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SOME FURTHER RESULTS ON THE ANNIHILATOR IDEAL GRAPH OF A
COMMUTATIVE RING

R. Nikandish!, M.J. Nikmehr?, M. Bakhtyiar>

Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by
T'ann(R), is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and J are
adjacent if and only if IN Ann(J) # (0) or JNAnn(I) # (0). In this paper, we show that if R is reduced,
then Uann (R) is complete multipartite. Also, some results on the annihilator ideal graphs with finite
cliqgue numbers are given. Moreover, some properties such as connectivity, diameter, girth and etc. of
a subgraph induced by ideals with non-zero annihilators are studied. Moreover, we characterize all
rings for which this subgraph and annihilating-ideal graphs are identical.
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1. Introduction

One of the most important and active research area in algebraic combinatorics is applying
graph theory and combinatorics in abstract algebra. There are a lot of papers which apply combi-
natorial methods to obtain algebraic results in ring theory (see for instance [1], [3], [5] and [10]).
Moreover, for the most recent study in this field see [6], [13] and [17].

Throughout this paper, all rings are assumed to be non-domain commutative rings with iden-
tity. The sets of all zero-divisors, nilpotent elements, non-trivial ideals, non-zero ideals with non-
zero annihilator and minimal prime ideals of R are denoted by Z(R), Nil(R), I(R), I (R) and Min(R),
respectively. A non-zero ideal I of R is called essential, denoted by I <, R, if I has a non-zero inter-
section with any non-zero ideal of R. The ring R is said to be reduced if it has no non-zero nilpotent
element. A proper ideal I of R is said to be an annihilator ideal, if I = Ann(J), for some J € I(R).
The socle of an R-module M, denoted by soc(M), is the sum of all simple submodules of M. If there
are no simple submodules, this sum is defined to be zero. It is well-known soc(M) is the intersection
of all essential submodules (see [16, 21.1]). We write depth(R) = 0 if and only if every non-unit
element of a ring R is zero-divisor. We say x is a regular element of R if x is non-unit and non
zero-divisor. For any undefined notation or terminology in ring theory, we refer the reader to [4].

Let G = (V,E) be a graph, where V = V(G) is the set of vertices and E = E(G) is the set
of edges. By G, diam(G) and girth(G), we mean the complement, the diameter and the girth of G,
respectively. The graph H = (Vy,Ep) is a subgraph of G if Vo CV and Ey C E. Moreover, H is
called an induced subgraph by Vp, denoted by G[Vp|, if Vo CV and Ey = {{u,v} € E|u,v € V}.
For two vertices u and v in G, the notation u — v means that # and v are adjacent. A complete
bipartite graph with part sizes m and »n is denoted by K, ,. If the size of one of the parts is 1, then
the graph is said to be a star graph. A clique of G is a complete subgraph of G and the number of
vertices in a largest clique of G, denoted by @(G), is called the clique number of G. The chromatic
number of G, denoted by x(G), is the minimal number of colors which can be assigned to the
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vertices of G in such a way that every two adjacent vertices have different colors. A graph G is
said to be weakly perfect if (G) = x(G). Let G and G, be two disjoint graphs. The join of
G, and G, denoted by G V Gy, is a graph with the vertex set V(G V G2) = V(G;) UV (G,) and
edge set E(G|VGa) = E(G1)UE(G2)U{uv|u € V(G1),v € V(Gz)}. For any undefined notation or
terminology in graph theory, we refer the reader to [15].

Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by
Tann(R), is a graph whose vertices are all non-trivial ideals of R and two distinct vertices / and
J are adjacent if and only if 7N Ann(J) # (0) or J N Ann(J) # (0). The annihilator ideal graph was
first introduced and study in [2]. Many of basic properties of annihilator ideal graph may be found
in [2]. In this paper, we continue this study. Indeed, we show that annihilator ideal graph associated
with a ring contains the annihilating-ideal graph as a subgraph. The annihilating-ideal graph of R,
denoted by AG(R), is a graph with the vertex set I (R), and two distinct vertices / and J are adjacent
if and only if 7J = (0). The story of annihilating-ideal graphs goes back to [8, 9]. Because of the
interesting properties of annihilating-ideal graphs, many papers have been devoted to study different
parameters of this graph. For instance, the coloring of annihilating-ideal graphs in [1], the domi-
nation number of annihilating-ideal graphs in [12] and the complement graph of annihilating-ideal
graphs in [14] were studied by different authors. Also, in [18], annihilating-ideal graphs whose cores
consist of only triangles were characterized. In Section 2, we complete the study of basic properties
of T'ann (R) which was started in [2]. It is shown that if R is reduced, then I'ann (R) is a weakly perfect
graph. Also, some results on the annihilator ideal graph with finite clique number are given. Then,
in Section 3, we focus on a subgraph of annihilator ideal graph induced by ideals with non-zero
annihilator. Some parameters of this subgraph such as diameter, girth and condition under which
this subgraph is star or complete are studied. Finally, in Section 4, we apply our results in Sections
2.3 to investigate the affinity between annihilator ideal graphs and annihilating-ideal graphs.

