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DECODING OF CYCLIC CODES OVER THE RING
Fp[u]
⟨uk⟩

Mohammad Reza Alimoradi1

AbuAlrub et al in (Des Codes Crypt 42:273-287, 2007) proposed an open

problem in decoding of cyclic codes over the rings F2 + uF2 with u2 = 0. In this

paper we resolve this open problem and extend this decoding procedure for cyclic

codes of arbitrary length over the ring
Fp[u]

⟨uk⟩ , where p is a prime number and uk =

0.Note that the ring
Fp[u]

⟨uk⟩ = Fp +uFp + · · ·+uk−1Fp may be of interest in coding

theory, which have already been used in the construction of optimal frequency-

hopping sequence.
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1. Introduction

A landmark paper [5] has shown that certain non-linear binary codes with

excellent error-correcting capabilities and some optimal codes can be identified as

images of linear codes over Z4 under the Gray map.This has motivated the study of

codes over finite rings.We will say that a code is optimal for a given source if its av-

erage length is at least as small as that of any other uniquely-decodable code. Since

some binary codes with good parameters and some optimal codes are Gray im-

ages of cyclic codes over finite rings, apart from Z4 ([13]), the study of cyclic codes

over finite rings is significant. So far, a few papers have been published about the

decoding of codes over finite rings (see [2], [8] and [13]). Codes over F2 + uF2 have

been discussed by a number of authors (see [1], [13]). Note that cyclic codes over

this ring have applied in DNA computing [9]. In this paper we present a method

for decoding cyclic codes over the ring
Fp[u]
⟨uk⟩ = Fp + uFp + · · · + uk−1Fp by us-

ing the torsion codes, which are codes over the residue field associated to a chain

ring.Note that some sequences over this ring having optimal Hamming correlation

properties. These sequences are useful in frequency-hopping multiple-access spread-

spectrum communication systems [14]. So the ring = Fp + uFp + · · · + uk−1Fp is

significant in information theory and coding theory.A linear code C of length n over

ring R is an R-submodule of Rn.A code is called cyclic if it is linear and invariant

with respect to cyclic shift. Note that each (c0, c1, . . . , cn−2, cn−1) ∈ Rn is identified
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with the polynomial c0 + c1x+ · · ·+ cn−1x
n−1 ∈ R[x]

⟨xn−1⟩ . So we can consider a cyclic

code C of length n as an ideal in Rn = R[x]
⟨xn−1⟩ . In this paper we denote

Fp[u]
⟨uk⟩ by Rk,p

and
Rk,p[x]
⟨xn−1⟩ by Rk,p,n. A ring R is called a von Neumann regular ring if for each a in

R, there exists b in R such that a = a2b and is called reduced ring if its nilradical be

zero. Clearly von Neumann regular rings are reduced. Let R be a ring. By a chain of

prime ideals, we mean a nested sequence p0 ( p1 ( . . . ( pn of distinct primes. The

primes pi are called the members of the chain, and n is called its length.The Krull

dimension of R is defined to be the largest length of any chain of prim ideals. Clearly

an Artinian ring is of dimension zero [7]. It is clear that a finite ring is an Artinian

ring, thus its dimension is zero.

2. Application of
Fp[u]
⟨uk⟩ in the construction of optimal frequency-

hopping sequence

In modern radar and communication systems, frequency-hopping spread-

spectrum techniques have become very popular. The hopping sequences are used

to specify which frequency will be used for transmission at any given time. Fuji-

Hara et al. investigated frequency-hopping multiple-access systems with a single

optimal frequency-hopping sequence from a combinatorial approach [4]. Let F =

{f0, f1, . . . , fm−1} be a set of available frequencies with alphabet size m and χ(v, F )

be the set of all sequences of length v over F . Any element of χ(v, F ) is called a

frequency hopping sequence of length v over F . In multiple-access spread spectrum

communication systems,mutual interference occurs when two or more transmitters

transmit on the same frequency at the same time. Frequency hopping sequences

are required to have good Hamming correlations, and large linear span,where the

linear span is defined to be the length of the shortest linear feedback shift register

that can produce the sequence. In [14] Udaya et.al constructed a sequences over finite

rings with optimal Hamming correlation properties. They constructed new sequences

over the residue class ring R =
Fp[u]

⟨w(u)k⟩ , where w(u) is an irreducible polynomial

over Fp. Note that the ring
Fp[u]
⟨uk⟩ is a particular case of polynomial residue class

rings introduced in [14], when w(u) = u. It is generally desired that the family S of

frequency hopping sequences has the following properties:

(i) The Hamming correlation HXX(w), w ̸= 0 for all frequency-hopping sequences

X should be as small as possible.

