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ENERGY LOCALIZATION IN CHIRP SIGNALS 

Dumitru STANOMIR1, Cristian NEGRESCU2, Tudor M. CULDA3 

În această lucrare este expusă o demonstraţie a funcţiei de localizare a 
energiei într-un semnal de tip chirp. Această demonstraţie se bazează pe o alegere 
adecvată a unei anumite funcţii care are o semnificaţie fizică. Rezultatul este în 
conformitate cu distribuţia spectrală măsurată experimental pentru semnale de tip 
chirp modulate exponenţial. 

In the paper a proof for energy localization in chirp signals is given. It is 
based on an adequate choice of a certain functional which has a physical 
significance. The result is in accordance with the experimentally measured spectral 
distribution for exponentially modulated chirps. 
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1. Introduction 

In the domain of audio measurements for room acoustics, the paper of 
Farina [1] brought a significant contribution by providing a method of obtaining 
in the frame of a single measurement the impulse response of the room and the 
Volterra type products stemming from the loudspeaker nonlinearities. The novelty 
of this approach termed as Impulse Method Measurement (IMM) lies in:  

a) Using an exponentially modulated chirp for sweeping the frequency range 
b) The separation, as to the displayed in time, of the linear part of the response 

and the nonlinear parts.  
This last possibility was predicted by Poletti in [2]. Various properties of 

chirps used in applications are discussed in [3] and [4]. To make clearer the 
problem arising in IMM, and the origins of our investigation, we will shortly 
explain its background. Here we will focus our attention on the linear behavior. 
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2. The ideas of IMM. 

The system, a linear time-invariant one (the room), is actuated by a sound 
source ( )x t  (with a fixed location) which produces a signal response ( )y t  (also 
in a fixed location). This last is the result of the convolution product [5]
 ( ) ( )( )y t h x t= ∗ , (1) 

where " "∗  denotes the convolution, whereas ( )h t  is the impulse response or the 
weighting function of the system.  

The operation (1) is performed and the result ( )y t  is recorded. It is asked 

to deconvolve (1) in order to get the function ( )h t . Obviously, here all is 
described in analog frame; really all is done in the digital frame. If we can 
construct the inverse of x , let it be denoted by x  , i.e. 

x x x x∗ = ∗ = δ ,                                                  (2) 
where δ  is the Dirac distribution, then we can get to the following result: 

( ) ( ) ( ) ( )( ) ( )y t h x x t h t h t⎡ ⎤= ∗ ∗ = ∗δ =⎣ ⎦                           (3) 
Since one really cannot realizeδ , one can manage so that the object x x∗  

to meet the following conditions: 
a) the modulus of its Fourier transform (FT), be a constant in the frequency 

range of interest  
b) its phase be zero in the frequency range of interest. 

Such proprieties describe an equivalent of δ  scaled with some constant. 
To meet the condition b), we use some standard facts of the Fourier transform [5]. 
We denote by x  the complex conjugate of x  and by x  the reflected of x , i.e. 
( ) ( )x t x t= − . 

We have the correspondences by FT x X←⎯→F , x X←⎯→F , x X←⎯→F  

and if x  is a real valued signal x x X= ←⎯→F , x x X X= ←⎯→ =F , therefore the 
spectrum of the reverse (reflected of x ) is the complex conjugate of X . We have 

[ ] [ ] [ ] [ ] ( ) 2x x x x x x X∗ ←⎯→ ⋅ = ⋅ = ωF F F F F                        (4) 
We have then obtained a non-negative function. If in addition, 

( )X constω = , then the spectrum is a delta-like spectrum scaled by ( ) 2X ω . 
There are some cases when this condition is fulfilled: the linear swept used in 
radiolocation [4]. An example of linear sweep it is shown in Fig. 1. Here the 
inverse is just ( )x t . 
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Fig. 1 a) The spectrogram and b) the modulus of the Fourier transform for a chirp signal 

with linear sweep frequency, [ ]100,10000f Hz∈  

3. The structure of the chirps used in IMM 

Generally speaking, a chirp is a rapidly varying signal, ex. ( )sin 1/ t . 
Study of these objects is given in [3]. The used input signal in IMM is termed as a 
swept sine signal, or more precisely an exponentially modulated one. His 
mathematical expression is 

