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INFINITELY MANY SOLUTIONS FOR A DIRICHLET

BOUNDARY VALUE PROBLEM WITH IMPULSIVE CONDITION

Ghasem A. Afrouzi1, Armin Hadjian2, Saeid Shokooh3

In this paper, by employing a critical point theorem, we establish the exis-

tence of infinitely many solutions for second-order impulsive differential equations

with Dirichlet boundary conditions, depending on two real parameters. We also

provide some particular cases and a concrete example in order to illustrate the

main abstract results of this paper.
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1. Introduction

In this paper, we investigate the existence of infinitely many solutions for the

following nonlinear Dirichlet boundary-value problem
−(|u′(t)|p−2u′(t))′ + |u(t)|p−2u(t) = λf(t, u(t)) + µg(t, u(t)), in Ω,

u(0) = u(T ) = 0,

∆|u′(tj)|p−2u′(tj) = Ij(u(tj)), j = 1, 2, . . . ,m,

(1)

where p ∈ [2,+∞), T > 0, λ ∈]0,+∞[, µ ∈ [0,+∞[, Ω := [0, T ] \ {t1, t2, . . . , tm},
f, g : [0, T ]× R → R are L1-Carathéodory functions, 0 = t0 < t1 < t2 < · · · < tm <

tm+1 = T , ∆|u′(tj)|p−2u′(tj) = |u′(t+j )|p−2u′(t+j ) − |u′(t−j )|p−2u′(t−j ), where u′(t+j )

and u′(t−j ) denote the right and left limits, respectively, of u′(t) at tj , and Ij : R → R
are continuous for every j = 1, 2, . . . ,m.

Many dynamical systems describing models in applied sciences have an im-

pulsive dynamical behaviour due to abrupt changes at certain instants during the

evolution process. The rigorous mathematical description of these phenomena leads

to impulsive differential equations; they characterize various processes of the real
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world described by models that are subject to sudden changes in their states. Es-

sentially, impulsive differential equations correspond to a smooth evolution that may

change instantaneously or even abruptly, as happens in various applications that

describe mechanical or natural phenomena. These changes correspond to impulses

in the smooth system, such as for example in the model of a mechanical clock.

Impulsive differential equations also study models in physics, population dynamics,

ecology, industrial robotics, biotechnology, economics, optimal control, chaos theory.

Associated with this development, a theory of impulsive differential equations has

been given extensive attention.

For a general second order differential equation F(t, u, u′) = 0, one can consider

impulses in the position u and the velocity u′. However, as argued in [11], it is natural

to consider in the motion of spacecraft only instantaneous impulses depending on

the position that result in jump discontinuities, but with no change in position. The

impulses only on the velocity occurs also in impulsive mechanics, see [12].

Recently, many researchers pay their attention to impulsive differential equa-

tions by variational method and critical point theory, and we refer the reader to

[1, 2, 8, 11, 16, 17, 18, 19] and references cited therein. Meanwhile, some people

begin to study p-Laplacian differential equations with impulsive effects, for example,

see [3, 4, 7, 19]. In [3, 4], Bai and Dai utilize Ricceri’s three critical point theorem

and the mountain pass theorem to investigate the existence of solutions for an im-

pulsive boundary value problem involving the p-Laplacian operator. Chen and Tang

[7] adopt the least action principle and the saddle point theorem to obtain some

existence theorems for second-order p-Laplacian systems with or without impulsive

effects under weak sublinear growth conditions. In [9], they also consider that a class

of second-order impulsive differential equations with Dirichlet problems has one or

infinitely many solutions under more relaxed assumptions on their nonlinearity f ,

which satisfies a kind of new superquadratic and subquadratic condition. Authors in

[19] discuss the existence of weak solutions for a p-Laplacian problem with impulsive

conditions by topological degree theory and critical point theory.

The purpose of this paper is to show the variational structure underlying of a

class of nonlinear impulsive differential equations. We take as a model a Dirichlet

problem with impulses. For an excellent overview of the most significant mathemat-

ical methods employed in this paper we refer to Ciarlet [10].