(ii) The Hamming correlation between any sequence in a set with all phase shifts of

other sequences in the set should be as small as possible.

(iii) The sequences should be of large period and linear complexity.

Definition 2.1. For two sequences,X = (x0, x1, . . . , xv−1) and Y = (y0, y1, . . . , yv−1)

∈ χ(v, F ), the Hamming correlation HXY (w) is defined by

HXY (w) =
v−1∑
t=0

h[xi, yi+w]
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where 0 ≤ w < v if X = Y and 0 < w < v if X = Y and also h[x, y] = 1 if x = y and

0 otherwise. Also all operations among position indices are performed modulo v.For

any single frequency hopping sequence X ∈ χ(v, F ), let H(X) = max
0<t<v−1

{HXX(t)},
be the maximum out-of-phase value of HXX(t). If H(X∗) ≤ H(X) for all X ∈
χ(v, F ), then the sequence X∗ is called an optimal frequency-hopping sequence.

Definition 2.2. A m-sequences (maximal length sequences) over the field Fp of

length N = pr − 1 is generated by a degree r primitive polynomial over Fp. Let

s0s1s2 . . . be a m sequences over Fp and f(x) = xr−ar−1x
r−1−· · ·−a1x−a0 be the

primitive polynomial over Fp, then the m-sequence s0s1s2 . . . satisfies the recursion

relationship

sn+r = ar−1sn+r−1 + ar−2sn+r−2 + · · ·+ a0sn, n = 0, 1, 2, . . .

Associated with every m-sequence Sv can be constructed a family of sequences

, which can be used to construct frequency hopping patterns. The number of se-

quences in a family depends on the number of distinct elements of R occurring in

Sv. Families are optimal in the sense that they meet Lempel and Greenberger bound.

Lemma 2.1. ([11], Lemma 4, Lempel and Greenberger bound) For every sequence

S = {si} of length pl − 1 over a set of size pt, we have H(S) ≥ pl−t − 1.

Definition 2.3. Let R be a local ring with maximal ideal m and residue field F =
R
m , the Galois ring of R denoted as GR(R, r) is defined as R[x]

⟨f(x)⟩ , where f(x) is a

basic monic irreducible polynomial of degree r over R. If α is a root of irreducible

polynomial f(x) in GR(R, r), then each β ∈ GR(R, r) can be uniquely written as

β = a0 + a1α+ a2α
2 + · · ·+ ar−1α

r−1, a0, a1, . . . , ar−1 ∈ R

Definition 2.4. Let R be a local ring with residue field Fps (finite field with ps ele-

ment) and f(x) be a basic monic irreducible polynomial of degree r over R, then

trace functions which map elements of GR(R, r) to R is defined as Tr1
r(β) =

a0
∑r−1

i=0 α
psi+a1

∑r−1
i=0 α

2psi+ · · ·+ar−1
∑r−1

i=0 α
(r−1)psi ,where β = a0+a1α+a2α

2+

· · ·+ ar−1α
r−1, a0, a1, . . . , ar−1 ∈ R.

Theorem 2.1. ([14], Theorem 1) Every m-sequence over R has a unique trace rep-

resentation given by Si
v = Tr1

r(vαi), where v ∈ GR(R, r) and α is a primitive root

of f(x) of degree r.

Note that Rk,p is a local ring with maximal ideal ⟨u⟩ and residue field Fp. Now,

select a primitive basic monic irreducible polynomial f(x) of degree r over Rk,p (Since

Fp is a subring of Rk,p, any irreducible polynomial over Fp is obviously irreducible

over Rk,p). Then
Rk,p[x]
⟨f(x)⟩ is a Galois ring with residue field Fpr .As f(x) is a irreducible

polynomial of degree r over Fp, then f(x) |xpr−1 − 1.Now, if α ∈ GR(Rk,p, r) is a

primitive element of FP r , then αpr−1 = 1.Therefore from the trace description in

