be used to compute the reference values for comparison with results 
obtained by using the Monte Carlo integration.  

3. The normally distributed sample generation 

The first stage in applying the Monte Carlo method is the generation of a 
random, normally distributed number sequence with parameters 0  and 1 . The 
Monte Carlo method is based on pseudorandom number sequences, for which 
most of the probability theory laws hold. However, to apply the method to 
numeric integration we need uniformly distributed samples over the integration 
space.  

In the following, we briefly present some theoretical elements of 
probability theory that are needed in order to study the generation of a normally 
distributed sample [3]. In the probability theory, the normal (or Gaussian) 
distribution is a continuous probability distribution, characterized by two 
constants, the mean μ  (location of the peak) and the variance 2σ  (the measure of 
the width of the distribution). If X is the normal distributed random variable, this 
is denoted by ),0( 2σNX ∈  and its probability density function is given by:  

2

2

2 2
)(

, 2
1)( σ

μ

σμ πσ

−−
=

x

exf                                      (14) 

The distribution with the mean 0=μ  and the variance 12 =σ is called 
standard normal, the variable is denoted by )1,0(NX ∈ and the corresponding 
probability density function is given by:                            

21,0

2

2
1)(

x

exf
−

=
π

                                         (15) 

The cumulative distribution function corresponding to the probability 
density function given by (15) is called the cumulative normal distribution 
function and is given by:  



Solutions for optimizing the monte carlo option […] compute unified device architecture   109 

dtexXPxF
x t

∫
∞−

−
=<= 21,0

2

2
1)()(
π

                                 (16) 

Since the function )(1,0 xFy =  is strictly ascending, exists its inverse )(1
1,0 yFx −= , 

with )1,0(∈y .  
In the following, we consider a uniform distribution )}1,0(:{ ∈xX  

obtained through a quasirandom generation. In this case, the probability density 
function is given by: 

⎩
⎨
⎧

∉
∈

=
)1,0(,0
)1,0(,1

)(
xfor
xfor

xf                                         (17) 

and the cumulative normal distribution function is: 

∫ ∫
∞−

∈===<=
x x

xxdtdttfxXPxF
0

)1,0(,)()()(                           (18) 

In the following we study the existence of an applicationΨ so that 
yx =Ψ )( , the image of the uniformly distributed random variable X  being the 

variable )1,0(NY ∈ . The application 1
1,0
−F  introduced above is strictly ascending 

and one can obtain: 
)}()({}{ 1

1,0
1
1,0 xFXFxX −− <⇔<                                     (19) 

Taking into account the relations (18) and (19) we obtain:  
xxFXFP =< −− ))()(( 1

1,0
1
1,0                                      (20) 

By using the )(1,0 yFx = substitution, equivalent with )(1
1,0 xFy −= , the last 

expression becomes:  

                     )()( 1,0 yFyYP =<                                            (21) 

The 1
1,0
−F application transforms the random uniformly distributed variable 

X  in the normal standard distributed variable )1,0(NY ∈ . Taking into account 
that, in the previous reasoning there have not been used any of the specific 
properties of the standard normal distribution, the involved technique can be used 
to obtain any other type of distribution from a sequence of uniformly distributed 
numbers on the interval )1,0( . Even if there are no known closed-form expressions 
for the inverse cumulative normal distribution function, several accurate 
polynomial approximations exist. Two of these polynomial approximations are 
used for obtaining our sample: Moro and Acklam [4].  



110                              Ion Lungu, Dana-Mihaela Petroşanu, Alexandru Pîrjan   

4. Experimental results 

Once we have generated the desired number of )1,0(N  samples, we have 
used them to compute an expected value for the underlying option. Typically, the 
number of options is of a few hundred or lower and if one option per thread is 
assigned, there is not generated an enough computational load to efficiently utilize 
the tremendous power of the GPU. Therefore, it is preferable to use multiple 
threads per option. In order to achieve this, we have two choices: we can use one 
thread block per option or multiple thread blocks per option. For each option, 
there are computed hundreds or even thousands of paths. In order to diminish the 
latency arising from reading the random input values, the computations of each 
option are divided and allocated to multiple thread blocks. Depending on the 
number of underlying options and samples, different methods may be chosen to 
obtain the highest performance. One must take into account that pricing single 
European option using Monte Carlo integration is obviously a one-dimensional 
problem. If more options are assessed, the problem can be considered two-
dimensional [4].  

After experimental determinations, we have chosen a number of 512 
threads, as this setting provided the best performance on the Kepler GK104 
architecture. In order to compute the expected price and confidence width for each 
option, we have to compute the sum of all the stored partial sums per option. In 
this purpose, a second kernel that parallel reduces the partial sums to their sum 
must be launched. This parallel reduction is a summation based on a tree of n  
values through )log(n  parallel steps and this is an efficient way to combine values 
on a GPU, as a data-parallel processor [4].  

