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INFINITELY MANY SOLUTIONS FOR A DIRICHLET
BOUNDARY VALUE PROBLEM WITH IMPULSIVE CONDITION

Ghasem A. Afrouzi!, Armin Hadjian?, Saeid Shokooh?

In this paper, by employing a critical point theorem, we establish the exis-
tence of infinitely many solutions for second-order impulsive differential equations
with Dirichlet boundary conditions, depending on two real parameters. We also
provide some particular cases and a concrete example in order to illustrate the

main abstract results of this paper.
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1. Introduction

In this paper, we investigate the existence of infinitely many solutions for the
following nonlinear Dirichlet boundary-value problem

—(W/ (P2 (1) + )P ?u(t) = Af (¢ u(t) + pg(t,u(t),  in Q,
u(0) = u(T) =0, (1)
Ald! () [P~2/ (t5) = Li(u(ty), j=1,2,...,m,

where p € [2,+00), T > 0, X €]0,4+00[, p € [0,4+00], @ := [0,T] \ {t1,t2,...,tm},
f,9:10,T) x R = R are L'-Carathéodory functions, 0 = tg < t; < tg < -+ < tp, <
s = Ty A ()72 (t) = !/ (£5) P20/ (6) — |/ (6 )lP=20/ (£} ), where o/ (t])
and u'(t;) denote the right and left limits, respectively, of u'(t) at tj, and I; : R — R
are continuous for every j =1,2,...,m.

Many dynamical systems describing models in applied sciences have an im-
pulsive dynamical behaviour due to abrupt changes at certain instants during the
evolution process. The rigorous mathematical description of these phenomena leads
to impulsive differential equations; they characterize various processes of the real
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world described by models that are subject to sudden changes in their states. Es-
sentially, impulsive differential equations correspond to a smooth evolution that may
change instantaneously or even abruptly, as happens in various applications that
describe mechanical or natural phenomena. These changes correspond to impulses
in the smooth system, such as for example in the model of a mechanical clock.
Impulsive differential equations also study models in physics, population dynamics,
ecology, industrial robotics, biotechnology, economics, optimal control, chaos theory.
Associated with this development, a theory of impulsive differential equations has
been given extensive attention.

For a general second order differential equation F(¢, u, u’) = 0, one can consider
impulses in the position u and the velocity u'. However, as argued in [11], it is natural
to consider in the motion of spacecraft only instantaneous impulses depending on
the position that result in jump discontinuities, but with no change in position. The
impulses only on the velocity occurs also in impulsive mechanics, see [12].

Recently, many researchers pay their attention to impulsive differential equa-
tions by variational method and critical point theory, and we refer the reader to
[1, 2, 8, 11, 16, 17, 18, 19] and references cited therein. Meanwhile, some people
begin to study p-Laplacian differential equations with impulsive effects, for example,
see [3, 4, 7, 19]. In [3, 4], Bai and Dai utilize Ricceri’s three critical point theorem
and the mountain pass theorem to investigate the existence of solutions for an im-
pulsive boundary value problem involving the p-Laplacian operator. Chen and Tang
[7] adopt the least action principle and the saddle point theorem to obtain some
existence theorems for second-order p-Laplacian systems with or without impulsive
effects under weak sublinear growth conditions. In [9], they also consider that a class
of second-order impulsive differential equations with Dirichlet problems has one or
infinitely many solutions under more relaxed assumptions on their nonlinearity f,
which satisfies a kind of new superquadratic and subquadratic condition. Authors in
[19] discuss the existence of weak solutions for a p-Laplacian problem with impulsive
conditions by topological degree theory and critical point theory.

The purpose of this paper is to show the variational structure underlying of a
class of nonlinear impulsive differential equations. We take as a model a Dirichlet
problem with impulses. For an excellent overview of the most significant mathemat-
ical methods employed in this paper we refer to Ciarlet [10].