2. Annihilator Ideal Graphs with Finite Clique Numbers

Our main aim in this section is to study the annihilator ideal graphs with finite clique numbers.
But first, it is shown that if R is a reduced ring, then [ap,(R) is weakly perfect (Indeed, we show
that Tapn (R) is a complete multipartite graph).

The following lemma will be used frequently in this paper.

Lemma 2.1. Let R be a ring and 1,J € I(R). Then the following statements hold.

(1) If I — J is not an edge of T'ann(R), then Ann(I) = Ann(J). Moreover, if R is a reduced
ring, then the converse is also true.

(2) If INAnn(I) # (0), then I is adjacent to every other vertex.

(3) If Ann(1) = (0) and Ann(J) # (0), then I — J is an edge of Tann(R).

Proof. (1) Since I —J is not an edge of I'apn(R), INAnn(J) = (0) and JN Ann(I) = (0). Thus
Ann(I) C Ann(J) and Ann(J) C Ann(/). Let R be a reduced ring and Ann(/) = Ann(J). As KN
Ann(K) = (0), for every K € I(R), we can easily see that /N Ann(J) = (0) and J N Ann(7) = (0).
Thus I —J is not an edge of Tapn(R).

(2) Assume to the contrary, I is not adjacent to J, for some J € I(R). By part (1), Ann(/) =
Ann(J) and so N Ann(J) # (0), a contradiction. Thus / is adjacent to every other vertex.

(3) Since Ann(Z) = (0), IAnn(J) # (0) and thus I N Ann(J) # (0). O

Let R be a reduced ring. Using Lemma 2.1, we show that ['ap, (R) is a complete multipartite
graph.
Theorem 2.1. Let R be a reduced ring. Then &@(Tann(R)) = X (Tam(R)) € {k,k+ 1}, where k is the
number of annihilator ideals of R.

Proof. Define the relation ~ on V(I'apn(R)) as follows: For ever I,J € I(R) we write I ~ J if and
only if Ann(I) = Ann(J). It is easily seen that ~ is an equivalence relation on V(Tann(R)). By
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[7], we mean the equivalence class of I. Therefore, the number of equivalence classes is equal to
kor k+1 (this number is k+ 1 if Ann(/) = (0) for some I € I(R)). Now, suppose that [/] and [J]
are two distinct arbitrary equivalence classes. By Lemma 2.1, there is no adjacency between two
vertices contained in [/], but every vertex contained in [{] is adjacent to every vertex contained in [J].
Indeed, Tann(R) is either a complete k-partite graph or a complete (k + 1)-partite graph, where k is
the number of annihilator ideals of R. Thus @(Tann(R)) = X (Tamn(R)) € {k,k+1}. O

It is worthy to mention that the above theorem immediately generalizes [2, Theorem 14] to
arbitrary (not necessary direct sum of finitely many integral domains) reduced rings.
In two next results, we study rings whose annihilator ideal graphs have finite clique numbers.

Theorem 2.2. Let R be a non-reduced ring, ®('ann(R)) < e and I <, R, for some ideal I C Z(R).
Then the following statements are equivalent.

(1) R is a Noetherian ring.

(2) R is an Artinian ring.

(3) Tann(R) is a complete graph.

Proof. (2) = (3) is obtained by [2, Theorem 10] and (3) = (1) is clear since @(I'ann(R)) < eo.
(1)= (2) Let A= {I € I(R) | I C Nil(R)}. By [2, Lemma 4], the induced subgraph by A is
complete and so |A| < eo. This implies that soc(R) # (0). Let B= {I C Z(R) | I is essential in R}. It
is not hard to check that the induced subgraph by B is also complete and so |B| < co. Put J =N, 1.
By [16, 21.2], soc(R) C J and soc(R) =soc(J). If the number of essential ideals in J is infinite, then
®(Cann(R)) = oo, a contradiction. This implies that soc(J) <, J. Now, by [16, 17.3], soc(R) <, R.
Finally, it is well known that a commutative ring R is Noetherian and soc(R) <, R if and only if R is
Artinian, as desired. O

The following example shows that in Theorem 2.2, the condition “/ C Z(R) is an essential
ideal for some I € I(R)” is needed and so can not be omitted.