Theorem 2.1, it follows that all m-sequences over the ring Rk,p are periodic with

period L = pr − 1 (Note that Sv
i+pr−1 = Tr1

r(vαi+pr−1) = Tr1
r(vαi) = Si

v).
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Example 2.1. In the following we give a m-sequences over the ring R3,2.Let f(x) =

x3+x+1 and α ∈ GR(R3,2, r) be a primitive element of F23 . So α3 = α+1 and the

following Table implies that α is a primitive element of F23 .

i αi

0 1

1 α

2 α2

3 α+ 1

4 α2 + α

5 α2 + α+ 1

6 α2 + 1

7 1

Now, let v = u2 + uα + α2 ∈ GR(R3,2), then s0 = S0
v = Tr1

r(v) = u2Tr1
r(1) +

uTr1
r(α) + Tr1

r(α2). Since Tr1
r(1) = 1, and Tr1

r(α) = Tr1
r(α2) = 0, then s0 =

u2. Similarly, we obtain s1 = 1, s2 = u, s3 = u2 + 1, s4 = u + 1, s5 = u2 + u + 1 and

s6 = u2 + u. So, the m-sequences Sv is equal to the set {u2, 1, u, u2 + 1, u + 1, u2 +

u+ 1, u2 + u}.

Definition 2.5. Let β = b0+b1u+· · ·+bk−1u
k−1 ∈ GR(Rk,p, r), where b0, b1, . . . , bk−1

∈ Fpr . Now, let Mβ be a matrix over Fp of dimension r×k formed by placing together

k elements b0, b1, . . . , bk−1 as columns of Mβ. So, the rank number of κ(β) is defined

as the rank of matrix Mβ over Fp.Also the Trace Image of an m-sequence,Sv is

defined as the set of distinct elements in Sv.

Suppose v ∈ GR(Rk,p, r) with κ(v) = ρ, then from definition we have the cardinality

of Trace Image of Sv is pρ.Now for any m-sequence,Sv = {si} and for every γ be-

longing to Trace Image of Sv a sequence Sv(γ) is defined as {si+γ : i ∈ Zpr−1}. Since
the cardinality of Trace Image of Sv is pρ, there exists pρ such sequence. So a family

of pρ sequences associated with Sv is given by the set of sequences {Sv(γ), γ ∈ Trace

Image of Sv} is denoted by M(v). So corresponding to each m-sequence Sv, a family

of hopping patterns derived from M(v).

Theorem 2.2. ([14], Theorem 3) Let Sv be a m-sequence over the ring Rk,p with

κ(v) = ρ. Then Hamming correlation between any two sequences Sv(γ1) and Sv(γ2)

belonging to the family,M(v) is given by

Hγ1γ2(0) =

{
pr − 1 γ1 = γ2

0 γ1 ̸= γ2

and for w ̸= 0, we have

Hγ1γ2(w) =

{
pr−ρ − 1 γ1 = γ2
pr−ρ γ1 ̸= γ2

In the following we give an example of application the ring R3,2 in the con-

struction of optimal frequency-hopping sequence
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Example 2.2. A family of frequency hopping patterns of length 7 derived from

m-sequences over R3,2. Such sequences are generated by α ∈ GR(R3,2, 3) such that

α3 = α+1. Let v = u2+α+(u2+u+1)α2 ∈ GR(R3,2, 3).Than Mv =

1 0 0

0 1 0

0 0 1

. So

κ(v) = 3. Also Sv = {u2 + u+ 1, 1, u+ 1, u2 + u, u, u2 + 1, u2}. In the following table

we give patterns of the family M(v).Note that pattern symbols are represented by

decimal numbers in the range (0− 7) and h(u) ∈ R3,2 is represented by h(2).

γ Sv(γ)

0 (7 1 3 6 2 5 4)

1 (6 0 2 7 3 4 5)

u (5 3 1 4 0 7 6)

u+ 1 (4 2 0 5 1 6 7)

u2 (3 5 7 2 6 1 0)

u2 + 1 (2 4 6 3 7 0 1)

u2 + u (1 7 5 0 4 3 2)

u2 + u+ 1 (0 6 4 1 5 2 3)

Note that in above table Hγ1γ2(w) = 2r−ρ = 1.For example if γ1 = u, γ2 = u+1, then

Hγ1γ2(3) =
∑6

i=0 h[ai, bi+3] = h[5, 5] = 1.Now we show that the m-sequences Sv is

an optimal frequency-hopping sequence. From Theorem 2.2, we have H(Sv) = 0.As

Sv is a m-sequences of length N = 23−1 over R3,2 with size 23. So from Lempel and

Greenberger bound, we obtain H(Sv) = 23−3−1. So the m-sequences Sv meet Lempel

and Greenberger bound and therefore is an optimal frequency-hopping sequence.