2. Preliminaries

We shall prove our results applying the following smooth version of Theorem
2.1 of [6], which is a more precise version of Ricceri’s variational principle [15, Theo-
rem 2.5]. We point out that Ricceri’s variational principle generalizes the celebrated
three critical point theorem of Pucci and Serrin [13, 14] and is an useful result that
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gives alternatives for the multiplicity of critical points of certain functions depending
on a parameter.

Lemma 2.1. Let X be a reflexive real Banach space, let ®,¥ : X — R be two
Gateaur differentiable functionals such that ® is sequentially weakly lower semi-
continuous, strongly continuous and coercive, and V¥ is sequentially weakly upper
semicontinuous. For every r > infx &, let

($UPueot (<o) T()) = T (w)

= inf
(P(T) uE@fllI%—oo,r) r— (I)('LL) ’
= lv}gig’ o(r), and 0 := r—}%glf;nqgﬁ o(r).

Then the following properties hold:
(a) For every r > infx ® and every X\ € (0,1/¢(r)), the restriction of the func-

tional
I, =0 - \V
to @~ (—o0,7) admits a global minimum, which is a critical point (local min-
imum) of Iy in X.
(b) If v < 400, then for each A € (0,1/7), the following alternative holds: either
(b1) I possesses a global minimum, or

(ba) there is a sequence {u,} of critical points (local minima) of I such that

lim ®(u,) = +o0.

n—+o00
(¢) If 6 < 400, then for each X € (0,1/9), the following alternative holds: either

(c1) there is a global minimum of ® which is a local minimum of Iy, or
(co) there is a sequence {u,} of pairwise distinct critical points (local minima)
of I that converges weakly to a global minimum of ®.

In the following, we use the Sobolev space X := VVO1 ?(0,T), equipped with

T T
[[ul| = (/0 !Ul(t)lpdtJr/O IU(t)|pdt>

Lemma 2.2. For any u € X, there exists a constant ¢ := 2Y/9max{T~1/P T/},
1/p+1/q=1, such that

the norm
1/p

[ufloo < ¢ lull, (2)

where ||ul|oo := max;c(o, 7y [u(t)|-

Proof. 1t can be proved in an elementary way by the Mean Value Theorem and the
Holder inequality. O
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Let f,g:[0,7] x R — R be two L!'-Carathéodory functions. We recall that
f:[0,T] x R — R is an L'-Carathéodory function if
(a) the mapping ¢t — f(¢,x) is measurable for every = € R;
(b) the mapping x — f(¢,x) is continuous for almost every t € [0, T];
(c) for every p > 0 there exists a function I, € L'([0,T]) such that

‘81|1p |f(t )| < 1,(t)
z|<p

for almost every t € [0, T].

We say that u € {w € C([0,T]) : Wi, 1;,1)e w2r([t;.t,4.]) | 18 & classical solution
of problem (1), if it satisfies the equation in (1) a.e. on Q, the limits u’(tj), u'(t;),
j = 1,...,m, exist, satisfy the impulsive condition Alu/(¢;)[P~2u/(t;) = I;(u(t;))
and the boundary condition u(0) = u(7T") = 0. We say that a function v € X is a
weak solution of problem (1), if u satisfies

T T
/ |u/|P~2u/v dt + / |uP~%uw dt
0 0

T T m
— )\/0 flt,w)vdt — u/o g(t,u)vdt + Z Li(u(ty))v(t;) =0,

j=1
for any v € X.
By the same argument as in the proof of [5, Lemma 2.3], we can prove the

following lemma.

Lemma 2.3. The function uw € X is a weak solution of problem (1) if and only if u

is a classical solution of (1).
We will use the following lemma in the proof of our main result.

Lemma 2.4 ([5, Lemma 3.1]). Assume that
(A1) there exist constants o, 3 > 0 and o € [0, 1] such that

|Li(z)| <a+ Bz forallzeR, j=1,2,...,m.

