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ENERGY LOCALIZATION IN CHIRP SIGNALS

Dumitru STANOMIR', Cristian NEGRESCU?, Tudor M. CULDA?

In aceastd lucrare este expusi o demonstratie a functiei de localizare a
energiei intr-un semnal de tip chirp. Aceastd demonstratie se bazeaza pe o alegere
adecvatda a unei anumite functii care are o semnificatie fizicd. Rezultatul este in
conformitate cu distributia spectrala masurata experimental pentru semnale de tip
chirp modulate exponential.

In the paper a proof for energy localization in chirp signals is given. It is
based on an adequate choice of a certain functional which has a physical
significance. The result is in accordance with the experimentally measured spectral
distribution for exponentially modulated chirps.
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1. Introduction

In the domain of audio measurements for room acoustics, the paper of
Farina [1] brought a significant contribution by providing a method of obtaining
in the frame of a single measurement the impulse response of the room and the
Volterra type products stemming from the loudspeaker nonlinearities. The novelty
of this approach termed as Impulse Method Measurement (IMM) lies in:

a) Using an exponentially modulated chirp for sweeping the frequency range
b) The separation, as to the displayed in time, of the linear part of the response
and the nonlinear parts.

This last possibility was predicted by Poletti in [2]. Various properties of
chirps used in applications are discussed in [3] and [4]. To make clearer the
problem arising in IMM, and the origins of our investigation, we will shortly
explain its background. Here we will focus our attention on the linear behavior.
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2. The ideas of IMM.

The system, a linear time-invariant one (the room), is actuated by a sound
source x(t) (with a fixed location) which produces a signal response y(t) (also

in a fixed location). This last is the result of the convolution product [5]
y()=(h=x)(1), (D
where "+" denotes the convolution, whereas h(t) is the impulse response or the

weighting function of the system.
The operation (1) is performed and the result y(t) is recorded. It is asked

to deconvolve (1) in order to get the functionh(t). Obviously, here all is

described in analog frame; really all is done in the digital frame. If we can
construct the inverse of x, let it be denoted by X , i.e.

X*¥X=X*x=9, 2)
where § is the Dirac distribution, then we can get to the following result:

F(e)=[(hxx)x](e) = (h=8)(c) = h (1) (3)

Since one really cannot realize d, one can manage so that the object x*Xx
to meet the following conditions:
a) the modulus of its Fourier transform (FT), be a constant in the frequency
range of interest
b) its phase be zero in the frequency range of interest.
Such proprieties describe an equivalent of & scaled with some constant.
To meet the condition b), we use some standard facts of the Fourier transform [5].
We denote by x the complex conjugate of x and by x the reflected ofx, i.e.

x(t)=x(-1).

We have the correspondences by FT XX , X F

X, ¥t X

and if x is a real valued signal x = PYELENG ¢ , X=X Fux-X , therefore the
spectrum of the reverse (reflected of x ) is the complex conjugate of X . We have

x X s F[x]-F[x] = F[x]- F[x] =[x (o) @)
We have then obtained a non-negative function. If in addition,
|X ((o)| = const, then the spectrum is a delta-like spectrum scaled by |X (0))|2.

There are some cases when this condition is fulfilled: the linear swept used in
radiolocation [4]. An example of linear sweep it is shown in Fig. 1. Here the

inverse is justx (7).
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Fig. 1 a) The spectrogram and b) the modulus of the Fourier transform for a chirp signal
with linear sweep frequency, f € [100,10000] Hz

3. The structure of the chirps used in IMM

Generally speaking, a chirp is a rapidly varying signal, ex. sin(l/t).
Study of these objects is given in [3]. The used input signal in IMM is termed as a
swept sine signal, or more precisely an exponentially modulated one. His
mathematical expression is
x(¢)=sin[ ¢(¢)] (5)
This is a phase modulated signal. According to the theory of modulated
signals, [6], the following quantities are of interest
- the instantaneous phase ¢(¢)

- the instantaneous frequency

o()=4F, (©)

The swept sine used in [1] was

x(t) = sin{K(exp(%} —1]}, (7)

where L is a time constant and K a non-dimensional constant. If we
impose that the swept range to be from ®; to ®, after T seconds, we need to

meet the equalities
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do

L —L
di

=0, =0, )]
1=0 dt

t=T

from which we get

T-w I T ©)

(%) (%)
and therefore
x() =sin m(‘(’;%[exp&ln(m%lnl} (10)

For example, choosing o; =2n-20, o, = 21-20-10° , T'=5 seconds we
get x(¢)=sin| 90.96(exp(1.387)-1)|

For the chirp given by (7) it was found that the spectrum versus frequency
is not constant, as it is shown by Fig. 2. The spectrum was obtained by FFT
analysis. This fact was pointed out by Farina: a 6dB/oct emphasize was applied in
the processing of the inverse signal.