2. Preliminaries

We shall prove our results applying the following smooth version of Theorem

2.1 of [6], which is a more precise version of Ricceri’s variational principle [15, Theo-

rem 2.5]. We point out that Ricceri’s variational principle generalizes the celebrated

three critical point theorem of Pucci and Serrin [13, 14] and is an useful result that



Infinitely many solutions for a Dirichlet BVP 11

gives alternatives for the multiplicity of critical points of certain functions depending

on a parameter.

Lemma 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two

Gâteaux differentiable functionals such that Φ is sequentially weakly lower semi-

continuous, strongly continuous and coercive, and Ψ is sequentially weakly upper

semicontinuous. For every r > infX Φ, let

φ(r) := inf
u∈Φ−1(−∞,r)

(
supv∈Φ−1(−∞,r)Ψ(v)

)
−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

φ(r), and δ := lim inf
r→(infX Φ)+

φ(r).

Then the following properties hold:

(a) For every r > infX Φ and every λ ∈ (0, 1/φ(r)), the restriction of the func-

tional

Iλ := Φ− λΨ

to Φ−1(−∞, r) admits a global minimum, which is a critical point (local min-

imum) of Iλ in X.

(b) If γ < +∞, then for each λ ∈ (0, 1/γ), the following alternative holds: either

(b1) Iλ possesses a global minimum, or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞, then for each λ ∈ (0, 1/δ), the following alternative holds: either

(c1) there is a global minimum of Φ which is a local minimum of Iλ, or

(c2) there is a sequence {un} of pairwise distinct critical points (local minima)

of Iλ that converges weakly to a global minimum of Φ.

In the following, we use the Sobolev space X := W 1,p
0 (0, T ), equipped with

the norm

∥u∥ :=

(∫ T

0
|u′(t)|p dt+

∫ T

0
|u(t)|p dt

)1/p

.

Lemma 2.2. For any u ∈ X, there exists a constant c := 21/q max{T−1/p, T 1/q},
1/p+ 1/q = 1, such that

∥u∥∞ ≤ c ∥u∥, (2)

where ∥u∥∞ := maxt∈[0,T ] |u(t)|.

Proof. It can be proved in an elementary way by the Mean Value Theorem and the

Hölder inequality. �
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Let f, g : [0, T ] × R → R be two L1-Carathéodory functions. We recall that

f : [0, T ]× R → R is an L1-Carathéodory function if

(a) the mapping t 7→ f(t, x) is measurable for every x ∈ R;
(b) the mapping x 7→ f(t, x) is continuous for almost every t ∈ [0, T ];

(c) for every ρ > 0 there exists a function lρ ∈ L1([0, T ]) such that

sup
|x|≤ρ

|f(t, x)| ≤ lρ(t)

for almost every t ∈ [0, T ].

We say that u ∈ {w ∈ C([0, T ]) : w|[tj ,tj+1]∈W 2,p([tj ,tj+1])} is a classical solution

of problem (1), if it satisfies the equation in (1) a.e. on Ω, the limits u′(t+j ), u
′(t−j ),

j = 1, . . . ,m, exist, satisfy the impulsive condition ∆|u′(tj)|p−2u′(tj) = Ij(u(tj))

and the boundary condition u(0) = u(T ) = 0. We say that a function u ∈ X is a

weak solution of problem (1), if u satisfies∫ T

0
|u′|p−2u′v′ dt+

∫ T

0
|u|p−2uv dt

− λ

∫ T

0
f(t, u)v dt− µ

∫ T

0
g(t, u)v dt+

m∑
j=1

Ij(u(tj))v(tj) = 0,

(3)

for any v ∈ X.

By the same argument as in the proof of [5, Lemma 2.3], we can prove the

following lemma.

Lemma 2.3. The function u ∈ X is a weak solution of problem (1) if and only if u

is a classical solution of (1).

We will use the following lemma in the proof of our main result.

Lemma 2.4 ([5, Lemma 3.1]). Assume that

(A1) there exist constants α, β > 0 and σ ∈ [0, 1[ such that

|Ij(x)| ≤ α+ β|x|σ for all x ∈ R, j = 1, 2, . . . ,m .

