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CONTRIBUTIONS TO THE STUDY OF LARGE STRAIN 
SOLID 

Dana Mihaela PETROŞANU1 

Acest articol se ocupă cu studiul unei probleme nelineare de mecanica 
corpurilor solide. Aceste probleme conduc, în general, la rezolvarea unor ecuaţii 
sau sisteme de ecuaţii diferenţiale destul de dificil de rezolvat  in anumite condiţii la 
frontieră. De aceea, de cele mai multe ori acest lucru nici nu este posibil şi se impun 
rezolvări numerice sau aproximative, bazate pe neglijarea unor termeni din ecuaţii.  

 
This paper deals with the study of a nonlinear problem in the mechanics of 

solids. Generally, these problems lead to differential equations or systems of 
equations which are quite difficult to solve in some boundary value conditions. It is 
not always possible to solve these equations and numerical or approximate 
approaches are required for solving, based on the neglecting of some equations’ 
terms.  
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1. Introduction 

Below we intend to illustrate the nature of solutions to elasticity problems 
with large shape changes. Generally the following pieces of information are 
known: the geometry of the solid; a constitutive law for the material (i.e. the 
hyperelastic strain energy potential); the body force density per unit mass (if any); 
prescribed boundary tractions and/or boundary displacements. With these 
assumptions, generally we wish to calculate the displacement field, the left 
Cauchy-Green deformation tensor and the stress field, satisfying the following 
equations: displacement strain relation; incompressibility condition; stress strain 
relation; equilibrium equation; boundary conditions. 
 We study the spherical symmetric deformation of a spherical shell, based 
on [1]. We assume the coating material to be elastic, homogenous, isotropic and 
the spherically symmetric deformation is specified using some functions which 
depend on the position vector. These functions will be determined later by 
specifying the equilibrium equations. For such a material, one can obtain 
nonlinear constitutive equations by the generalization of Hooke's linear equation, 
valid in the case of small deformations, adding additional terms reflecting the 
second order effects, third order effects, etc. By specifying the boundary 
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conditions, we numerically solve the first boundary problem obtained from the 
equations of equilibrium. We will also study the existence and uniqueness of this 
problem’s solutions. 

In this area of study, there are some researches on similar themes with 
those presented in this paper. In [2] there are theoretically depicted some 
numerical methods applicable for the study of deformation of solids and also 
some cases in which one may determine analytical solutions for problems related 
to deformation of spherical shells, much easier than the cases presented in this 
paper. Some uniaxial deformations of spherical domains are considered in paper 
[3]. In [4] the problem is considered within the framework of the geometrical 
nonlinear theory of elasticity. Minimal restrictions are found under which the zero 
solution is unique for zero loads. Under these restrictions, the uniqueness of the 
solution for the tensile forces is proved, and the critical compressive force is 
found for which uniqueness is destroyed. In the current paper there are also 
specified and verified some conditions for existence and uniqueness of the 
solution for the studied cases and the constitutive equations chosen. In [5], Ting 
studies the remarkable nature of a sphere of nonlinear elastic material subjected to 
a uniform pressure at the surface of the sphere. Then he analyses a spherically 
uniform linear anisotropic elastic material. Conditions for the materials that are 
capable of a radially symmetric deformation to possess one or more symmetry 
planes there are also presented. Unlike these studies, this paper develops both 
theoretical aspects (related to the existence and uniqueness of solutions) and 
practical implementation (concluding with the obtaining of the numerical 
solutions of considered problems).  

 
2. About the spherically symmetric deformation of a spherical shell 
 

 A representative spherically symmetric problem is illustrated in Fig. 1.  

 
Fig. 1. The thick-walled spherical shell in the reference geometry.  

 For a finite deformation problem, we need a way to characterize the 
position of material particles in both the undeformed and deformed solid. In order 
to do this, we let ),,( ΦΘR  identify a material particle in the undeformed solid. 
The coordinates of the same point in the deformed solid is identified by a new set 
of spherical-polar coordinates ),,( ϕθr . One way to describe the deformation 
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would be to specify each of the deformed coordinates ),,( ϕθr in terms of the 

reference coordinates ),,( ΦΘR . 
We consider for the thick-walled spherical shell the reference geometry 

defined by:  

     ππ 20,0,0 ≤Φ≤≤Θ≤≤≤≤ BRA                        (1) 
in the terms of spherical polar coordinates ),,( ΦΘR , or  
                  Θ=ΦΘ=ΦΘ= cos,sinsin,cossin 321 RXRXRX                     (2) 
We describe the current geometry by: 

                           πϕπθ 20,0,0 ≤≤≤≤≤≤≤ bra                                   (3) 
in the terms of spherical polar coordinates ),,( ϕθr . We consider this hollow 
subjected to spherically symmetric loading (i.e. internal body forces, as well as 
tractions or displacements applied to the surface, independently of θ and φ, and 
act in radial direction only).  Before deformation, the sphere has the inner radius A 
and the outer radius B. After deformation, the sphere has the inner radius a and 
the outer radius b. 