Then, for any u € X, we have

o rults) B
. o+1
jZ:l/o 1) da| < m(alfullso + 2|02, (4)
Finally, put
_ 277~ (p+1) X ( p ) o—1
- ) a ~— a 9
?[4P(p+ 1)+ TP(p + 2)] a o+1

where a, 8,0 are given by (Al), c¢ is defined in Lemma 2.2 and a is a positive

constant.
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3. Main results

In this section we establish the main abstract result of this paper. Let

T
mzixF(t,J:)dt
A = liminf 2° lel<¢ ,
E—4o00 é’p
3T/4
F(t,&)dt
. T/4
B := limsup ,
E—+o00 ép

where F(t,x) := /x f(z,€)d¢ for all (t,z) € [0,T] x R, and
0

1 1
Al i=—— Ao 1= .
LT ook B’ 2T pePA
With the above notations we establish the following multiplicity property.

Theorem 3.1. Assume that (A1) holds and f : [0, T]xR — R be an L-Carathéodory
function, whose potential F(t,z) := /w flx,&)dE for all (t,z) € [0,T] x R, satisfies
the following conditions °

(A2) F(t,€) >0 for all (,€) € ([0, 5] U2, T]) x R;

(A3) A<kB.

Then, for every A\ € (A1, \2) and for every arbitrary L'-Carathéodory function g :
[0,7] x R — R, whose potential G(t,z) := /x g(x, &) d€ for all (t,x) € [0,T] x R, is

0
a nonnegative function satisfying the condition

T
max G(t,x) dt
<
Goo = limsup 22 rl=¢ < 400, (5)
E—+00 é‘p
if we put
1
= 1—ApcfA
Hapn = oo (L= ApdA),

where pig x = +00 when G = 0, problem (1) has an unbounded sequence of classical
solutions for every p € [0, ug ) in X.

Proof. Our aim is to apply Lemma 2.1(b) to problem (1). To this end, fix A € (A1, A2)
and g satisfying our assumptions. Since A < A9, we have

1 _
R — \pcP
Bax T (1 Apc A) > 0.

Now fix 7z € (0, i1, 5) and set

J(t,z) == F(t,2) + %G(t,:c)
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for all (t,x) € [0,7] x R. For each u € X, let the functionals ®,¥ : X — R be
defined by

1
() = full”,
W (u) /TJ(t (t))dt—lzm:/u(tj)l( )d
u) == ; U ijl ; (z) dz,
and put
By (u) = ®(u) - AU (u), ue X.

Using the property of f,g and the continuity of I;, j = 1,2,...,m, we obtain that
®, ¥ € CY(X,R) and for any v € X, we have

T T
@ (u)(v) = /0 (1) P2 ()0 (1) it + /0 ()P~ 2u(tyo(t) di

and
T — T m
V() = [ e i 5 [t u)on a- 2 )

So, with standard arguments, we deduce that the critical points of the functional
EX
that the functionals ® and V¥ satisfy the regularity assumptions of Lemma 2.1.

are the weak solutions of problem (1) and so they are classical. We first observe

First of all, we show that A < 1/. Hence, let {£,} be a sequence of positive
numbers such that lim,_, ., &, = +0o0 and

T
max F(t,z)dx
im p = A.
n—-+o0o én

Put r, := ﬁgﬁ for all n € N. Then, for all v € X with ®(v) < r,, taking (2) into
account, one has ||v]|eo < &,. Note that ®(0) = ¥(0) = 0. Then, for all n € N,

( sup \Il(v)) — U(u)

vE®—1(—00,rp)

= inf
90(7’71) uECD—%I(l—oo,Tn) Tn — @(u)
sup U (v)
< veE®P~1(—o0,ry)
Tn
T
m B
J(t,z)dt j( — ”“)
< Jo \gllggl (t,2) +)\ a€n+a+1"
=~ ié.p
pcP ST
T T
max F(t,z)dt _ max G(t,z)dt
< per |20 || <&n 4 FJo lz<t L m Le,
: & X & e
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Since limy, 1o —;;5_"2 = 0, from the assumption (A3) and the condition (5), we have
.. °w
< < P -

v < EEE;E o(ry) < pc (A + XGoo) < +o0. (6)