K=

10"

L]

Frequency [Hz]

1.5 2 245
Time [sec]
- .
= o
10
10 10 10 10 Hx

Fig. 2 a) The spectrogram and b) the modulus of the Fourier transform for a chirp signal
with exponentially sweep frequency, f € [100, 20000] Hz
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In order to compensate the decreasing of the spectrum as the frequency
increases, we must perform a multiplication in the spectral domain with a A(oo)

function so that
X (o) 4(w)=1. (11)
The correction A((D) can be realized in anyone section of the processing

chain. The chosen location is decided by other specific conditions. After the issue
of Farina’s paper, there appeared some papers related to this approach. We have
remarked the paper of Meng et al. [6] where it is asserted that the location of the

-1 : .
energy obeys the rule |0)'(t)| , without any reference although this rule is not so

obvious.
We have investigated this question (the spectral location of the energy in a
chirp) in order to give on rigorous proof for it. The proof is given in the sequel.

4. Properties related to the used chirp

First, we retain two Fresnel-like integrals [7]:

o 2
I exp[ij%}uzexp(ijgjm (12)

—00

o 2
I exp{ijk%]du:ﬁexp(ijgjm (13)

Next, we consider the Taylor expansion of a sufficiently smooth function
around a pointu :

¢(14)=¢(“0)+¢6(”_“0)+%¢Z)(”_“o)z +e.
¢g") =¢(")(u0)

The method of stationary phase, [7], states that for an integral containing
rapidly varying function (chirp),

(14)

o]

1= IA u)exp Jd) )] (15)

around a stationary point ), Wlth

d)(uo):O (16)

can be calculated as follows
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Here it is assumed that 4 is a slowly varying function
5. Calculation of the spectrum location of a chirp

Firstly we consider a new signal
v(t)=exp[jo(1)], (18)
which obeys x(t)zlm[v(t)]. It is clear that x and v have similar spectral

properties and extremal conditions. It is also obvious that x and v are chirp-like
signals. Consider the integral

I= T exp| jo(u) |du (19)

—00

and expand ¢ around a fixed point u =¢. We get:
¢(u)=¢(z)+¢'(z)(u_t)%q,"(t)(u_z)z -
=¢(z‘)+m(t)(u—t)+%0)'(t)(u—z)2 s

Remark that all the derivatives are evaluated at the pointu =7 . It is seen
that / doesn’t have a stationary point. Next, we introduce a new functional which

depends on “¢” and has a stationary point at u# =¢. This new functional looks as
follows:

(20)

J(t): j exp[j(l)(u)—jm(t)u]du (21)
and can be written as -~

J(t)z J. exp[j(])(u)]-exp[—joa(t)u]du = F[v][m(t)] , (22)

This transform is very difficult to evaluate, but we can do it by using the
stationary phase approach. To observe this, we expand the exponent of J (t) ,

d)(u)—w(t)u = ¢(t)+(n(t)(u —t)+%(o’(t)(u —t)2 +...—(o(t)u =
. , , (23)
= d)(t)—t(o(t)+5m'(t)(u —1)
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and if we express J (t) according to (13)

J(t)=exp[ jo(1)—jto(r)] T exp{—%joa'(t)(u —t)T dt =
= (24)
:exp[jd)(t)—jtm(t)] \/(j'TEtJ)

what is equivalent to

|J(t)| = const - 1 (25)
o'(2)
To get the energy, E (t) , located around the point ¢, we write the squared
of (25)

E(t) = const (26)

1
o'(2)
In case we have a sine sweep with exponential variation, we will obtain
t
E(t) = const - exp [—z} G(t) (27)
which has the equivalent in the spectrum domain, the following expression:

F[E]((D) = const

= const (28)

jo L1 ol +1
T

The formula above indicates a 3 dB/oct fall as the frequency increases

(0 — ). If we were to check the formula (26) for the linear chirps as well, we

would quickly notice that m'(t)zconst and the expression for the energy

localization would be E(t):const. This is in accordance with the calculated

module of the Fourier Transform, viewed in Fig. 1 for a particular example of
linear chirp.

6. Conclusions

We have presented in this paper the frame in which the energy location
appears. Then, we have provided a proof for the energy location expression. This
expression can be used to calculate the localization of energy for any kind of chirp
signals as long as the frequency varying function is monotonically and known.

A better understanding of the use of chirps has been obtained and perhaps
new directions of study will appear.
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