Example 2.1. Let D = 7,[X,Y,Z], [ = (X?,Y?,XY,XZ,YZ)D be an ideal of D, and let R = D/I.
Also, letx=X+1,y=Y +1I and z =Z +1 be elements of R. Then Nil(R) = R(x,y) and Z(R) =
R(x,y,z). Itis not hard to check that the set {Rx, Ry,Nil(R),Z(R)} is a clique and ['ap (R) = K4 V Koo
and so @(T'ann(R)) = 5. But since there is no essential ideal in Z(R) such that 7 # Z(R), R is not an
Artinian ring.

Theorem 2.3. Let R be a ring and suppose that ®(Uann(R)) < oo. Then the following statements are
equivalent.

(1) Z(R) = Nil(R).

(2) R is an Artinian local ring.

Proof. (2) = (1) is clear.

(1) = (2) Let I € I(R) and I C Nil(R). We claim that / is a nilpotent ideal of R. It suffices
to show that I is finitely generated. Suppose that I is generated by {x;};ca, Where |A| = 0. Since
for every i € A we have Rx; N Ann(x;) # (0), it follows from Lemma 2.1 that {Rx; };c4 is an infinite
clique in I'apn(R), a contradiction. Hence I is finitely generated and so the claim is proved. Thus
INAnn(I) # (0). Let A= {I € I(R)|I CNil(R)}. Then part (1) of Lemma 2.1 implies that the
induced subgraph by A is complete and so |A| < oo. This, together with Z(R) = Nil(R), imply that
Rx and Ann(x) are Artinian R-modules, where x € Z(R)*. Since Rx = R/Ann(x), R is an Artinian
ring. Finally, Z(R) = Nil(R) shows that R is a local ring. O

We close this section with the following result which shows that [2, Theorem 19] does not
occur.

Theorem 2.4. Let R be a ring and depth(R) # 0. Then (T ann(R)) # 2.
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Proof. Consider two following cases:

Case 1. R is a reduced ring. Suppose to the contrary, ®@(I'ann(R)) = 2. We show that
Z(R) = (0). Let x € Z(R)*. So xy = 0, fore some y € Z(R)*. Since R is a reduced ring, Rx # Ry
and thus Rx — Ry is an edge of I'ann(R). Now, let z be a regular element of R. By part (3) of
Lemma 2.1, Rz — Rx — Ry — Rz is a triangle in I'ppn (R), which is impossible. Thus Z(R) = (0), i.e.,
®(Tamn(R)) < 2, a contradiction.

Case 2. R is a non-reduced ring. We claim that Z(R) = Nil(R). To see this, let x € Nil(R)* and
y € Z(R) \Nil(R). Since x € Nil(R)*, we conclude that RxN Ann(x) # (0). By part (2) of Lemma 2.1,
Rx— Ry is an edge of I'ann (R). A similar argument to proof of Case 1 leads to a contradiction. Hence
Z(R) = Nil(R) and so the claim is proved. Now, by Theorem 2.3, depth(R) = 0, a contradiction and
so the proof is complete. (|

3. A Main Subgraph of the Annihilator Graph of a Ring

The classic zero-divisor graph is a subgraph of Beck’s graph induced by Z(R) \ {0}, see
[3, 7]. On the other hand, obviously, the set of ideals with non-zero annihilators, has a key role in
the structures of both rings and annihilator ideal graphs. Thus, in this section, we study a subgraph
of the annihilator ideal graph induced by ideals with non-zero annihilators. For instance, it is shown
that Tann (R)[I' (R)] is connected with diameter at most two and girth at most four (if it contains a
cycle). Also, all rings R with star Tang (R)[I' (R)] are classified.

Recall that the annihilating-ideal graph of a ring R, denoted by AG(R), is a graph with the
vertex set I (R), and two distinct vertices I and J are adjacent if and only if 1J = (0).

Theorem 3.1. Let R be a ring. Then
Tam (R)[I (R)] is connected and diam (U any (R)[I (R)]) < 2. Moreover, if
TCana(R)[I (R)] contains a cycle, then girth(Tana(R)[I (R)]) < 4.

Proof. First we show that AG(R) is a subgraph of Tann(R)[I'(R)]. If I —J is an edge of AG(R),
then 1J = (0) and so /N Ann(J) # (0). This implies that I —J is an edge of T'ann (R)[I (R)]. Hence
TCann(R)[I'(R)] is connected and so by [8, Theorem 2.1], girth(Tann (R)[I (R)]) < 4.