The assumption 7z € (0, p1(; ) immediately yields

m 1 — pcPAA
N < pcp(A+ %Goo) < pPA 4 LA

Hence,
1 1
— = < —.
pcP A + (1 — pcp)\A)/)\ 0

Let \ be fixed. We claim that the functional EXﬁ is unbounded from below. Since

A=

1
= < pcPkB,
3 p
there exist a sequence {7, } of positive numbers and 7 > 0 such that lim,_, 1~ 1, =
400 and
3T/4
1 [ P
T/4
= <7< pcPk 7
A P 7 @)
for each n € N large enough. For all n € N define w,, € X by
4ny,
—t t T/4
oy, &0, 7/4),
Wy (t) := 4 M, t €]T/4,3T/4], (8)
4np,
%(T —t), t€|3T/4,T).
For any fixed n € N, one has
4p (p+2)T 1
O(wy) = P — P
() = | o + oo 2= )
On the other hand, by (A2) and since G is nonnegative, from the definition of W,
we infer
3T /4 1 m
\Ifwnz/ F(t,n,)dt — =—=mn; T . 10
(wn) /4 (t, ) )\WU (n) V) (10)

By (7), (9) and (10), we see that

- 3T /4 mo
By (wn) < Tl A/ E(t,nn) dt + — =T, o

’ T/4 Uk
< np(l—XT)%—ﬂnQF
pcPk Yz / VE)

for every n € N large enough. Since ¢ < 1, A7 > 1 and lim,,_, o 7,, = +00, we have

n——+oo ’ﬁ(wn) -
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Then, the functional EXﬁ is unbounded from below, and it follows that EXﬁ has
no global minimum. Therefore, by Lemma 2.1(b), there exists a sequence {u,} of
critical points of EXﬁ such that

lim ||u,|| = +0
limnfun]| = o0,
and the conclusion is achieved. OJ

Remark 3.1. Under the conditions A = 0 and B = +o0, from Theorem 3.1 we see
that for every A > 0 and for each p € [0, m), problem (1) admits a sequence of
classical solutions which is unbounded in X. Moreover, if Go, = 0, the result holds

for every A > 0 and p > 0.
Now, we present a concrete example of application of Theorem 3.1.

Example 3.1. Let I(u(t1)) =1 — {/u(ty) for some ¢t; € (0,1). Then [ : R - Ris a
continuous function satisfying the sublinear growth condition (A1) with o« = g =1
and o0 = % Now, put

2nl(n+2)! -1 2nl(n +2)1 +1
ap = —————— | by = ————,
4(n+1)! 4(n+1)!

for every n € N, and define the nonnegative continuous function f : R — R by

32(n4+1)!12[(n+1)!5—n!9] 1 (e - n!(n42)\2 if¢e U [a b }
f(f) — ™ \/16(71-{-1)!2 ( 2 ) neN

0, otherwise.

One has

(n+1)! by
/ f(t)dt = F)dt = (n+1)16 —ntb

! an

for every n € N. Then, one has

lim L%n) =0, and lim F(bn) = 64.
n—-+oo an n—-+oo bg
Therefore, by a simple computation, we obtain
F F
lim inf Q =0, and limsup (65 ) = 64.
f—too & E—+o00
Also, let
0, if t <0,
g9(t) = { ¢
ift > 0.
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t
Putting G(t) := /0 g(&) d¢ for all t € R, we have ligrgiup Gg) = ﬁ. So, for every
o

A> % and p € [0,1), the nonlinear problem

= (' @) () + [u(®)'u(t) = Af(u(t) + pg(u(t)),  a.e. in [0,1],
u(0) =u(1) =0,
Al ()" (t) = 1 = /u(ta),

has a sequence of classical solutions which is unbounded in I/VO1 5(0,1).
Now we state several useful consequences and particular cases of Theorem 3.1.