( ) ( )sinx t t⎡ ⎤= φ⎣ ⎦                                                        (5) 
This is a phase modulated signal. According to the theory of modulated 

signals, [6], the following quantities are of interest 
- the instantaneous phase ( )tφ  
- the instantaneous frequency  

( ) dt
dt
φ

ω = ,                                                           (6) 

The swept sine used in [1] was 

( ) sin exp 1tx t K
L

⎡ ⎤⎛ ⎞⎛ ⎞= −⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

,                                       (7) 

where L is a time constant and K a non-dimensional constant. If we 
impose that the swept range to be from 1ω  to 2ω  after T seconds, we need to 
meet the equalities 



78                                    Dumitru Stanomir, Cristian Negrescu, Tudor Culda 

1
0t

d
dt =

φ
= ω , 2

t T

d
dt =

φ
= ω ,                                        (8) 

from which we get 
1

2
,

ln

TK ⋅ω
=

ω⎛ ⎞⎜ ⎟ω⎝ ⎠
2

1
ln

TL =
ω⎛ ⎞⎜ ⎟ω⎝ ⎠

                                    (9) 

and therefore 

( ) 1 2
12

1

sin exp ln 1
ln

T tx t
T

⎧ ⎫
⎪ ⎪⎡ ⎤ω⎪ ⎪⎛ ⎞ω⎛ ⎞= −⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥ωω ⎝ ⎠⎛ ⎞ ⎝ ⎠⎣ ⎦⎪ ⎪⎜ ⎟ω⎪ ⎪⎝ ⎠⎩ ⎭

                     (10) 

For example, choosing 1 2 20ω = π⋅ , 3
2 2 20 10ω = π⋅ ⋅ , 5T =  seconds we 

get ( ) ( )( )sin 90.96 exp 1.38 1x t t⎡ ⎤= −⎣ ⎦  

For the chirp given by (7) it was found that the spectrum versus frequency 
is not constant, as it is shown by Fig. 2. The spectrum was obtained by FFT 
analysis. This fact was pointed out by Farina: a 6dB/oct emphasize was applied in 
the processing of the inverse signal. 

 
Fig. 2 a) The spectrogram and b) the modulus of the Fourier transform for a chirp signal 

with exponentially sweep frequency, [ ]100, 20000f Hz∈  
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In order to compensate the decreasing of the spectrum as the frequency 
increases, we must perform a multiplication in the spectral domain with a ( )A ω  
function so that 

( ) ( )2 1X Aω ω = .                                            (11) 

The correction ( )A ω  can be realized in anyone section of the processing 
chain. The chosen location is decided by other specific conditions. After the issue 
of Farina’s paper, there appeared some papers related to this approach. We have 
remarked the paper of Meng et al. [6] where it is asserted that the location of the 

energy obeys the rule ( ) 1' t −
ω , without any reference although this rule is not so 

obvious. 
We have investigated this question (the spectral location of the energy in a 

chirp) in order to give on rigorous proof for it. The proof is given in the sequel. 

4. Properties related to the used chirp 

First, we retain two Fresnel-like integrals [7]: 

   
2

exp j exp j 2
2 4

u du
∞

−∞

⎛ ⎞ π⎛ ⎞± = ± π⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∫                             (12) 

2 1exp j exp j 2
2 4

uk du
k

∞

−∞

⎛ ⎞ π⎛ ⎞± = ± π⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∫                        (13) 

Next, we consider the Taylor expansion of a sufficiently smooth function 
around a point 0u : 

( ) ( ) ( ) ( )
( ) ( ) ( )

2' ''
0 0 0 0 0

00

1 ...
2

n n

u u u u u u

u

φ = φ + φ − + φ − +

φ = φ
                (14) 

The method of stationary phase, [7], states that for an integral containing 
rapidly varying function (chirp), 