Now, we show that diam(T'ann (R)[I (R)]) < 2. If Nil(R) # (0), then by part (2) of Lemma
2.1, diam(FCann(R)[I (R)]) < 2. So we may assume that Nil(R) = (0). If d(I,J) # 1, for some
distinct vertices 7,J, then by part (1) of Lemma 2.1, Ann(/) = Ann(J). Since R is a reduced ring,
INAnn(I) = (0). Therefore, both I and J are adjacent to Ann(7). This completes the proof. O

!

The next theorem shows that girth(I'ann (R)[I (R)]) = 4 may occur.

Theorem 3.2. Suppose that Uann(R)[I (R)] contains a cycle. Then
girth(Cann (R)[I' (R)]) = 4 if and only if R is reduced with [Min(R)| = 2.

/

Proof. First suppose that girth(I'an(R)[I (R)]) = 4. If Nil(R) # (0), then by part (2) of Lemma
2.1, girth(Cann (R)[I'(R)]) = 3, a contradiction. Thus Nil(R) = (0). Now, let I € I (R). We show
that Ann(/) is a prime ideal of R. To see this, assume that ab € Ann(7) such that a ¢ Ann(I) and
b & Ann(I). This implies that al # 0 and bI # 0 but albl = 0. So for every 0 # ¢ € Ann(]), it
is easy to see that Rc —al — bl — Rc is a triangle, a contradiction (note that since Nil(R) = (0),
al # bl). Hence Ann(I) is a prime ideal. Since R is reduced, [11, Corollary 2.2] implies that
Ann(]) is a minimal prime ideal. By using a similar argument, Ann(y) is a minimal prime ideal, for
every 0 #y € Ann(I). Now, we prove that Min(R) = {Ann(I),Ann(y)}. It is enough to show that
Ann(7) N Ann(y) = (0). Assume to the contrary, 0 # a € Ann(I) N Ann(y). Thus Ra—I — Ry —Ra
is a triangle, a contradiction. Hence Min(R) = {Ann(7), Ann(y)}.

Conversely, suppose that R is reduced and |Min(R)| = 2. Let p;, p» be the minimal prime
ideals of R. Since R is reduced, we have Z(R) = p; Up, and p; Npp = (0), by [11, Corollary 2.4].
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Let A, B be the sets of all non-zero ideals contained in p1, s, respectively. It is not hard to see that
Cann(R)[I (R)] = Kja),15)- As Tann(R)[I (R)] contains a cycle, girth(I'an (R)[I (R)]) = 4. O

In order to characterize all rings R whose I'apn (R)[]Il (R)] is star, the following lemma is
needed.

Lemma 3.1. Let R be a non-reduced ring. Suppose that Tana(R)[I (R)] is a star graph. Then the
following statements hold.

(1) R is indecomposable.

(2) IT(R)| = 2.

Proof. (1) LetR=R; x Ry, where R; is aring, for 1 <i <2. Then for every a € Nil(R)*, the vertices
of the set {Ra,R; x (0),(0) x R, } forms a triangle, a contradiction. So R is indecomposable.

(2) We claim that Z(R) = Nil(R). Let a € Nil(R)* and x € Z(R) \ Nil(R). It is shown that
ax = 0. Assume to the contrary, ax # 0. Since Ra N Ann(a) # (0), by part (2) of Lemma 2.1,
Ra is adjacent to every other vertex. Again, since ax # 0 and x € Z(R) \ Nil(R), RxRy = (0) and
Rx # Ry, for some y € Ann(x). This implies that Ra — Rx — Ry — Ra is a triangle, a contradiction. If
a # b € Nil(R) such that Ra # Rb, then Ra— Rb — Rx — Rb is a triangle, a contradiction. Thus Nil(R)
is a minimal ideal of R. Therefore, Nil(R) = Ra and hence either Ra®> = 0 or Ra*> = Ra. Since R is
indecomposable, Ra? = 0. This means that a € Ann(Z(R)) and thus Z(R) € V (Can(R)[I (R)]). But
this implies Z(R) is adjacent to every other vertex, a contradiction. Hence Z(R) = Nil(R) and so the
claim is proved. Now, by Theorem 2.3, R is an Artinian ring and thus by Theorem 2.2, T'ann (R)[I (R)]
is a complete graph. Since T'ann (R)[I (R)] is a star graph, we deduce that [T (R)| = 2. O

Theorem 3.3. Let R be a ring. Then T'ppn(R) [H/ (R)] is a star graph if and only if one of the following
statements holds.

(1) R=F x D, where F is a field and D is an integral domain.

(2) R is a local ring with exactly two non-trivial ideals.

Proof. First suppose that T'ann (R)[I (R)] is a star graph. We consider the following cases.