3. Decoding of cyclic codes over Fp + uFp

Udaya et al. in [13] introduced a decoding procedure for cyclic codes over the

ring F2+uF2 by using of a Gray map and ⟨u, u+v⟩ construction codes. They showed

that a cyclic code C of length n over this ring has structure C = ⟨fh, ufg⟩, where
fgh = xn − 1 and Gray image C is equivalent to a ⟨u, u+ v⟩ constructed code with

binary codes C1 = Res(C) = ⟨fh⟩ and C2 = Tor1(C) = ⟨f⟩,where the residue

code C1 is defined as C1 = {x ∈ F2
n | ∃ y ∈ F2

n , x+ uy ∈ C} and the torsion code

C2 is defined as C2 = {x ∈ F2
n |ux ∈ C}. Also the decoding procedure is done in

Galois extension of F2 + uF2. In this section we present a decoding procedure for

cyclic codes over the ring Fp + uFp. Since the ring Fp + uFp is a chain ring with

unique maximal ideal m = ⟨u⟩ and the residue field Fp, we can use the torsion codes

associated to a code over the chain ring. i.e, let C2 be a linear code of length n over

the ring R2,p, then we associate to the code C2 two codes C2,u and Tor1(C2), which

are defined as:

Tor1(C2) = {k(x) ∈ Fp[x]

⟨xn − 1⟩
|uk(x) ∈ C2}
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and C2,u = {b(x) ∈ Fp[x]
⟨xn−1⟩ | ∃ a(x), a(x)+ub(x) ∈ C2}.Clear that C2,u and Tor1(C2)

are linear codes over the residue field Fp.

For proving Theorem 3.3 we use the two following theorem.

Theorem 3.1. ([12], Theorem 3.3) Let Ck be a cyclic code of length n over Rk,p, then

Ck is an ideal in Rk,p,n that can be generated by Ck = ⟨g(x) + up1(x) + · · · +
uk−1pk−1(x), ua1(x)+u2q1(x)+· · ·+uk−1qk−2(x), u

2a2(x)+u3l1(x)+· · ·+uk−1lk−3(x)

, . . . , uk−2ak−2(x)+uk−1t1(x), u
k−1ak−1(x)⟩ with ak−1(x) | ak−2(x) | . . . | a1(x) | g(x) |

(xn − 1)mod p, and ak−2(x) | p1(x)(x
n−1
g(x) ), . . . , ak−1(x) | t1(x)( xn−1

ak−2(x)
), . . . , ak−1(x) |

pk−1(x)(
xn−1
g(x) ) . . . (

xn−1
ak−2(x)

).Moreover deg pk−1 < deg ak−1, . . . , deg t1 < deg ak−1,

and deg p1 < deg ak−2.

Theorem 3.2. [7] For a reduced ring R, the following conditions are equivalent:

(1) R is a von Neumann regular ring.

(2) The ring R is of dimension zero.

(3) Each finitely generated ideal of R is principal and is generated by an idempotent.

Theorem 3.3. Let Ck be a cyclic code of length n over the ring Rk,p and n is

relatively prime to p. Then Ck = ⟨g(x) + ua1(x) + u2a2(x) + · · ·+ uk−1ak−1(x)⟩.

Proof. We know that if R is a finite chain ring and n is relatively prime to the

characteristic of R, then R[x]
xn−1 is a principal ideal ring (see [3], Theorem3.6). So it is

enough to show that Ck = ⟨g(x) + ua1(x) + u2a2(x) + · · ·+ uk−1ak−1(x)⟩. Since n is

relatively prime to p, the polynomial xn − 1 can be uniquely written as the product

of distinct irreducible factors and hence

GCD(ak−2(x),
xn − 1

g(x)
) = 1. (1)

From Theorem 3.1, we know that ak−2(x) | p1(x)(x
n−1
g(x) ), which means ak−2(x) | p1(x)

by (1).But deg p1(x) < deg ak−2(x) implis that p1(x) = 0. Similarly we can prove

that p2(x) = · · · = pk−1(x) = q1(x) = · · · = qk−2(x) = t1(x) = 0. So

Ck = ⟨g(x), ua1(x), u2a2(x), . . . , uk−1ak−1(x)⟩.