In the following, we depict a series of experimental tests. In the 
benchmarking, we have used the following configuration: Intel i7-2600K clocked 
at 4.6 GHz with 8 GB (2x4GB) of 1333 MHz DDR3, dual channel. We have used 
the GeForce GTX 680 (from the Kepler architecture) graphics processor. For 
programming and access to the GPU we have used the CUDA toolkit 4.1 with the 
Nvidia driver version 301.10. We have developed the algorithm as to accept a 
variable number of options, no matter if the specified number is a power of 2 or 
not. In the experimental tests we have chosen a wide range of values for the 
number of options. We have decided to represent in this article the obtained 
results when choosing 128, 256, 512 respectively 1024 options, as these values 
are relevant for proving the algorithm’s efficiency in a variety of scenarios. We 
assessed for each case the execution time and the number of paths per second 
obtained after running the benchmark suite. The results represent the average of 
10,000 iterations. 

In order to compute the average execution time that the GPU spends for 
executing the tests, we have used the CUDA application programming interface 



Solutions for optimizing the monte carlo option […] compute unified device architecture   111 

(API). We have preferred this option instead of those based on the CPU’s or on 
the operating system’s timers, because those methods would have included 
latency and variations from different sources. In this way, we get a reliable 
measurement of the execution time for computing the tests. 

By choosing 512 threads and a variable number of options, after having 
evaluated the performance (assessed as number of paths per second), we found 
that it has increased with the number of paths per option up to a maximum value. 
One can observe a performance cap and a horizontal plateau of values from a 
specific number of paths per option. This is shown in Fig. 1. One can also remark 
that if there are sufficient paths per option, the graph is almost horizontal. In an 
ideal implementation, the entire graph should be horizontal, because the GPU 
should be able to sustain a constant computation rate (if we can reduce the 
overhead for small path counts). 

 

 
Fig. 1. Experimental results for a variable number of options and 512 threads 

 
Analysing the obtained experimental results, one can notice the efficiency 

of optimizing the Monte Carlo approach to option pricing, using the latest CUDA 
graphics processor, Kepler. Our implementation provides optimal results in 
various situations and represents a viable solution to overcome the limitations of 
CPU-based architectures. The CUDA architecture has proved to be a very useful 
tool for designing scalable parallel applications and for developing solutions that 
optimize data processing.  

5. Conclusions  

The study in this article demonstrates that the GTX 680, the latest CUDA-
enabled GPU from the Kepler architecture is capable of efficient and accurate 
Monte Carlo option pricing even for small path counts. Analysing the literature, 



112                              Ion Lungu, Dana-Mihaela Petroşanu, Alexandru Pîrjan   

we noticed that none of the works so far (to our best knowledge) has studied how 
well Kepler, the latest generation of GPU architectures, scales in implementing 
the Monte Carlo option pricing method. In implementing the Monte Carlo option 
pricing method in the CUDA parallel processing architecture, we have identified 
and developed a series of solutions for optimizing the performance. The 
experimental results have shown that the Monte Carlo implementation based on 
the CUDA architecture must dynamically adapt the type and level of parallelism 
to the computational load, in order to obtain the best performance. We have 
shown how using performance analysis across a wide variety of problem sizes can 
point the way to important code optimizations.  

Lately, there has been a lot of interest in the literature for optimizing the 
Monte Carlo option pricing method but none of the works so far (to our best 
knowledge) tried to validate if the huge computational processing power of a GPU 
from the latest Kepler architecture could provide an improved solution. The 
optimized Monte Carlo approach to option pricing, using the latest CUDA 
graphics processor, Kepler, proves to be a very efficient method. We have 
obtained optimal results in a variety of scenarios and we have surpassed the 
computational limitations of CPU-based architectures. Analysing the solutions for 
optimizing the Monte Carlo option pricing method’s implementation using the 
Compute Unified Device Architecture, we conclude that this architecture is a 
powerful, efficient and useful tool in developing applications that require a huge 
parallel computational processing power. 

R E F E R E N C E S 

[1] F. Black, M. Scholes, “The Pricing of Options and Corporate Liabilities”, in Journal of 
Political Economy, vol. 81, no. 3, May - Jun. 1973, pp. 637-654 

[2] P. Glasserman, Monte Carlo Methods in Financial Engineering,  Springer, New York, 2003  
[3] G. E. P. Box, M.E. Müller, “A Note on the Generation of Random Normal Deviates”, in The 

Annals of Mathematical Statistics, vol. 29, no. 2, Mar. 2008, pp. 610-611 
[4] V. Podlozhnyuk, M. Harris, Monte Carlo Option Pricing, Nvidia Corporation Tutorial, 2008  