Case 1. R is a reduced ring. Suppose that the vertex / is adjacent to every other vertex. If
1+ 1%, then I —I* must be an edge of Tang (R)[I' (R)]. But since R is a reduced ring, Ann(I) = Ann (/%)
and thus by part (1) of Lemma 2.1, I is not adjacent to /%, a contradiction. Thus I = I>. Now, let
J CI. If J # I, then since JAnn(I) = (0), we deduce that J is adjacent to Ann(I), a contradiction.
So I is a minimal ideal of R and thus by [16, 2.3 and 2.7 ], R = Ra x R(1 — a), for an element a € R.
We may assume that R = R; x R, with R x (0) adjacent to every other vertex. If R; has a non-
trivial ideal, say I. Then I x (0) is adjacent to (0) X Ry, a contradiction. So R; is a field. Similarly,
Z(Ry) = (0). Therefore, R = F x D, where F is a field and D is an integral domain.

Case 2. R is a non-reduced ring. By Lemma 3.1, it is easily seen that R is a local ring with
exactly two non-trivial ideals.

The converse is clear. ]

To prove Theorem 3.4, we state the following lemma.

Lemma 3.2. Suppose that R = Ry X Ry, where R\ and R, are two rings. Then TAnn(R)[H, (R)] is
complete if and only if Tann(R;) []I/ (R))] is complete, for i =1,2.

Proof. Suppose that I'ap, (R)[I (R)] is a complete graph and 1, J are to distinct vertices of DCapn (R2)[I' (R2)].
With no loss of generality, one may suppose that (R} x I) NAnn(R; x J) # 0. Thus /N Ann(J) # 0
and so I and J are adjacent together. Hence I'ann (R2)[I' (R2)] is complete. Similarly, Tann (R1)[I (R})]
is complete. To prove the converse, let I} x I,J; X J, € Iy (R). Then without loss of generality, we
may assume that Ann(1}) # (0) in Ry. If Ann(J;) # (0) in Ry, then since Tann (R1)[I' (R1)] is com-
plete, we conclude that I} x I, —J; x J; is an edge of ['apn (R) []I/ (R)]. If Ann(J;) = (0) in Ry, then J; is
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/

an essential ideal of Ry. Thus J; NAnn(/;) # (0) and so I} x I, —J; X J; is an edge of Tapn (R)[I (R)],
as desired. O

Let Rbe aring and I,J € I (R). We say that I contains a J-regular element say, x, if x ¢ Ann(J)
and RxJ # J.
We now state our last result in this section.

Theorem 3.4. Let R be a Noetherian ring. Then Tan(R)[I (R)] is complete if and only if either
there exists x € I* such that x is not a J-regular element or there exists y € J* such that y is not an
I-regular element, for every pair of distinct vertices I, J.

Proof. 1f Tann(R)[I' (R)] is complete, then it directly follows from the definition of annihilator ideal
graph that for every pair of distinct vertices I,J € I (R) either there exists an element x € I* such that
x is not J-regular or there exists y € J* such that y is not an /-regular element.

To prove the other side, let 1,J be two distinct vertices of Iann(R)[I (R)]. By Lemma 3.2,
we may assume that R is indecomposable. Without loss of generality, assume that x € I* is not an
J-regular element. If x € Ann(J), then there is nothing to prove. If x ¢ Ann(J), then RxJ = J, and so,
by [4, Corollary 2.5], there exists an element a € Rx such that (1 —a)J = 0. Thus 1 —a € Ann(J),
and hence Rx+ Ann(J) = I+ Ann(J) = R. Since R is indecomposable, I N Ann(J) # (0). Hence
I —J is an edge of Tann (R)[I' (R)]. This completes the proof. O

4. When [pnn(R)[I'(R)] and AG(R) Are Identical?

As we have seen in the previous section, Tann (R)[I (R)] and AG(R) are close to each other.

So, it is interesting to characterize rings R whose FAnn(R) [T (R)] and AG(R) are identical. This

characterization also make some of properties of Tann (R)[I (R)] (and AG(R)) clear. First we study
the case when R is reduced.

Theorem 4.1. Let R be a reduced ring. Then the following statements are equivalent.
(1) Cann(R)[T' (R)] = AG(R).
(2) Min(R)| = 2.
(3) Cann(R)[I (R)] is a complete bipartite graph.

(4) AG(R) is a complete bipartite graph.

(1

Proof. (1) = (2) Suppose to the contrary, p1, P2 and p3 are three distinct minimal prime ideals. Let
a € p1\ p2Ups. Thus po Ups € Ann(a) (as Ann(a) C p2 Np3). So one may assume that ab # 0, for
some b € pp, Ups \ p;. With no loss of generality, assume that b € p; \ p;. Obviously, Ann(b) C p;.
Also, it follows from [11, Corollary 2.2], there exists an element x € Ann(a) such that x ¢ pj.
Therefore, Ann(a) # Ann(b), and so by part (1) of Lemma 2.1, Ra — Rb is an edge of [ann(R)[I' (R)]
that is not an edge of AG(R), a contradiction. Hence |Min(R)| = 2.