Corollary 3.1. Let f : [0,T] x R — R be an L'-Carathéodory function. Suppose

that hypotheses (A1), (A2) are fulfilled and
A< i, B> L .

pcP pcPk

Then, for every arbitrary L'-Carathéodory function g : [0,T] x R — R, whose
T

potential G(t,z) := / g(t, &) d¢ for all (t,x) € [0,T] X R, is a nonnegative function
0

satisfying the condition (5), if we put

= 1—pcfA
e pCpGOO( pc’A),

where g = 400 when Go = 0, the problem
([ @O~ (1)) + [u(®)[P2ult) = f(t,u(t) + pg(t,u(t), inQ,
u(0) =u(T) =0,
Al () [P~/ (t;) = Li(ulty), §=1,2,...,m,

has an unbounded sequence of classical solutions for every p € [0, ug) in X.

Corollary 3.2. Let (A1) holds and f : R — R be a nonnegative continuous function.
€

Put F(§) := / f(t)dt for all £ € R and assume that
0

R R
liminf —37 < lim sup 2.
e & B(BT7 4 256) coie €

Then, for each

\e 573 + 256 1
(1272) lim sup %’ (3¢3) lim inf % ’

for every arbitrary nonnegative continuous function g : R — R, whose potential

G(&) = / g(t) dt for all £ € R, satisfies the condition
0

G(&)

lim sup —= < 400,
E—+o0 63
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and for every

we [0 1 le13) (1 — (37¢*) A lim inf Fé})@) [7

’ (3T°c3) lim sup,_, 4 o, 5 §—r+o0

the nonlinear problem

—([W'@)|'(1))" + fu(®)|u(t) = Af (u(t) + pg(u(t)), in€Q,
u(0) =u(T) =0,
Al ()1 (t7) = L (ulty),  7=1,2,...,m,

has a sequence of classical solutions which is unbounded in W01’3(0, T).

Corollary 3.3. Let (Al) holds and let f : R — R be a nonnegative continuous
3

function. Put F(§) := / f(t)dt for all £ € R and assume that
0

F F
lim inf ﬁ =0, lim sup & = +o0
Etoo EP g0 &P

Then, for every arbitrary nonnegative continuous function g : R — R satisfying the

/0 ‘ g(z) do

condition

o= i g <
and for every p € |0, %[, the problem
— (WO~ () + [u(®)P~2u(t) = f(u(t)) + pg(u(t), inQ,
u(0) = u(T) =0,

Al ()P~ (t5) = Ii(u(ty), §=1,2,...,m,
admits infinitely many distinct pairwise classical solutions.

Now, we point out a special situation of our main result when g = 0 and the
nonlinear term has separated variables. To be precise, let I € L([0,T]) such that
I(t) > 0ae tel]0,T],l #0,and let h : R — R be a nonnegative continuous
function.

Consider the following nonlinear Dirichlet boundary-value problem

—u"(t) + u(t) = AN(t)h(u(t)), inQ,
w(0) = u(T) =0, (11)
A (t)) = Li(u(t), j=1,2,....,m.

3
Put H(¢) := / h(z) dx for all £ € R, and set
0

T 37 /4
[tk ::/ tdt, o ::/ (t) dt.
0
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Corollary 3.4. Let (Al) holds. Moreover, suppose that
H(¢) 3Ty H(¢)

lim inf < lim su
Etoe €2 224+ 2T?)l1 toioe €2

Then, for each

12 + 71?2 1

(3T) limsup 247 (2¢21]|1) lim inf £
£—+00 ¢ g—too &

problem (11) has an unbounded sequence of classical solutions.

Put
m 3
Sy = min/ Ij(x)dx, for all a > 0,
o lEl=aJo
T
max F'(t,z) dt
A" = liminf 22 =
§-0* 3¢ ’
37/4
F(t,8)dt
"= lim T/
b §—>?Jl+lp gp 7
and ) )
[ [
Al = T Ay = Py

Using Lemma 2.1(c) and arguing as in the proof of Theorem 3.1, we can obtain the
following multiplicity result.