Then, for any u ∈ X, we have∣∣∣∣∣∣
m∑
j=1

∫ u(tj)

0
Ij(x) dx

∣∣∣∣∣∣ ≤ m
(
α∥u∥∞ +

β

σ + 1
∥u∥σ+1

∞

)
. (4)

Finally, put

k :=
2T p−1(p+ 1)

cp
[
4p(p+ 1) + T p(p+ 2)

] , Γa :=
α

a
+
( β

σ + 1

)
aσ−1,

where α, β, σ are given by (A1), c is defined in Lemma 2.2 and a is a positive

constant.
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3. Main results

In this section we establish the main abstract result of this paper. Let

A := lim inf
ξ→+∞

∫ T

0
max
|x|≤ξ

F (t, x) dt

ξp
,

B := lim sup
ξ→+∞

∫ 3T/4

T/4
F (t, ξ) dt

ξp
,

where F (t, x) :=

∫ x

0
f(x, ξ) dξ for all (t, x) ∈ [0, T ]× R, and

λ1 :=
1

pcpkB
, λ2 :=

1

pcpA
.

With the above notations we establish the following multiplicity property.

Theorem 3.1. Assume that (A1) holds and f : [0, T ]×R → R be an L1-Carathéodory

function, whose potential F (t, x) :=

∫ x

0
f(x, ξ) dξ for all (t, x) ∈ [0, T ]×R, satisfies

the following conditions

(A2) F (t, ξ) ≥ 0 for all (t, ξ) ∈ ([0, T4 ] ∪ [3T4 , T ])× R;
(A3) A < kB.

Then, for every λ ∈ (λ1, λ2) and for every arbitrary L1-Carathéodory function g :

[0, T ]×R → R, whose potential G(t, x) :=

∫ x

0
g(x, ξ) dξ for all (t, x) ∈ [0, T ]×R, is

a nonnegative function satisfying the condition

G∞ := lim sup
ξ→+∞

∫ T

0
max
|x|≤ξ

G(t, x) dt

ξp
< +∞, (5)

if we put

µG,λ :=
1

pcpG∞
(1− λpcpA) ,

where µG,λ = +∞ when G∞ = 0, problem (1) has an unbounded sequence of classical

solutions for every µ ∈ [0, µG,λ) in X.

Proof. Our aim is to apply Lemma 2.1(b) to problem (1). To this end, fix λ ∈ (λ1, λ2)

and g satisfying our assumptions. Since λ < λ2, we have

µG,λ :=
1

pcpG∞

(
1− λpcpA

)
> 0.

Now fix µ ∈ (0, µG,λ) and set

J(t, x) := F (t, x) +
µ

λ
G(t, x)
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for all (t, x) ∈ [0, T ] × R. For each u ∈ X, let the functionals Φ,Ψ : X → R be

defined by

Φ(u) :=
1

p
∥u∥p,

Ψ(u) :=

∫ T

0
J(t, u(t)) dt− 1

λ

m∑
j=1

∫ u(tj)

0
Ij(x) dx,

and put

Eλ,µ(u) := Φ(u)− λΨ(u), u ∈ X.

Using the property of f, g and the continuity of Ij , j = 1, 2, . . . ,m, we obtain that

Φ,Ψ ∈ C1(X,R) and for any v ∈ X, we have

Φ′(u)(v) =

∫ T

0
|u′(t)|p−2u′(t)v′(t) dt+

∫ T

0
|u(t)|p−2u(t)v(t) dt

and

Ψ′(u)(v) =

∫ T

0
f(t, u(t))v(t) dt+

µ

λ

∫ T

0
g(t, u(t))v(t) dt− 1

λ

m∑
j=1

Ij(u(tj))v(tj).

So, with standard arguments, we deduce that the critical points of the functional

Eλ,µ are the weak solutions of problem (1) and so they are classical. We first observe

that the functionals Φ and Ψ satisfy the regularity assumptions of Lemma 2.1.