(2) = (3) Suppose that [Min(R)| = 2. Let p;, p» be minimal prime ideals of R. Since R is a
reduced ring, we have Z(R) = p; Up, and p; Npy = (0). Let A, B be the sets of all non-zero ideals
contained in py, p, respectively. It is not hard to check that V (ang (R)[I (R)]) = AUB and for every
I€AandJ e B, Ann(I) = p, and Ann(J) = p;. Now, it is easily seen that [an, (R)[I (R)] = Kja),B/-

(3) = (4) Suppose that FAnn(R)[]I/ (R)] is a complete bipartite graph with parts Vi, Va, i.e.,
Cann(R)[I (R)] = Ky, | vy If 1,J € V; for i = 1,2, then since ann(R)[I (R)] is a complete bipartite
graph, IJ # (0). Also, if I € V| and J € V,, then IJ = (0) (If IJ # (0), then I —J — Ann(I) — [ is a
triangle, a contradiction).

(4) = (1) is obtained by [9, Corollary 2.11] and proof of (2) = (3). O

Theorem 4.2. Let R be a reduced ring. Then the following statements are equivalent.
(1) Tam(R) = AG(R) VK

/

(2) Tanmn(R)[I'(R)] = AG(R) and depth(R) # 0.
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(3) Min(R)| = 2 and Tann(R) = Tann(R)[I (R)] V Koo
(4) Min(R)| =2 and V(AG(R)) = .

Proof. (1) = (2) Suppose that I —J is an edge of ['ann(R)[I (R)] that is not an edge of AG(R). This
implies that  —J is an edge of Tann(R) that is not an edge of AG(R) V K, a contradiction. So
Cam(R)[I (R)] = AG(R). If depth(R) = 0, then by in(R)| = 2. Let p, ps be the
minimal prime ideals of R. Since R is reduced, we have Z(R) = p; Up, and p; Npp = (0). This,
together with every non-unit element of R is zero-divisor, implies that V(T'ann(R)) = V(AG(R)), a
contradiction.

(2) = (3) in(R)| = 2 and so Ann(J) # (0) for every I C Z(R). If we
put A ={I € V(Tam(R)) | Ann(I) = (0)}, then Tapn(R)[A] is null. Since depth(R) # 0, |A| = oo.
Part (3) of Lemma 2.1 implies that every vertex of A is adjacent to all of V(I'ann(R)[I' (R)]). Hence
Camn(R) = Cann(R)[I' (R)] V K.

(3)= (4) If V(AG(R)) < o, then by [8, Theorem 1.1], R is an Artinian ring. Since [Min(R)| =
2 and R is reduced, R is isomorphic to the direct product of two fields and so 'apn(R) = Ki.1,acon-
tradiction.

(4) = (1) Since [Min(R)| = 2, Cann(R)[I (R)] = AG(R). Let

A={I€V(Tam(R)) | Ann(I) = (0)}. If |A| < e, then depth(R) = 0 and so R is isomorphic to
the direct product of two fields and so AG(R) =K 1,1, a contradiction. Part (3) of Lemma 2.1 implies

/

that every vertex of A is adjacent to all of V (Cann (R)[I' (R)]). Hence Tann(R) = Cann (R)[I' (R)] V K.o.
]

Theorem 4.3. Let R be a reduced ring. Then the following statements are equivalent.

(1) Cam(R) = AG(R).

(2) Tamn(R) = K>.

(3) AG(R) = Ka.

(4) Min(R)| = 2 and depth(R) = 0.

f. (1) = (2) Since Cann(R) = AG(R), Tamn (R)[I (R)] = AG(R) and depth(R) = 0. By Theorem
Min(R)| = 2. Since R is reduced, R is isomorphic to the direct product of two fields and so
)=Ki1.(2)=(3), (3) = (4) and (4) = (1) are clear. O

Proo

1—‘Ann(

To prove Theorem 4.4, the following lemma is needed.

Lemma 4.1. [9, Conjecture 1.11] Let R be a reduced ring with more than two minimal prime ideals.
Then girth(AG(R)) = 3.