Theorem 3.2. Let f : [0,T] xR — R be an L*-Carathéodory function and I;(x) <0
forallz e R, j=1,...,m. Moreover, assume that (A2) and

(A4) A" < kB'.
are satisfied. Then, for every A € (\y, \y) and for every arbitrary L'-Carathéodory
function g : [0,T] x R — R, whose potential G(t,z) := / g(xz, &) d€ for all (t,x) €

0
[0,T] x R, is a nonnegative function satisfying the condition

T
max G(t,x) dt
<
Go := lim sup =2 rl=¢ < 00, (12)
€0+ &p
if we put
1
ari=—— (1= AplA),
Hex = a (1= ApcrA')

where i , = +00 when Gy =0, for every pu € [0, ug, ) problem (1) has a sequence
of classical solutions, which strongly converges to zero in X.
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Proof. Fix A € (M, )\}) and let g be a function that satisfies the condition (12).
Since A < X, we obtain

1 _
<= 1 — ApcPA') > 0.
MG,A pCpGo ( pe )

Now fix 1z € (0, M/G,X) and set

J(t,z) == F(t,z) + %G(t,x),
for all (¢t,z) € [0,7] x R. We take ®, ¥ and Ex 5 as in the proof of Theorem 3.1.
Now, as it has been pointed out before, the functionals ® and V¥ satisfy the regularity
assumptions required in Lemma 2.1. As first step, we will prove that A < 1/6. Then,

let {&,} be a sequence of positive numbers such that lim,, . &, = 0 and

T
max F(t,z)dz
im p =A'.
n—-+o00o gn

By the fact that infx ® = 0 and the definition of d, we have § = liminf, g+ o(r).
Put r, := -5:¢} for all n € N. Then, for all v € X with ®(v) < r,, taking (2) into

T pe?
account, one has ||v||cc < &,. Thus, for all n € N,
sup ¥ (v)
vEDP~1(—00,rp)
¢(rn)
n
r 1
max J(t,z) dt — =S¢,
0 |z|<én A
< T cp
por&n
T T
max F(t,z)dt _ max G(t,z)dt N
0 lz[<én A Jo =< 1 3¢,
< pf P +3 P TS
&n A én A &n

Since limy, 40 % = 0, from the assumption (A4) and the condition (12), we have
d <liminf p(r,) < pc? <A' + gGo) < +o0.
n—+o0 A
From 7 € (0, u’G 1)» the following inequalities hold

I 1— ApcP A
< / g / - = .
5_pcp<A +)\Go)<pcpA+ :
Therefore
1

1
— = < —.
pcP Al + (1 - pcp)\A’)/)\ J

X:
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Let )\ be fixed. We claim that the functional EXﬁ does not have a local minimum
at zero. Since

1
= < pcPkB,
S <P

there exists a sequence {7, } of positive numbers and 7 > 0 such that lim,,_, { oo 7, = 0

37 /4
/ F(t,n,) dt
T/4

and

P
n

i <71 < pcPk
for each n € N large enough. For all n € N, let w,, € X defined by (8) with the
above 7,,. Note that A7 > 1. Then, since I;(z) <0 for allz € R, j =1,...,m, we
obtain

wn(t;

3T /4 m )
B (wy) < —pp )\/ Pt )dt+§:/ Ii(x)d
s (wp) < nh — 2 n, i(x)dz
A pcPk T/4 = J J

< (1 — A7) <0,

pcPk
for every n € N large enough. Then, since

lim Ey(wn) = E5;(0) =0,

n—+0o00

we see that zero is not a local minimum of EXﬁ' This, together with the fact that
zero is the only global minimum of ®, we deduce that the energy functional EX,E does
not have a local minimum at the unique global minimum of ®. Therefore, by Lemma
2.1(c), there exists a sequence {uy} of critical points of Ex - which converges weakly
to zero. In view of the fact that the embedding X — C°([0, T]) is compact, we know
that the critical points converge strongly to zero, and the proof is complete. ]

Remark 3.2. Applying Theorem 3.2, results similar to Corollaries 3.1, 3.2, 3.3 and
3.4 can be obtained. We omit the discussions here.
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