For a spherically symmetric deformation, points only move radially, so the 
deformation is depicted by:  
                                                          Xx )(Rf=                                                   (4)    
so that   

                                          ( ) Φ=Θ== ϕθ ,,RRfr                                     (5) 
Since the material is unconstrained, the function f is unknown and, given 

appropriate boundary conditions, the essential problem is to find it. The 
deformation gradient F is given by: 

              XX1xF ⊗+=⊗∇= )(1)( ' Rf
R

Rf                                   (6) 

the symmetry of the geometry ensuring that F=U, the right stretch tensor [6]. In 
finite deformation problems vectors and tensors can be expressed as components 
in a basis ( )ΦΘR e,ee ,  associated with the position of material points in the 
undeformed solid, or, if more convenient, in a basis ( )ϕθ e,ee ,r  associated with 
material points in the deformed solid.  For spherically symmetric deformations the 
two bases are identical consequently, so we can write the position vector in the 
undeformed solid RR eX ⋅= , the position vector in the deformed 
solid Rr ex ⋅= and the displacement vector RRr eXxu ⋅−=−= )( .  

The principal stretches, corresponding to coordinate directions ),,( ϕθr  
respectively are:  

                          
( ) ( ) ( )RfRfRRf ==+= 32

'
1 , λλλ                               (7) 
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In order to simplify the problem, we will assume that:  
• the solid is stress free in its undeformed configuration;  
• temperature changes during deformation are neglected;  
• the solid is incompressible;  
• the material is isotropic relative to the reference configuration. 

From the spherical symmetry it follows that the nominal stress Θ  is given 
by ΘΣ = , where the Biot stress Σ  may be written:             

                       
⎟
⎠
⎞

⎜
⎝
⎛ ⊗−+⊗= XX1XXΣ 2221

11
RR

σσ                              (8) 

in terms of its principal components 321, σ=σσ . On use of the equilibrum 
equation: 

                                                          0=TDivΘ                                                  (9) 
in the terms of spherical polar coordinates, applied with ),,( ΦΘR as independent 
variables, we obtain the equilibrum equation: 

                                ( ) 02
21

1 =−+ σσσ
RdR

d                                             (10) 

We consider now a constitutive law for the material (i.e. the hyperelastic 
strain energy potential) and we introduce the strain energy 
function ( )321 ,, λλλ= Ww , where w is a symmetric function. In this case, the 
principal components of the Biot stress Σ  are:    

       3,2,1, =
∂
∂

= iW

i
i λ

σ                                                 (11) 

evaluated for ),,( 321 λλλ  given by (7). Substitution of (11) and (7) into (10) yields 
a non-linear second order ordinary differential equation for )(Rf ,  
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RfWWRRfW             (12)  

where each of the derivatives of W depends non-linearly on )(Rf  and )(' Rf . In 
order to solve this equation, an explicit form of W needs to be chosen. In general 
it is not possible to obtain analytic solutions even for relatively simple forms 
ofW . Below are presented some situations in wich a suitable choice of the strain 
energy function leads to a simplified form of (12) and in this case it is possible to 
obtain the analytic solutions of this equation. 

 
3. Some examples of constitutive equations  

 
In [1] it is proposed an example of a strain energy function, 
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                                         ( ) 321 IIIGW μν +−=                                             (13) 
where 321313322123211 ,, λλλλλλλλλλλλ =++=++= III  are the principal 
invariants of U; ν and μ are constants, G is a function whose properties will be 
specified later. The form (13) chosen for W represents a generalization to three 
dimensions of the class of so-called “harmonic” materials used in plane-strain 
theory. The principal Biot stresses are calculated as: 

                               
( ) ( )

( ) ( ) 31321
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32321
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                     (14) 

Since the reference configuration is stress free, from (13) and (14) we obtain:  
                                   02)3(,03)3( ' =+−=+− μνμν GG                                (15) 

Substitution of (14) into (12) leads to a simplified form of (12),  

                                                 ( ) 01
1

" =
dR
dIIG                                                     (16) 

 
an equation that can be easy integrated. There are two posibilities:  

a) ( ) 01
" =IG , from wich we obtain ( ) ( ) ( )μ+ν−μ+ν= 432 11 IIG . In this 

situation, no restriction is imposed on f(R) i.e. the equilibrum equations are 
satisfied for arbitry f(R) in respect of the strain-energy function (13) with the 
above mentioned G. 

b) ( ) 01
" ≠IG , from wich we obtain 01 =dRdI  or [ ] 0)(3)(' =+ RfRRf

dR
d . 