First of all, we show that λ < 1/γ. Hence, let {ξn} be a sequence of positive

numbers such that limn→+∞ ξn = +∞ and

lim
n→+∞

∫ T

0
max
|x|≤ξn

F (t, x) dx

ξpn
= A.

Put rn := 1
pcp ξ

p
n for all n ∈ N. Then, for all v ∈ X with Φ(v) < rn, taking (2) into

account, one has ∥v∥∞ < ξn. Note that Φ(0) = Ψ(0) = 0. Then, for all n ∈ N,

φ(rn) = inf
u∈Φ−1(−∞,rn)

(
sup

v∈Φ−1(−∞,rn)

Ψ(v)
)
−Ψ(u)

rn − Φ(u)

≤
sup

v∈Φ−1(−∞,rn)

Ψ(v)

rn

≤

∫ T

0
max
|x|≤ξn

J(t, x) dt+
m

λ

(
αξn +

β

σ + 1
ξσ+1
n

)
1

pcp ξ
p
n

≤ pcp


∫ T

0
max
|x|≤ξn

F (t, x) dt

ξpn
+

µ

λ

∫ T

0
max
|x|≤ξn

G(t, x) dt

ξpn
+

m

λ

Γξn

ξp−2
n

 .
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Since limn→+∞
Γξn

ξp−2
n

= 0, from the assumption (A3) and the condition (5), we have

γ ≤ lim inf
n→+∞

φ(rn) ≤ pcp
(
A+

µ

λ
G∞

)
< +∞. (6)

The assumption µ ∈ (0, µG,λ) immediately yields

γ ≤ pcp
(
A+

µ

λ
G∞

)
< pcpA+

1− pcpλA

λ
.

Hence,

λ =
1

pcpA+
(
1− pcpλA

)
/λ

<
1

γ
.

Let λ be fixed. We claim that the functional Eλ,µ is unbounded from below. Since

1

λ
< pcpkB,

there exist a sequence {ηn} of positive numbers and τ > 0 such that limn→+∞ ηn =

+∞ and

1

λ
< τ < pcpk

∫ 3T/4

T/4
F (t, ηn) dt

ηpn
(7)

for each n ∈ N large enough. For all n ∈ N define wn ∈ X by

wn(t) :=


4ηn
T

t, t ∈ [0, T/4],

ηn, t ∈]T/4, 3T/4],
4ηn
T

(T − t), t ∈]3T/4, T ].

(8)

For any fixed n ∈ N, one has

Φ(wn) =

[
4p

2pT p−1
+

(p+ 2)T

2p(p+ 1)

]
ηpn =

1

pcpk
ηpn. (9)

On the other hand, by (A2) and since G is nonnegative, from the definition of Ψ,

we infer

Ψ(wn) ≥
∫ 3T/4

T/4
F (t, ηn) dt−

1

λ

m
p
√
k2

η2n Γ(ηn/
p√
k). (10)

By (7), (9) and (10), we see that

Eλ,µ(wn) ≤
1

pcpk
ηpn − λ

∫ 3T/4

T/4
F (t, ηn) dt+

m
p
√
k2

η2n Γ(ηn/
p√
k)

<
1

pcpk
ηpn(1− λτ) +

m
p
√
k2

η2n Γ(ηn/
p√
k)

for every n ∈ N large enough. Since σ < 1, λτ > 1 and limn→+∞ ηn = +∞, we have

lim
n→+∞

Eλ,µ(wn) = −∞.
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Then, the functional Eλ,µ is unbounded from below, and it follows that Eλ,µ has

no global minimum. Therefore, by Lemma 2.1(b), there exists a sequence {un} of

critical points of Eλ,µ such that

lim
n→+∞

∥un∥ = +∞,

and the conclusion is achieved. �

Remark 3.1. Under the conditions A = 0 and B = +∞, from Theorem 3.1 we see

that for every λ > 0 and for each µ ∈
[
0, 1

pcpG∞

)
, problem (1) admits a sequence of

classical solutions which is unbounded in X. Moreover, if G∞ = 0, the result holds

for every λ > 0 and µ ≥ 0.

Now, we present a concrete example of application of Theorem 3.1.