Proof. Since R is reduced, by [11, Corollary 2.4], Z(R) = Upcmin(r)P- Suppose that p1, p and p3 are
three distinct minimal prime ideals. If x € p; \ p2 Up3, then Ann(x) C po Np3. Let 0 #y € Ann(x).
Since Rxp; # (0), let a € RxNpy. As Ris reduced, RxN Ann(x) = (0). This implies that a ¢ Ann(x).
Since a,y € py, we have a+y = z € p and so Ann(z) # (0). By [11, Corollary 2.2], hz = 0 for some
h & p,. Since Ann(z) = Ann(y) N Ann(a), Ra— Ry — Rh — Ra is a cycle of length 3. O

Theorem 4.4. Let R be a reduced ring. Then the following statements are equivalent.
(1) Tam(R)[I (R)} z;s a star graph.
(2) glrth(FAn[}( I (R)]) = ce.
(3) Cam(R)[I (R)] = AG(R) and girth(AG(R)) = .
(4) girth(AG(R)) = oo.
(5) IMin(R)| = 2 and at least one of minimal prime ideals is a minimal ideal.
(6) Either FAnn( )[H (R)] = KL] or FAnn( )[H (R)] = Kl’oo-
(7) Either AG(R) = K11 or AG(R) = K] co.
)=

Proof. (1 (2) is clear.
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(2) = (3) Since AG(R) is a subgraph of [apg(R)[I (R)], if [Min(R)| > 2, then by Lemma
4.1, girth(Canpn (R)[I (R)]) = 3, a contradiction. Thus [Min(R)| = 2 and so Tann (R)[I (R)] = AG(R),
by Theorem 4.1. Also, this implies that girth(AG(R)) = co.

(3) = (4) is clear.

(4) = (5) By in(R)| = 2. By Theorem 4.1, AG(R) is complete bipartite and
girth(AG(R)) = . Let py, pp be the minimal prime ideals of R. Since R is reduced, we have
Z(R) =p1Up; and p; Npy = (0). If (0) A1 C py, (0) #J C po, then the cycle I —J —p; —pr — 1
implies that girth(AG(R)) = 4, a contradiction.

(5) = (6) Since R is reduced and contains a minimal ideal, we deduce that R is decom-
posable. Now, |Min(R)| = 2 implies that R = F x D, where F is a field and D is an integral
domain and Iany(R)[I'(R)] = AG(R). Now, if D is a field, then Tann(R)[I (R)] = K1, otherwise
Cam(R)I (R)] = Ki .

(6) = (7) is clear since AG(R) is connected subgraph of Tann (R)[I (R)].

(7) = (1) AG(R) is a star graph, by [8, Corollary 2.3], [Min(R)| = 2 and thus [apy (R)[I' (R)]
is a star graph. g

Theorem 4.5. Let R be a reduced ring. Then the following statements are equivalent.
(1) girth(Cana (R)[I (R)]) = 4.
) Cam(R)[I'(R)] = AG( ) and girth(AG(R)) =
) girth(AG(R)) =
) Min(R)| =2 and both of minimal prime ideals of R are not minimal ideals.
) AG(R) = Koo
(6) Tam(R)[I (R)] = Koo

(2
(3
4
(5

)
1) = (2) By Theorems 3.2 and 4.1, Tann(R)[I (R)] = AG(R), and so

Proof. (
girth(AG(R)) =

(2)=(3)is clear
(3) = (4) is obtained by Lemma 4.1 and Theorem 4.4.
(4) = (5) Let py, p2 be the minimal prime ideals of R. Since R is reduced, we deduce that

Z(R) =p1Upy and p; Npa = (0). If either p; or p, contains a minimal ideal, then R = F x D, where
F is a field and D is an integral domain, a contradiction.

(5) = (6) is obtained by Theorem 4.1.

(6) = (1) is clear. O

In view of Theorems 4.1 and 3.2, we have the following corollary.

Corollary 4.1. Let R be a reduced ring. Then the following statements are equivalent.
(1) 1—‘Ann(R)[H (R)} /: AG(R)~
(2) girth(Fann (R) [T (R)]) = girth(AG(R)) = {4, o}

In the rest of this section, we focus on non-reduced rings for which AG(R) and I'any (R)[I (R)]
are identical.

Theorem 4.6. Let R be a non-reduced ring. Then the following statements are equivalent.

(1) Tam(R)[I (R)] = AG(R).
(2) AG(R) is a complete graph.
(3) Either AG(R) = K> or Z(R)? = (0).

Proof. (1) = (2) First we show that Ann(Z(R)) # (0). Leta € Nil(R)*. If ax # 0, for some x € Z(R),
then since Ra N Ann(a) # (0), by part 2 of Lemma 2.1, Ra — Rx is an edge of Tann (R)[I (R)] that is
not an edge of AG(R), a contradiction. This implies that Ann(Z(R)) # (0) and so Z(R) € V(AG(R)).
Let 1,J € I'(R) and suppose that I — J is not an edge of AG(R). Thus IZ(R) # (0) and so I — Z(R)
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is an edge of Tann (R)[I (R)] which is not an edge of AG(R), a contradiction. Therefore, AG(R) is a
complete graph.

