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CONTRIBUTIONS TO THE STUDY OF LARGE STRAIN
SOLID

Dana Mihaela PETROSANU'

Acest articol se ocupd cu studiul unei probleme nelineare de mecanica
corpurilor solide. Aceste probleme conduc, in general, la rezolvarea unor ecuatii
sau sisteme de ecuatii diferentiale destul de dificil de rezolvat in anumite conditii la
frontierd. De aceea, de cele mai multe ori acest lucru nici nu este posibil §i se impun
rezolvari numerice sau aproximative, bazate pe neglijarea unor termeni din ecuatii.

This paper deals with the study of a nonlinear problem in the mechanics of
solids. Generally, these problems lead to differential equations or systems of
equations which are quite difficult to solve in some boundary value conditions. It is
not always possible to solve these equations and numerical or approximate
approaches are required for solving, based on the neglecting of some equations’
terms.

Keywords: symmetric deformation, constitutive equations, numerical solutions.

1. Introduction

Below we intend to illustrate the nature of solutions to elasticity problems
with large shape changes. Generally the following pieces of information are
known: the geometry of the solid; a constitutive law for the material (i.e. the
hyperelastic strain energy potential); the body force density per unit mass (if any);
prescribed boundary tractions and/or boundary displacements. With these
assumptions, generally we wish to calculate the displacement field, the left
Cauchy-Green deformation tensor and the stress field, satisfying the following
equations: displacement strain relation; incompressibility condition; stress strain
relation; equilibrium equation; boundary conditions.

We study the spherical symmetric deformation of a spherical shell, based
on [1]. We assume the coating material to be elastic, homogenous, isotropic and
the spherically symmetric deformation is specified using some functions which
depend on the position vector. These functions will be determined later by
specifying the equilibrium equations. For such a material, one can obtain
nonlinear constitutive equations by the generalization of Hooke's linear equation,
valid in the case of small deformations, adding additional terms reflecting the
second order effects, third order effects, etc. By specifying the boundary
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conditions, we numerically solve the first boundary problem obtained from the
equations of equilibrium. We will also study the existence and uniqueness of this
problem’s solutions.

In this area of study, there are some researches on similar themes with
those presented in this paper. In [2] there are theoretically depicted some
numerical methods applicable for the study of deformation of solids and also
some cases in which one may determine analytical solutions for problems related
to deformation of spherical shells, much easier than the cases presented in this
paper. Some uniaxial deformations of spherical domains are considered in paper
[3]. In [4] the problem is considered within the framework of the geometrical
nonlinear theory of elasticity. Minimal restrictions are found under which the zero
solution is unique for zero loads. Under these restrictions, the uniqueness of the
solution for the tensile forces is proved, and the critical compressive force is
found for which uniqueness is destroyed. In the current paper there are also
specified and verified some conditions for existence and uniqueness of the
solution for the studied cases and the constitutive equations chosen. In [5], Ting
studies the remarkable nature of a sphere of nonlinear elastic material subjected to
a uniform pressure at the surface of the sphere. Then he analyses a spherically
uniform linear anisotropic elastic material. Conditions for the materials that are
capable of a radially symmetric deformation to possess one or more symmetry
planes there are also presented. Unlike these studies, this paper develops both
theoretical aspects (related to the existence and uniqueness of solutions) and
practical implementation (concluding with the obtaining of the numerical
solutions of considered problems).

2. About the spherically symmetric deformation of a spherical shell

A representative spherically symmetric problem is illustrated in Fig. 1.
=
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Fig. 1. The thick-walled spherical shell in the reference geometry.
For a finite deformation problem, we need a way to characterize the
position of material particles in both the undeformed and deformed solid. In order
to do this, we let (R,0,®) identify a material particle in the undeformed solid.

The coordinates of the same point in the deformed solid is identified by a new set
of spherical-polar coordinates(r,0,9) . One way to describe the deformation



Contributions to the study of large strain solid 141

would be to specify each of the deformed coordinates (r,0,¢)in terms of the

reference coordinates (R, ®,D) .