Example 3.1. Let I(u(t1)) = 1− 3
√
u(t1) for some t1 ∈ (0, 1). Then I : R → R is a

continuous function satisfying the sublinear growth condition (A1) with α = β = 1

and σ = 1
3 . Now, put

an :=
2n!(n+ 2)!− 1

4(n+ 1)!
, bn :=

2n!(n+ 2)! + 1

4(n+ 1)!
,

for every n ∈ N, and define the nonnegative continuous function f : R → R by

f(ξ) =


32(n+1)!2[(n+1)!6−n!6]

π

√
1

16(n+1)!2
−
(
ξ − n!(n+2)

2

)2
, if ξ ∈

∪
n∈N[an, bn],

0, otherwise.

One has ∫ (n+1)!

n!
f(t) dt =

∫ bn

an

f(t) dt = (n+ 1)!6 − n!6

for every n ∈ N. Then, one has

lim
n→+∞

F (an)

a6n
= 0, and lim

n→+∞

F (bn)

b6n
= 64.

Therefore, by a simple computation, we obtain

lim inf
ξ→+∞

F (ξ)

ξ6
= 0, and lim sup

ξ→+∞

F (ξ)

ξ6
= 64.

Also, let

g(t) =

0, if t < 0,

t5

32
, if t ≥ 0.
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Putting G(t) :=

∫ t

0
g(ξ) dξ for all t ∈ R, we have lim sup

ξ→+∞

G(ξ)
ξ6

= 1
192 . So, for every

λ > 1195
112 and µ ∈ [0, 1), the nonlinear problem

−(|u′(t)|4u′(t))′ + |u(t)|4u(t) = λf(u(t)) + µg(u(t)), a.e. in [0, 1],

u(0) = u(1) = 0,

∆|u′(t1)|4u′(t1) = 1− 3
√

u(t1),

has a sequence of classical solutions which is unbounded in W 1,6
0 (0, 1).

Now we state several useful consequences and particular cases of Theorem 3.1.

Corollary 3.1. Let f : [0, T ] × R → R be an L1-Carathéodory function. Suppose

that hypotheses (A1), (A2) are fulfilled and

A <
1

pcp
, B >

1

pcpk
.

Then, for every arbitrary L1-Carathéodory function g : [0, T ] × R → R, whose

potential G(t, x) :=

∫ x

0
g(t, ξ) dξ for all (t, x) ∈ [0, T ]×R, is a nonnegative function

satisfying the condition (5), if we put

µG :=
1

pcpG∞
(1− pcpA) ,

where µG = +∞ when G∞ = 0, the problem
−(|u′(t)|p−2u′(t))′ + |u(t)|p−2u(t) = f(t, u(t)) + µg(t, u(t)), in Ω,

u(0) = u(T ) = 0,

∆|u′(tj)|p−2u′(tj) = Ij(u(tj)), j = 1, 2, . . . ,m,

has an unbounded sequence of classical solutions for every µ ∈ [0, µG) in X.

Corollary 3.2. Let (A1) holds and f : R → R be a nonnegative continuous function.

Put F (ξ) :=

∫ ξ

0
f(t) dt for all ξ ∈ R and assume that

lim inf
ξ→+∞

F (ξ)

ξ3
<

4T 2

c3(5T 3 + 256)
lim sup
ξ→+∞

F (ξ)

ξ3
.

Then, for each

λ ∈

]
5T 3 + 256

(12T 2) lim sup
ξ→+∞

F (ξ)
ξ3

,
1

(3c3) lim inf
ξ→+∞

F (ξ)
ξ3

[
,

for every arbitrary nonnegative continuous function g : R → R, whose potential

G(ξ) :=

∫ ξ

0
g(t) dt for all ξ ∈ R, satisfies the condition

lim sup
ξ→+∞

G(ξ)

ξ3
< +∞,
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and for every

µ ∈

[
0,

1

(3Tc3) lim supξ→+∞
G(ξ)
ξ3

(
1− (3Tc3)λ lim inf

ξ→+∞

F (ξ)

ξ3

)[
,

the nonlinear problem
−(|u′(t)|u′(t))′ + |u(t)|u(t) = λf(u(t)) + µg(u(t)), in Ω,

u(0) = u(T ) = 0,

∆|u′(tj)|u′(tj) = Ij(u(tj)), j = 1, 2, . . . ,m,

has a sequence of classical solutions which is unbounded in W 1,3
0 (0, T ).