(2) = (3) is obtained by [8, Theorem 2.7].

(3) = (1) is clear. O

Suppose that R is a non-reduced ring. The proof of [8, Theorem 2.2] shows that if there exists
a vertex of AG(R) which is adjacent to every other vertex, then Ann(Z(R)) # (0). By using this fact
the following theorem is proved.

Theorem 4.7. Let R be a non-reduced ring and let A be the set of all non-zero ideals contained in
Nil(R). If Z(R) # Nil(R), then the following statements hold.

(1) AG(R) = K|a| V K if and only if Ann(Z(R)) is a prime ideal of R.

(2) Tam(R)[I'(R)] = Kisj41V Koo and Nil(R) = Ann(Z(R)) if and only if Ann(Z(R)) is a
prime ideal of R and for every I # Z(R) and I ¢ A, IN Ann(Z(R)) = (0).

Proof. (1) Since AG(R) = K| V K., every vertex of K| is adjacent to all other vertices but there
is no adjacency between two arbitrary vertices of Ke. This implies that Ann(Z(R)) = Nil(R) and
1J # (0), for every I,J € V(K,,). Now we show that Ann(Z(R)) is a prime ideal of R. To see
this, let 7J C Ann(Z(R)), I ¢ Ann(Z(R)) and J ¢ Ann(Z(R)). We claim that 1J # 0. Suppose to the
contrary, IJ = (0). Since / ¢ Nil(R) and J  Nil(R), I —J is an edge of V (K}, ), a contradiction unless
I=1J. Hence I’ = 0, and so I C Ann(Z(R)), a contradiction. So IJ # (0) and hence the claim is
proved. Since 1J C Ann(Z(R)) and I ¢ Ann(Z(R)), K1J = (0), KI # (0) for some K € V(AG(R)).
This implies that J € V(AG(R)), IJJ = 1J?> = (0), J> C Ann(Z(R)). Hence J?°J = J? = (0), a
contradiction. So Ann(Z(R)) is a prime ideal of R.

Conversely, since Ann(Z(R)) is a prime ideal of R, Ann(Z(R)) = Nil(R). Let B=V(AG(R))\
A. So1J = (0), for all I,J € A and 1J # (0), for all I,J € B. Now, it is easy to see that AG(R)[A]
and AG(R)[B] are two subgraphs of AG(R) such that AG(R)[A] is complete, AG(R)[B] is null
and AG(R) = AG(R)[A] V AG(R)[B]. We have only to prove that |B| = co. Suppose to the con-
trary, |B| < oo and let x € Z(R) \ Nil(R). Since |B| < oo, Rx" = Rx™ for some positive integers
n < m. So Rx" = Rx"RxX"". Now, by [4, Corollary 2.5], there exists an element a € Rx" such that
(I1—a)Rx™ " =0. Thus 1 —a € Ann(Rx" "), and hence Rx" + Ann(Rx" ") = R. On the other hand,
Ann(Rx™") = Nil(R), a contradiction.

(2) Since Ann(Z(R)) # (0), Z(R) € V(AG(R)) and so Z(R) is adjacent to every other vertex
in Tapn(R)(I (R)]. This, together with Tann (R)[I (R)] = K 4|11 VK. and Nil(R) = Ann(Z(R)), imply
that AG(R) = Ky V Ko. By part 1, Ann(Z(R)) is a prime ideal of R. Also, if /N Ann(Z(R)) # (0)
for some I ¢ A and I # Z(R), then we can easily deduce that [ap,(R)[I (R)] = Kis4n V Koo, Where
n € {N, oo}, a contradiction.

The converse, is obtained by part 1. Indeed, since Ann(Z(R)) is a prime ideal of R, AG(R) =
Kz V Ke. Also, since for every I # Z(R) and I ¢ A, IN Ann(Z(R)) = (0), for V(AG(R)) \ Z(R)
we have AG(R) = Tann(R) [H/ (R)]. This, together with Z(R) is adjacent to every other vertex in
T ann(R)[I (R)], implies that Tapn(R)[I (R)] = Kjaj 1 V Keo. 0

We finish this paper with the following example which explains Theorem 4.7.

Example4.1. Let R=7,[X,Y]/(XY,X?) and letx =X +(XY,X?),y =Y +(XY,X?). Then Ann(Z(R)) =
Nil(R) = {0,x} is a prime ideal of R, Ann(Z(R)) # Z(R) and Z(R) = (x,y)R. It is clear that
AG(R) = K; VK. and Tapn (R)[I (R)] = K> V K.
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