Now let h(x) = g(x)+ua1(x)+ · · ·+uk−1ak−1(x). Since n is relatively prime to p, the

ring Rk,p,n is a reduced and its dimension is zero. So ⟨g(x)⟩ = ⟨e(x)⟩ for some idempo-

tent e(x) in Rk,p,n by Theorem 3.2.Now, there exists a polynomial r(x) ∈ Rk,p,n such

that e(x) = r(x)g(x). Let m = LCM(k, p). Then e(x) = rm(x)gm(x). Since hm(x) =

gm(x), we have e(x) ∈ ⟨h(x)⟩.This implies that g(x) ∈ ⟨h(x)⟩. Similarly we can show

that a1(x), a2(x), . . . , ak−1(x) ∈ ⟨h(x)⟩ and so ⟨g(x), ua1(x), u2a2(x), . . . , uk−1ak−1(x)⟩
= ⟨h(x)⟩. �

Lemma 3.1. If C2 = ⟨g(x)+up(x), ua(x)⟩ is a cyclic code of length n over the ring

R2,p, then Tor1(C2) = ⟨a(x)⟩ and dH(C2) = dH(Tor1(C2)).
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Proof. Let k(x) ∈ Tor1(C2). Then uk(x) ∈ C2. So, there exist polynomials r0(x) +

ur1(x), s0(x) + us1(x) ∈ R2,p,n, such that

uk(x) = (r0(x) + ur1(x))(g(x) + up(x)) + (s0(x) + us1(x))ua(x).

Thus uk(x) = ur1(x)g(x) + us0(x)a(x). But we know that a(x) | g(x), so, we obtain

k(x) ∈ ⟨a(x)⟩.Conversely if ua(x) ∈ C2, then a(x) ∈ Tor1(C2). Now,Theorem 4.2 in

[10] implies that dH(C2) = dH(Tor1(C2)). �

Lemma 3.2. Let C2 be a cyclic code of length n over the ring R2,p, where n is

relatively prime to p. Then C2,u = Tor1(C2).

Proof. If c2(x) ∈ C2,u, then there exists c1(x) ∈ Fp[x]
⟨xn−1⟩ such that c1(x) + uc2(x) ∈

C2. As by Theorem 3.3,we have C2 = ⟨g(x) + ua(x)⟩. So

c1(x) + uc2(x) = (h1(x) + uh2(x))(g(x) + ua(x)).

Since a(x) | g(x), we must have c2(x) ∈ ⟨a(x)⟩. So C2,u ⊆ Tor1(C2). Conversely,

if c(x) ∈ Tor1(C2), then uc(x) ∈ C2, which means that c(x) ∈ C2,u. So C2,u =

Tor1(C2). �

The main purpose of this section is to prove the following theorem.

Theorem 3.4. Let C2 be a cyclic code of length n over the ring R2,p, w(x) = w1(x)+

uw2(x) be a received word with an error polynomial e(x) = e1(x) + ue2(x) and

wH(ei(x)) ≤ ⌊ (dH(Tor1(C2))−1)
2 ⌋, for i = 1, 2. Then w1(x) and w2(x) can be decoded in

the code Tor1(C2).

Proof. We have two cases

Case(i): Suppose n is relatively prime to p. Now, let w(x) = c(x) + e(x), where

c(x) = c1(x) + uc2(x) is a codeword in C2. Since uc(x) = uc1(x) ∈ C2 and uc1(x) =

u(w1(x)−e1(x)), we see that w1(x)−e1(x) ∈ Tor1(C2).Now,we know Tor1(C2) is a

cyclic code over the finite field Fp. So, we can determine e1(x) by using the decoding

algorithms for cyclic codes over the field Fp. Since c2(x) ∈ C2,u, also C2,u = Tor1(C2)

by Lemma 3.2 and dH(w2, c2) ≤ ⌊ (dH(Tor1(C2))−1)
2 ⌋, we see that w2 will be uniquely

decoded to c2.