We consider for the thick-walled spherical shell the reference geometry
defined by:

0<A<R<B, 0<O@<z, 0<® <27 (1)
in the terms of spherical polar coordinates (R, ®, ®), or
X|=Rsin®Ocos®, X, =RsinOsin®, X3 =~Rcos® 2)
We describe the current geometry by:
0<a<r<h, 0507 0<@p<L2rx 3)

in the terms of spherical polar coordinates (r,8,9). We consider this hollow
subjected to spherically symmetric loading (i.e. internal body forces, as well as
tractions or displacements applied to the surface, independently of 6 and ¢, and
act in radial direction only). Before deformation, the sphere has the inner radius 4
and the outer radius B. After deformation, the sphere has the inner radius a and
the outer radius b.
For a spherically symmetric deformation, points only move radially, so the
deformation is depicted by:
x=f(R)X 4
so that
r=f(R)R, 6=0, p=0 (5)
Since the material is unconstrained, the function f is unknown and, given
appropriate boundary conditions, the essential problem is to find it. The
deformation gradient F is given by:

F=V®§=f(R)1+%f'(R)X®X (6)

the symmetry of the geometry ensuring that F=U, the right stretch tensor [6]. In
finite deformation problems vectors and tensors can be expressed as components
in a basis (éz,64,6,) associated with the position of material points in the

undeformed solid, or, if more convenient, in a basis (E,,é'g,éd associated with
material points in the deformed solid. For spherically symmetric deformations the
two bases are identical consequently, so we can write the position vector in the
undeformed solid X=R-é,, the position vector in the deformed
solid X =r-€, and the displacement vector i=X—X=(r—R)- ¢, .

The principal stretches, corresponding to coordinate directions (r,8,¢)
respectively are:

A =Rf (R)+ f(R). A =4 =f(R) @
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In order to simplify the problem, we will assume that:
o the solid is stress free in its undeformed configuration;
e temperature changes during deformation are neglected;
o the solid is incompressible;
o the material is isotropic relative to the reference configuration.
From the spherical symmetry it follows that the nominal stress @ is given
by X =0, where the Biot stress £ may be written:

ZZO-IRI_ZXGBX-{_O-Z(I_R%X@XJ (8)

in terms of its principal components ©1,02 =03. On use of the equilibrum
equation:

Div®T =0 )
in the terms of spherical polar coordinates, applied with (R,®,®)as independent

variables, we obtain the equilibrum equation:
do 1 2

—+—(o1—0,)=0 10

= talo1-02) (10)

We consider now a constitutive law for the material (i.e. the hyperelastic

strain  energy potential) and we introduce the strain  energy

functionw = W(k;,A,,A;), Where w is a symmetric function. In this case, the

principal components of the Biot stress X are:

o; :ZTW’ i=123 (11)

i
evaluated for (4;,4,,4;) given by (7). Substitution of (11) and (7) into (10) yields
a non-linear second order ordinary differential equation for f(R),
2 2 2
W ren(R)+2 Z o OW | () 2] )y (12)
o 04r 040l R\ 04 04y
where each of the derivatives of W depends non-linearly on f(R) and f'(R). In

order to solve this equation, an explicit form of W needs to be chosen. In general
it is not possible to obtain analytic solutions even for relatively simple forms
of W . Below are presented some situations in wich a suitable choice of the strain
energy function leads to a simplified form of (12) and in this case it is possible to
obtain the analytic solutions of this equation.

3. Some examples of constitutive equations

In [1] it is proposed an example of a strain energy function,
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W =G(ly)=viy + 3 (13)
where I} = A4 + Ay + A3, 15 = 4y + A A3 + A3, 13 = 4443 are the principal
invariants of U; v and ware constants, G is a function whose properties will be

specified later. The form (13) chosen for W represents a generalization to three
dimensions of the class of so-called “harmonic” materials used in plane-strain
theory. The principal Biot stresses are calculated as:

ow

o1=— -~ G (1)-v(A +23)+ #2023
: - (14)
oy =03=——=G (I})~v(d + X3)+ uhi 23
04y
Since the reference configuration is stress free, from (13) and (14) we obtain:
G3)-3v+u=0,G3)-2v+u=0 (15)
Substitution of (14) into (12) leads to a simplified form of (12),
" d]l
G({)—=0 16
()= (16)

an equation that can be easy integrated. There are two posibilities:

a) G'(I,)=0, from wich we obtain G(I;)=(2v+u)l; —(3v+4u). In this
situation, no restriction is imposed on f{R) i.e. the equilibrum equations are
satisfied for arbitry f(R) in respect of the strain-energy function (13) with the
above mentioned G.

b) G'(1;)#0, from wich we obtain dI;/dR=0 or %[Rf'(R)-‘r:sf(R)]:O.