Corollary 3.3. Let (A1) holds and let f : R → R be a nonnegative continuous

function. Put F (ξ) :=

∫ ξ

0
f(t) dt for all ξ ∈ R and assume that

lim inf
ξ→+∞

F (ξ)

ξp
= 0, lim sup

ξ→+∞

F (ξ)

ξp
= +∞.

Then, for every arbitrary nonnegative continuous function g : R → R satisfying the

condition

g∞ := lim
ξ→+∞

∫ ξ

0
g(x) dx

ξp
< +∞,

and for every µ ∈ [0, 1
Tpcpg∞

[, the problem
−(|u′(t)|p−2u′(t))′ + |u(t)|p−2u(t) = f(u(t)) + µg(u(t)), in Ω,

u(0) = u(T ) = 0,

∆|u′(tj)|p−2u′(tj) = Ij(u(tj)), j = 1, 2, . . . ,m,

admits infinitely many distinct pairwise classical solutions.

Now, we point out a special situation of our main result when µ = 0 and the

nonlinear term has separated variables. To be precise, let l ∈ L1([0, T ]) such that

l(t) ≥ 0 a.e. t ∈ [0, T ], l ̸≡ 0, and let h : R → R be a nonnegative continuous

function.

Consider the following nonlinear Dirichlet boundary-value problem
−u′′(t) + u(t) = λl(t)h(u(t)), in Ω,

u(0) = u(T ) = 0,

∆u′(tj) = Ij(u(tj)), j = 1, 2, . . . ,m.

(11)

Put H(ξ) :=

∫ ξ

0
h(x) dx for all ξ ∈ R, and set

∥l∥1 :=
∫ T

0
l(t) dt, l0 :=

∫ 3T/4

T/4
l(t) dt.
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Corollary 3.4. Let (A1) holds. Moreover, suppose that

lim inf
ξ→+∞

H(ξ)

ξ2
<

3T l0
c2(24 + 2T 2)∥l∥1

lim sup
ξ→+∞

H(ξ)

ξ2
.

Then, for each

λ ∈

]
12 + T 2

(3T l0) lim sup
ξ→+∞

H(ξ)
ξ2

,
1

(2c2∥l∥1) lim inf
ξ→+∞

H(ξ)
ξ2

[
,

problem (11) has an unbounded sequence of classical solutions.

Put

ℑa :=
m∑
j=1

min
|ξ|≤a

∫ ξ

0
Ij(x) dx, for all a > 0,

A′ := lim inf
ξ→0+

∫ T

0
max
|x|≤ξ

F (t, x) dt

ξp
,

B′ := lim sup
ξ→0+

∫ 3T/4

T/4
F (t, ξ) dt

ξp
,

and

λ′
1 :=

1

pcpkB′ , λ′
2 :=

1

pcpA′ .

Using Lemma 2.1(c) and arguing as in the proof of Theorem 3.1, we can obtain the

following multiplicity result.

Theorem 3.2. Let f : [0, T ]×R → R be an L1-Carathéodory function and Ij(x) ≤ 0

for all x ∈ R, j = 1, . . . ,m. Moreover, assume that (A2) and

(A4) A′ < kB′.

are satisfied. Then, for every λ ∈ (λ′
1, λ

′
2) and for every arbitrary L1-Carathéodory

function g : [0, T ] × R → R, whose potential G(t, x) :=

∫ x

0
g(x, ξ) dξ for all (t, x) ∈

[0, T ]× R, is a nonnegative function satisfying the condition

G0 := lim sup
ξ→0+

∫ T

0
max
|x|≤ξ

G(t, x) dt

ξp
< +∞, (12)

if we put

µ′
G,λ :=

1

pcpG0

(
1− λpcpA′) ,

where µ′
G,λ = +∞ when G0 = 0, for every µ ∈ [0, µ′

G,λ) problem (1) has a sequence

of classical solutions, which strongly converges to zero in X.
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Proof. Fix λ ∈ (λ′
1, λ

′
2) and let g be a function that satisfies the condition (12).