The general solution of this equation is expressible as ( ) 3/3/ RRf βα += , where 
α and β are constants, with .1 α=I  Since the principal stretches must be positive, 

it follows that 01 >α=I  while 0
3

,02
3 33231 >+==>−=

RR
βαλλβαλ . If 1λ and 

2λ  are to be positive for BRA ≤≤≤0 , the constant β must be restricted 
according to 6/3/ 33 AA αβα <<− . Constants α and β may be calculated from 
the boundary conditions on AR = and BR =  [1]. 
 A second particular case of constitutive equations is the situation of a 
pressurized hollow rubber shell made from an incompressible Mooney-Rivlin 
solid [2], a hyperelastic material model where the strain energy density function 
W is a linear combination of two invariants of the left Cauchy-Green deformation 
tensor B. Melvin Mooney and Ronald Rivlin proposed the model in two 
independent papers in 1952. The strain energy density function for an 
incompressible Mooney-Rivlin material is: 
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                                     )3()3( 2211 −+−= ICICW                                            (17) 
where C1 and C2 are empirically determined material constants, and and are 
the first and the second invariant of the deviatoric component of the left Cauchy-
Green deformation tensor. This is a situation in which it is possible to obtain 
analytic solutions for equation (12), considering that no body forces act on the 
sphere and that the inner and outer surfaces of the sphere are subjected to given 
pressures [2]. 
 Another example of constitutive equations proposed in the study of the 
spherically symmetric deformation of a spherical shell is presented in [7]. In this 
paper, it is chosen for the strain energy the function: 

                                 aa aaW(F) 2
22

(detF)tr(F)
2

λμ

λμ
−

+=                                      (18) 

with 0>μ  and 0>λ  the Lamé parameters and 0>a . This is a generalization of 
Hooke's law for isotropic materials. Considering a spherical shell made from such 
a material, equation (12) can be easy integrated.  
 

4. Application for an elastic material with large deformations  
 

In the following, we will consider the spherical shell constructed of an 
elastic material, isotropic, with large deformations. The constitutive equation will 
be chosen to generalize Hooke's law for isotropic materials [8]: 

                                          ItrEaaEa
3

)( 121 −+=Π                                           (19) 

where Π  is the second Piola-Kirchhoff stress tensor, 
            μλμ 23,2 21 +== aa                                                (20) 

0>μ and 0>λ  are the Lamé parameters, E is a tensor given 
by ))(2/1( IFFE T −=  and F  the deformation gradient defined by (6). In this 
case, the first Piola Kirchhoff stress tensor is : 

                                    ⎥⎦
⎤

⎢⎣
⎡ −+⋅=Π= ItrEaaEaFFS

3
)( 121                             (21) 

  Introducing components of S in spherical coordinates SRR, STT şi SFF, the 
equlibrum equation 0=DivS , written in spherical coordinates [9] leads to the 
system: 
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  (22) 

Considering features of the problem, the system is reduced to a single 
relationship that is not identically satisfied,   

 

                                      0)(2
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RR SS
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S                                     (23) 

 Substituting the components of S in spherical coordinates SRR, STT and SFF 
one can obtain from (23) a second-order differential equation: 

                3)54()12(6)12(3
12)54(4)1017(2)12(8)( 2'2'2

2'2'2'
''

−+++++
−+++++

⋅−=
fkRffkfRk
fkRffkfRk

R
fRf             (24) 

where  is a dimensionless constant depending on the choosing of the 
sphere’s material. Elementary calculations show that the denominator of equation 
(24) is nonzero within the spherical shell defined by (1). Equation (24) can be 
solved taking into account boundary conditions for the spherical shell. These 
conditions could be traction boundary conditions on parts of the boundary where 
tractions are known and displacement boundary conditions on parts of the 
boundary where displacements are known. In this paper, it has been chosen the 
version: 

                                                    BbBfAaAf /)(,/)( ==                                        (25) 
  The problem (24), (25) is a first boundary problem obtained from the 
equations of equilibrium. In the following we present some considerations on the  
the existence and uniqueness of problem’s solution, problem wich has been 
obtained in the case of a spherically symmetric deformation of a spherical shell of 
elastic isotropic material, with large deformations. In [10] and [11] are presented 
the existence and the uniqueness theorems for the first boundary problems. 
Therefore, the problem (24), (25) has an unique solution [6].  
 