The general solution of this equation is expressible as f (R): a/3+ B/R3, where
a and f are constants, with /; = o. Since the principal stretches must be positive,

it follows that 7, = o > 0 while 4 =2~2250 2 =23 =2+L 50 1f 4and
3 R 3 R
A, are to be positive for 0< A< R<B, the constant f must be restricted

according to —ad3/3< ff<ad’/6. Constants o and f may be calculated from

the boundary conditions on R = 4and R=B [1].

A second particular case of constitutive equations is the situation of a
pressurized hollow rubber shell made from an incompressible Mooney-Rivlin
solid [2], a hyperelastic material model where the strain energy density function
W is a linear combination of two invariants of the left Cauchy-Green deformation
tensor B. Melvin Mooney and Ronald Rivlin proposed the model in two
independent papers in 1952. The strain energy density function for an
incompressible Mooney-Rivlin material is:
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W =Ci(I; -3)+Cy(I5 —3) (17)
where C) and C, are empirically determined material constants, and I;and I; are
the first and the second invariant of the deviatoric component of the left Cauchy-
Green deformation tensor. This is a situation in which it is possible to obtain
analytic solutions for equation (12), considering that no body forces act on the
sphere and that the inner and outer surfaces of the sphere are subjected to given
pressures [2].

Another example of constitutive equations proposed in the study of the
spherically symmetric deformation of a spherical shell is presented in [7]. In this
paper, it is chosen for the strain energy the function:

22 Ho 2 _A
W(F)=—1tr(F)a +—(detF) 2a (18)
2u A

with #>0 and A>0 the Lamé parameters and a >0. This is a generalization of

Hooke's law for isotropic materials. Considering a spherical shell made from such
a material, equation (12) can be easy integrated.

4. Application for an elastic material with large deformations

In the following, we will consider the spherical shell constructed of an
elastic material, isotropic, with large deformations. The constitutive equation will
be chosen to generalize Hooke's law for isotropic materials [8]:

H:a1E+(a2—a1)%l (19)

where IT is the second Piola-Kirchhoff stress tensor,

ay=2u,ay =31+2u (20)
u>0and A>0 are the Lamé parameters, E 1is a tensor given
by E=(1/2)FFT —I) and F the deformation gradient defined by (6). In this
case, the first Piola Kirchhoff stress tensor is :

SzFTI:F-{alEJr(az—al)%I} @1

Introducing components of S in spherical coordinates Sgr, Srr §1 Srr, the
equlibrum equation DivS =0, written in spherical coordinates [9] leads to the
system:
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+£ RR+laSTR+ 1 8SFR+ctg6’
OR R R 06  Rsinf 0¢ R
OSpr 2 1 l@STT + 1 OSpr + ctgl
OR R R R 060  Rsin@ 0¢ R
6SRF 2 + 1 +l8STF + 1 aSFF + Clg@
OR R R R 060  Rsinf 0¢ R

Considering features of the problem, the system is reduced to a single
relationship that is not identically satisfied,

1
TR —E(STT +Spr)=0

(Str—=Spr)=0 (22)

(St +SFr)=0

—=+—Spr —-S77)=0 23
R R( RR =STT) (23)

Substituting the components of S in spherical coordinates Sgr, Srr and Spr
one can obtain from (23) a second-order differential equation:
f"(R):_L8(2k+1)R2f'2+2(17k+10)Rﬁ' +4(4k +5)f2-12
R 3Qk+DR2f2+6(2k+)Rff +(4k+5)f% -3
where k = @ /ay is a dimensionless constant depending on the choosing of the

24)

sphere’s material. Elementary calculations show that the denominator of equation
(24) is nonzero within the spherical shell defined by (1). Equation (24) can be
solved taking into account boundary conditions for the spherical shell. These
conditions could be traction boundary conditions on parts of the boundary where
tractions are known and displacement boundary conditions on parts of the
boundary where displacements are known. In this paper, it has been chosen the
version:
f(A)=al A, f(B)=b/B (25)
The problem (24), (25) is a first boundary problem obtained from the
equations of equilibrium. In the following we present some considerations on the
the existence and uniqueness of problem’s solution, problem wich has been
obtained in the case of a spherically symmetric deformation of a spherical shell of
elastic isotropic material, with large deformations. In [10] and [11] are presented
the existence and the uniqueness theorems for the first boundary problems.
Therefore, the problem (24), (25) has an unique solution [6].