Since λ < λ′
2, we obtain

µ′
G,λ

:=
1

pcpG0

(
1− λpcpA′) > 0.

Now fix µ ∈ (0, µ′
G,λ

) and set

J(t, x) := F (t, x) +
µ

λ
G(t, x),

for all (t, x) ∈ [0, T ] × R. We take Φ,Ψ and Eλ,µ as in the proof of Theorem 3.1.

Now, as it has been pointed out before, the functionals Φ and Ψ satisfy the regularity

assumptions required in Lemma 2.1. As first step, we will prove that λ < 1/δ. Then,

let {ξn} be a sequence of positive numbers such that limn→+∞ ξn = 0 and

lim
n→+∞

∫ T

0
max
|x|≤ξn

F (t, x) dx

ξpn
= A′.

By the fact that infX Φ = 0 and the definition of δ, we have δ = lim infr→0+ φ(r).

Put rn := 1
pcp ξ

p
n for all n ∈ N. Then, for all v ∈ X with Φ(v) < rn, taking (2) into

account, one has ∥v∥∞ < ξn. Thus, for all n ∈ N,

φ(rn) ≤
sup

v∈Φ−1(−∞,rn)

Ψ(v)

rn

≤

∫ T

0
max
|x|≤ξn

J(t, x) dt− 1

λ
ℑξn

1
pcp ξ

p
n

≤ pcp


∫ T

0
max
|x|≤ξn

F (t, x) dt

ξpn
+

µ

λ

∫ T

0
max
|x|≤ξn

G(t, x) dt

ξpn
− 1

λ

ℑξn

ξpn

 .

Since limn→+∞
ℑξn

ξpn
= 0, from the assumption (A4) and the condition (12), we have

δ ≤ lim inf
n→+∞

φ(rn) ≤ pcp
(
A′ +

µ

λ
G0

)
< +∞.

From µ ∈ (0, µ′
G,λ

), the following inequalities hold

δ ≤ pcp
(
A′ +

µ

λ
G0

)
< pcpA′ +

1− λpcpA′

λ
.

Therefore

λ =
1

pcpA′ +
(
1− pcpλA′

)
/λ

<
1

δ
.
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Let λ be fixed. We claim that the functional Eλ,µ does not have a local minimum

at zero. Since
1

λ
< pcpkB′,

there exists a sequence {ηn} of positive numbers and τ > 0 such that limn→+∞ ηn = 0

and

1

λ
< τ < pcpk

∫ 3T/4

T/4
F (t, ηn) dt

ηpn

for each n ∈ N large enough. For all n ∈ N, let wn ∈ X defined by (8) with the

above ηn. Note that λτ > 1. Then, since Ij(x) ≤ 0 for all x ∈ R, j = 1, . . . ,m, we

obtain

Eλ,µ(wn) ≤ 1

pcpk
ηpn − λ

∫ 3T/4

T/4
F (t, ηn) dt+

m∑
j=1

∫ wn(tj)

0
Ij(x) dx

<
1

pcpk
ηpn(1− λτ) < 0,

for every n ∈ N large enough. Then, since

lim
n→+∞

Eλ,µ(wn) = Eλ,µ(0) = 0,

we see that zero is not a local minimum of Eλ,µ. This, together with the fact that

zero is the only global minimum of Φ, we deduce that the energy functional Eλ,µ does

not have a local minimum at the unique global minimum of Φ. Therefore, by Lemma

2.1(c), there exists a sequence {un} of critical points of Eλ,µ which converges weakly

to zero. In view of the fact that the embedding X ↪→ C0([0, T ]) is compact, we know

that the critical points converge strongly to zero, and the proof is complete. �

Remark 3.2. Applying Theorem 3.2, results similar to Corollaries 3.1, 3.2, 3.3 and

3.4 can be obtained. We omit the discussions here.
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