5. Numerical solutions 
 

 Though the previous first boundary problem’s solution exists and is 
unique, its analytical form is difficult to find. Therefore, a numerical approach 
was chosen here. The numerical solution is obtained using the ODE23 function 
from the MATLAB software package. This function uses the Runge-Kutta 
algorithm of orders 2 and 3 and is useful for solving Cauchy problems for 
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differential equations (or systems of differential equations) of first order. We note 
that problem (24), (25) from the preceding paragraph is not of the type mentioned 
above because, on the one hand, the equation (24) is not one of the first order, and 
secondly, the conditions (25) are boundary conditions and not initial conditions. 
Both issues will be treated below and we will show how to eliminate these 
difficulties.  

 Obviously, the second order differential equation (24) may be canonical 
associated to a first order system of differential equations equivalent to this 
equation. Thus, noting ffff == 21 ,'  we obtain the system:  

1
'
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3)54()12(6)12(3

12)54(4)1017(2)12(8
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 This system was used in the numerical approach of the problem mentioned 
below, instead of equation (24). As noted above, the studied problem is not a 
Cauchy problem but a first boundary problem. Therefore, we used the 'shooting 
method' [10], in order to associate to the problem mentioned below a series of 
Cauchy problems and thus for obtaining the solution. The 'shooting method' 
consists of sequentially solving Cauchy problems (associated with the first 
boundary problem), of the type : 

       uAfAaAf

fkRffkfRk
fkRffkfRk

R
fRf

==

−+++++
−+++++

⋅−=

)(',/)(

3)54()12(6)12(3
12)54(4)1017(2)12(8)(" 2'2'2

2'2'2'

          
  (27) 

According to [10], the Cauchy problem (27) admits unique solution. After 
numerically solving this problem, the appropriate value of )(Bf is calculated for 
the solution found and the process is repeated until the value of )(Bf  approaches 
the value required by (25) with some precision previously established. Based on 
the theorem of existence and uniqueness of the solution, this is just the problem’s 
(24), (25) solution. In the small strain situation, when the constitutive law for the 
material reduces to the Hooke's law of linear elasticity, the considered problem 
becomes simpler because some terms in the equation (24) are negligible and then 
its solution can be also analytically determined. Thus, by neglecting second order 
terms, the problem (24), (25) leads to: 

                BbBfAaAfRfRRf /)(,/)(,0)('4)(" ===+                      (28)  
and the solution of this problem is:                      
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= −                          (29) 

In this case we made a comparative study of the analytical solution (denoted 
by ε) given by (29) with the numerical one, obtained using the shooting method, 
(denoted by rn) and noticed a very good approximation, i.e. the small strain 
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solution is accurate. On the other hand, the equation (28) can be also found by 
direct calculation. We denote by ε  the Cauchy’s strain tensor in linear elasticity, 

))(2/1( uu T∇+∇=ε , Xxu −=  and by σ  the Cauchy tensile stress. The 
constitutive law (in a natural reference configuration, in which 00 =⇒= σε ) is 

μεελσ 2+= Itr . Introducing this relation in the equilibrium equation written in 
spherical coordinates, leads to equation (28) above. This is a verification of the 
correctness of calculations leading to equations (24) and (28).  

The numerical values chosen for baBA ,,,  are those mentioned in Table 1, 
some cases corresponding to small deformations and some to the large ones:  

Table 1 
Numerical values for baBA ,,,  

Nr. A(m) B(m) a(m) b(m) Nr. A(m) B(m) a(m) b(m) 
1. 0.10 0.105 0.10 0.107 3. 0.20 0.225 0.21 0.235 
2. 0.10 0.105 0.10 0.109 4. 0.20 0.225 0.18 0.205 
The sphere walls were subjected to stretch or compression. The hollow 

sphere was considered made from a cellular rubber [8] characterized by 
MPa12.0=λ , MPa14.0=μ , MPaa 28.01 = , MPaa 64.02 = , .44.0/ 21 == aak  

It was highlighted the dependence of the final radius of a point belonging to the 
spherical shell depending on the initial one through the function f(R). Some 
numerical results obtained are represented in Fig. 2: 

 

 
Case 1. Case 2. 

 
Case 3. Case 4. 

Fig. 2. Some numerical solutions. 

6. Conclusions 

The study of the spherically symmetric deformation of a spherical shell, a 
nonlinear problem in the mechanics of solids, leads to differential equations which 
are quite difficult in some boundary value conditions. Unlike other studies, this 
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paper has developed both theoretical aspects related to the existence and 
uniqueness of solutions and practical implementation, ending with the obtaining 
of numerical solutions of the considered problems. In the small strain situation 
one can notice a very good approximation of the analytical solution given by (29) 
with the numerical one (obtained using the shooting method). The results obtained 
above bring original contributions in this field and on the other hand these studies 
remain open for further research. 
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