Case(ii): Suppose n is not relatively prime to p. Let c1(x) + uc2(x) be a codeword

in C2. Then by Theorem 3.1,we have

c1(x) + uc2(x) = (r1(x) + ur2(x))(g(x) + up(x)) + s(x)ua(x).

Similar to case (i) we can determine e1(x), then the word w1(x) will be uniquely

decoded to c1(x). Let ẃ2(x) = w2(x)− r1(x)p(x). Now,we know that a(x) | g(x), so
ẃ2(x)− e2(x) ∈ ⟨a(x)⟩ = Tor1(C2). Then we can determine e2(x) with using of the

decoding algorithm for cyclic codes over the field Fp. �

Decoding Procedure:

1) Calculation of dH(Tor1(C2)).

2) Let dH(C2) = dH(Tor1(C2)).

3) Decode w1(x) to c1(x) in Tor1(C2), where w1(x) + uw2(x) is a received word.
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4) if GCD(n, p) = 1, then w2(x) decode to c2(x) in Tor1(C2), else go to 5.

5) Let ẃ2(x) = w2(x)− r1(x)p(x).

6) Decode ẃ2(x) to ć2(x) in Tor1(C2).

7) Let c2(x) = ć2(x) + r1(x)p(x).

We give an example in order to illustrate our results.

Example 3.1. Let C2 = ⟨(x + 2)a(x), ua(x)⟩ be a cyclic code of length 8 over the

ring R2,3, where a(x) = x5+2x4+x3+x2+2.We know that the polynomial x8−1 is

uniquely decomposed to (x+1)(x+2)(x2+1)(x2+x+2)(x2+2x+2) over R2,3.Then

dH(C2) = dH(Tor1(C2)) = wH(⟨a(x)⟩).Let α ∈ GF (32) = F3(x)
⟨x2+x+2⟩ be a root of the

primitive polynomial x2 + x+ 2 ∈ F3[x]. Clearly x2 + x+ 2 = (x− α)(x− α3) over

the Galois field GF (32).Also x + 1 and x2 + 1 are minimal polynomials of α4 and

α2, respectively. This implies that a(x) has roots {α, α2, α3, α4} in the Galois field

GF (32). So Tor1(C2) is a ternary 2-error-correcting cyclic code. Let

w(x) = x7 + 2x6 + x3 + x2 + 1 + u(2x6 + 2x5 + x3 + 2x2 + 2)

be a received word with an error pattern e(x).We can decode w1(x) in the ternary

code Tor1(C2) by using of the Peterson-Gorenstein-Zierler algorithm ([6] Section 5.4.1).

Suppose that e1(x) = E1x
t1 + E2x

t2 ,where E1, E2 ∈ F3. Since

S1 = w1(α) = α, S2 = α3, S3 = α3, S4 = α4

and M2 =

(
S1 S2

S2 S3

)
=

(
α α3

α3 α3

)
is a non-singular matrix with inverse M2

−1 =(
α6 α4

α2 α4

)
, we conclude that exactly two errors have been made. So,

(
σ2
σ1

)
=

(
α6 α4

α2 α4

)(
α7

1

)
=

(
α7

α6

)
.

Thus the error locator polynomial is σ(x) = 1 + α6x + α7x2. It is easy to see that

the error locator polynomial has roots α4 and α5. So, the error location numbers

are X1 = α4 and X2 = α3.As the code is ternary, we must determine the error

magnitudes E1 and E2. Since S1 = E1α
4+E2α

3 and S2 = E1+E2α
6,we must solve

the matrix equation (
α4 α3

1 α6

)(
E1

E2

)
=

(
α

α3

)
.

Solution of this matrix equation implies that E1 = 1 and E2 = 2.Therefore e1(x) =

x4 + 2x3.

Similarly we must decode w2(x) = 2x6 + 2x5 + x3 + 2x2 + 2 in the ternary code

Tor1(C2).Decoding of w2(x) implies that e2(x) = 2x7 + 2x2. If we correct these

errors in the received polynomial, then the vector w(x) will be decoded to the code

polynomial c(x) = x7 + 2x6 + 2x4 + 2x3 + x2 + 1 + u(x7 + 2x6 + 2x5 + x3 + 2).�
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4. Decoding of cyclic codes over the ring
Fp[u]
⟨uk⟩

In this section, we extend the previous decoding procedure for cyclic codes

over the ring
Fp[u]
⟨uk⟩ = Fp + uFp + u2Fp + · · ·+ uk−1Fp, where uk = 0.