( ) ( )exp jI A u u du
∞

−∞

⎡ ⎤= φ⎣ ⎦∫                                    (15) 

around a stationary point 0u , with  

( )'
0 0uφ =                                                 (16) 

can be calculated as follows 
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( ) ( ) ( ) ( )
2

''
0 0 0 0 0 0''

0

j21exp j exp j
2

I A u u u du A u
∞

−∞

π⎡ ⎤⎛ ⎞= φ + φ − = φ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ φ
∫     (17) 

Here it is assumed that A  is a slowly varying function 

5. Calculation of the spectrum location of a chirp 

Firstly we consider a new signal  
( ) ( )exp jv t t⎡ ⎤= φ⎣ ⎦ ,                                          (18) 

which obeys ( ) ( )Imx t v t⎡ ⎤= ⎣ ⎦ . It is clear that x  and v  have similar spectral 
properties and extremal conditions. It is also obvious that x  and v  are chirp-like 
signals. Consider the integral 

( )exp jI u du
∞

−∞

⎡ ⎤= φ⎣ ⎦∫                                          (19) 

and expand φ  around a fixed point u t= . We get: 

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

2' ''

2'

1 ...
2

1 ...
2

u t t u t t u t

t t u t t u t

φ = φ + φ − + φ − + =

= φ +ω − + ω − +
                (20) 

Remark that all the derivatives are evaluated at the pointu t= . It is seen 
that I  doesn’t have a stationary point. Next, we introduce a new functional which 
depends on “ t ” and has a stationary point at u t= . This new functional looks as 
follows: 

( ) ( ) ( )expJ t j u j t u du
∞

−∞

⎡ ⎤= φ − ω⎣ ⎦∫                                  (21) 

and can be written as 

( ) ( ) ( ) [ ] ( )exp j exp jJ t u t u du v t
∞

−∞

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= φ ⋅ − ω = ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ F  ,        (22) 

This transform is very difficult to evaluate, but we can do it by using the 
stationary phase approach. To observe this, we expand the exponent of ( )J t , 

( ) ( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( )

2

2

1 ' ...
2

1 '
2

u t u t t u t t u t t u

t t t t u t

φ −ω ≅ φ +ω − + ω − + −ω =

= φ − ω + ω −
, (23) 
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and if we express ( )J t  according to (13) 

( ) ( ) ( ) ( )( )

( ) ( )
( )

21exp j j exp j '
2

2 j
exp j j

'

J t t t t t u t dt

t t t
t

∞

−∞

⎡ ⎤⎡ ⎤= φ − ω − ω − =⎣ ⎦ ⎢ ⎥⎣ ⎦

π
⎡ ⎤= φ − ω⎣ ⎦ ω

∫
       (24) 

what is equivalent to  

( )
( )

1
'

J t const
t

= ⋅
ω

                                     (25) 

To get the energy, ( )E t , located around the point t , we write the squared 
of (25) 

( ) ( )
1
'

E t const
t

≅
ω

                                       (26) 

In case we have a sine sweep with exponential variation, we will obtain 

( ) ( )exp tE t const t
L

⎡ ⎤≅ ⋅ − σ⎢ ⎥⎣ ⎦
                            (27) 

which has the equivalent in the spectrum domain, the following expression: 

[ ]( ) 1
1 1

TE const const
Tj

T

ω = =
ω +ω+

F                     (28) 

The formula above indicates a 3 dB/oct fall as the frequency increases 
(ω→∞ ). If we were to check the formula (26) for the linear chirps as well, we 
would quickly notice that ( )' t constω = and the expression for the energy 

localization would be ( )E t const= . This is in accordance with the calculated 
module of the Fourier Transform, viewed in Fig. 1 for a particular example of 
linear chirp. 

6. Conclusions 

We have presented in this paper the frame in which the energy location 
appears. Then, we have provided a proof for the energy location expression. This 
expression can be used to calculate the localization of energy for any kind of chirp 
signals as long as the frequency varying function is monotonically and known. 

A better understanding of the use of chirps has been obtained and perhaps 
new directions of study will appear. 
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