5. Numerical solutions

Though the previous first boundary problem’s solution exists and is
unique, its analytical form is difficult to find. Therefore, a numerical approach
was chosen here. The numerical solution is obtained using the ODE23 function
from the MATLAB software package. This function uses the Runge-Kutta
algorithm of orders 2 and 3 and is useful for solving Cauchy problems for
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differential equations (or systems of differential equations) of first order. We note
that problem (24), (25) from the preceding paragraph is not of the type mentioned
above because, on the one hand, the equation (24) is not one of the first order, and
secondly, the conditions (25) are boundary conditions and not initial conditions.
Both issues will be treated below and we will show how to eliminate these
difficulties.

Obviously, the second order differential equation (24) may be canonical
associated to a first order system of differential equations equivalent to this
equation. Thus, noting f; = /', f, = f we obtain the system:

C o fi 8Qk+DR2f2+2(1Tk+10)Rf £ +4(4k+5) > —12

R 3Qk+DR2f2 +6(2k +DRf, f> +(4k +5) £H2-3
This system was used in the numerical approach of the problem mentioned
below, instead of equation (24). As noted above, the studied problem is not a
Cauchy problem but a first boundary problem. Therefore, we used the 'shooting
method' [10], in order to associate to the problem mentioned below a series of
Cauchy problems and thus for obtaining the solution. The 'shooting method'

consists of sequentially solving Cauchy problems (associated with the first
boundary problem), of the type :

f"(R):_L',g(Zk“)RZfQ+2(17k+10)Rﬁf'+4(4k+5)f2_12
R 3Qk+DR*f2 +6(2k+ DR +(4k+5)£2 -3 @
f(A=alA, f'(A)=u

According to [10], the Cauchy problem (27) admits unique solution. After
numerically solving this problem, the appropriate value of f(B)is calculated for

Sr=fi (26)

the solution found and the process is repeated until the value of f(B) approaches

the value required by (25) with some precision previously established. Based on
the theorem of existence and uniqueness of the solution, this is just the problem’s
(24), (25) solution. In the small strain situation, when the constitutive law for the
material reduces to the Hooke's law of linear elasticity, the considered problem
becomes simpler because some terms in the equation (24) are negligible and then
its solution can be also analytically determined. Thus, by neglecting second order
terms, the problem (24), (25) leads to:

Rf"(R)+4f'(R)=0,f(A)=al/ A, f(B)=b/B (28)
and the solution of this problem is:

(29)

_ 2 _pR2
f(R)=A2Bz bA aBR_3+aA bB
A3 _ B3 A3 _ B3
In this case we made a comparative study of the analytical solution (denoted
by €) given by (29) with the numerical one, obtained using the shooting method,
(denoted by rm) and noticed a very good approximation, i.e. the small strain
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solution is accurate. On the other hand, the equation (28) can be also found by
direct calculation. We denote by ¢ the Cauchy’s strain tensor in linear elasticity,

e=1/2)Vii+VTi), i=%-X and by o the Cauchy tensile stress. The

constitutive law (in a natural reference configuration, in which e=0=0=0) is
o = Atrel + 2 ug . Introducing this relation in the equilibrium equation written in

spherical coordinates, leads to equation (28) above. This is a verification of the
correctness of calculations leading to equations (24) and (28).
The numerical values chosen for A4,B,a,b are those mentioned in Table 1,
some cases corresponding to small deformations and some to the large ones:
Table 1
Numerical values for 4, B,a,b
Nr. A(m) | B(m) a(m) b(m) Nr. A(m) | B(m) a(m) b(m)
1. 0.10 0.105 0.10 0.107 3. 0.20 0.225 0.21 0.235
2. 0.10 0.105 0.10 0.109 4 0.20 0.225 0.18 0.205

The sphere walls were subjected to stretch or compression. The hollow
sphere was considered made from a cellular rubber [8] characterized by
A=0.12MPa, p=0.14MPa, ay=0.28MPa, a, =0.64MPa .k =a,/a, =0.44.
It was highlighted the dependence of the final radius of a point belonging to the
spherical shell depending on the initial one through the function f{R). Some
numerical results obtained are represented in Fig. 2:
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Fig. 2. Some numerical solutions.
6. Conclusions

The study of the spherically symmetric deformation of a spherical shell, a
nonlinear problem in the mechanics of solids, leads to differential equations which
are quite difficult in some boundary value conditions. Unlike other studies, this
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paper has developed both theoretical aspects related to the existence and
uniqueness of solutions and practical implementation, ending with the obtaining
of numerical solutions of the considered problems. In the small strain situation
one can notice a very good approximation of the analytical solution given by (29)
with the numerical one (obtained using the shooting method). The results obtained
above bring original contributions in this field and on the other hand these studies
remain open for further research.
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