Lemma 4.1. Let C3 = ⟨g(x) + up1(x) + u2p2(x), ua1(x) + u2q1(x), u
2a2(x)⟩ be a

cyclic code of length n over the ring R3,p, then Tor2(C3) = ⟨a2(x)⟩ and dH(C3) =

dH(Tor2(C3)),where Tor2(C3) = {k(x) ∈ Fp[x]
⟨xn−1⟩ |u

2k(x) ∈ C3}.

Proof. Theorem 4.2 in [10], implies that dH(C3) = dH(Tor2(C3)). Since u2a2(x) ∈
C3, we have a2(x) ∈ Tor2(C). So, ⟨a2(x)⟩ ⊆ Tor2(C3).Conversely let k(x) ∈ Tor2(C3),

then u2k(x) ∈ C3. So by the structure of the code C3, there exist polynomials

r2(x), s1(x), to(x) ∈ Fp[x]
⟨xn−1⟩ such that k(x) = r2(x)g(x)+s1(x)a1(x)+t0(x)a2(x).But,

we know that a2(x) | a1(x) | g(x).Then k(x) ∈ ⟨a2(x)⟩. �

Definition 4.1. Let n be a positive integer relatively prime to p and s be an integer

with 0 ≤ s < n. If GF (pt) is an extension field of Fp and α be a primitive element of

GF (pt) with minimal polynomial Mα(x) in Fp(x), then the p-cyclotomic coset of s

modulo n is defined the set Cs = {spi(modn) : i = 0, 1, 2, . . .}.A subset {i1, i2, . . . , it}
of Zn is called a set of representatives of the p-cyclotomic cosets of s modulo n if

Ci1 , Ci2 , . . . , Cit are distinct and ∪t
j=1Cij = Zn.

Theorem 4.1. ([6], Theorem 4.1.1) Let n be a positive integer relatively prime to p,

t = ordn(p) and α be a primitive n-th root of unity in Galois field GF (pt). So

(i) For each integer s with 0 ≤ s < n, the minimal polynomial of αs over Fp is

Mαs(x) = Πi∈Cs(x− αi).

(ii) xn − 1 = ΠsMαs(x) is the factorization of xn − 1 into irreducible factors over

Fp, where s runs through a set of representatives of the p-cyclotomic cosets modulo

n.

Definition 4.2. Let C3 be a cyclic code of length n over the ring R3,p, then we

associate to the code C3 two codes

C3,u2
= {c2(x) ∈

Fp[x]

⟨xn − 1⟩
| ∃ c0, c1 , c0 + uc1 + u2c2 ∈ C3}

and

C3,u = {c1 ∈
Fp[x]

⟨xn − 1⟩
| ∃ c0, c2 , c0 + uc1 + u2c2 ∈ C3}.

Lemma 4.2. Let C3 be a cyclic code of length n over the ring R3,p, where n is a

positive integer relatively prime to p. Then C3,u = Tor1(C3).

Proof. At first, we show that Tor1(C3) = ⟨a1(x)⟩, where C3 = ⟨g(x) + ua1(x) +

u2a2(x)⟩. Clearly

Tor1(C3) = {k(x) ∈ Fp[x]

⟨xn − 1⟩
|∃ t(x), uk(x) + u2t(x) ∈ C3}.
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Since ua1(x) ∈ C3,we must have a1(x) ∈ Tor1(C3).Conversely if k(x) ∈ Tor1(C3), then

uk(x) + u2t(x) ∈ C3, for some t(x) ∈ Fp[x]
⟨xn−1⟩ . So,

uk(x) + u2t(x) = (h0(x) + uh1(x) + u2h2(x))(g(x) + ua1(x) + u2a2(x)).

Now,we know that a1(x) | g(x), then k(x) ∈ ⟨a1(x)⟩.
Since ua1(x) ∈ C3, we have a1(x) ∈ C3,u. So Tor1(C3) ⊆ C3,u.Let c1(x) ∈ C3,u, then

there exist polynomials c0(x), c2(x) ∈ Fp[x]
⟨xn−1⟩ such that c0(x) + uc1(x) + u2c2(x) ∈

C3. Now, by the structure of the code C3, we have

c0(x) + uc1(x) + u2c2(x) = (h0(x) + uh1(x) + u2h2(x))(g(x) + ua1(x) + u2a2(x))

Since a1(x) | g(x), we must have c1(x) ∈ ⟨a1(x)⟩ = Tor1(C3). �

Lemma 4.3. Let C3 be a cyclic code of length n over the ring R3,p, where n is

relatively prime to p, then C3,u2
= Tor2(C3).

Proof. Let c2(x) ∈ C3,u2
, then c0(x) + uc1(x) + u2c2(x) ∈ C3, for some polynomials

c0(x), c1(x) ∈ Fp[x]
⟨xn−1⟩ . So,

c0(x) + uc1(x) + u2c2(x) = (h0(x) + uh1(x) + u2h2(x))(g(x) + ua1(x) + u2a2(x)).

But,we know that a2(x) | a1(x) | g(x), thus c2(x) ∈ ⟨a2(x)⟩. So C3,u2 ⊆ Tor2(C3).

Conversely if c(x) ∈ Tor2(C3), then u2c(x) ∈ C3.This implies that c(x) ∈ C3,u2
. So,

C3,u2
= Tor2(C3). �

Theorem 4.2. Let C3 be a cyclic code of length n over the ring R3,p. If w(x) =

w0(x) + uw1(x) + u2w2(x) be a received word with an error pattern e(x) = e0(x) +

ue1(x) + u2e2(x), wH(ei(x)) ≤ ⌊ (dH(Tor2(C3))−1)
2 ⌋, for i = 0, 2 and wH(e1(x)) ≤

⌊ (dH(Tor1(C3))−1)
2 ⌋, then w0(x), w2(x) can be decoded in the code Tor2(C3) and w1(x)

can be decoded in the code Tor1(C3).

Proof. Case(i): Suppose n is relatively prime to p.Let w(x) = c(x) + e(x), where

c(x) = c0(x) + uc1(x) + u2c2(x) is a codeword in C3. As u2c(x) = u2c0(x) ∈ C3

and u2c0(x) = u2(w0(x) − e0(x)), then w0(x) − e0(x) ∈ Tor2(C3). Since Tor2(C3)

is a cyclic code over the finite fieldFp, the word w0 can be decoded in the code

Tor2(C3).As c0(x) + uc1(x) + u2c2(x) ∈ C3, then c1(x) ∈ C3,u = Tor1(C3). So we

can decode w1(x) in the code Tor1(C3). Similarly we will decode w2(x) in the code

Tor2(C3).

Case(ii): Suppose n is not relatively prime to p. Similar to case (i) we can de-

code w0(x) in the code Tor2(C3). Let c(x) = c0(x) + uc1(x) + u2c2(x) ∈ C3, then

c(x) = (r0(x)+ur1(x)+u2r2(x))(g(x)+up1(x)+u2p2(x))+(s0(x)+us1(x))(ua1(x)+

u2q1(x))+u2t0(x)a2(x). Let ẃ1(x) = w1(x)−r0(x)p1(x). Now,we know that a1(x) | g(x)
, then ẃ1(x)−e1(x) ∈ ⟨a1(x)⟩ = Tor1(C3). So, ẃ1(x) can be decoded in Tor1(C3). Then

ẃ1(x) = d1(x)a1(x) + e1(x) for some polynomial d1(x) ∈ Fp(x). So, r1(x), s0(x) can

be determined by dividing the polynomial d1(x) to b1(x).Let

ẃ2(x) = w2(x)− r0(x)p2(x)− r1(x)p1(x)− s0(x)q1(x).
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But,we know that a2(x) | a1(x) | g(x), so ẃ2(x)− e2(x) ∈ ⟨a2(x)⟩ = Tor2(C3).Hence

we can decode ẃ2(x) in the code Tor2(C3). �

We work an example of this decoding procedure.

Example 4.1. Let α ∈ GF (33) be a root of the irreducible polynomial 2x3+x2+x+

1 ∈ F3[x]. In the following table we see that 2x3+x2+x+1 is a primitive polynomial

over the finite field F3.

i αi i αi

1 010 7 121

2 001 8 120

3 111 9 012

4 122 10 220

5 201 11 022

6 101 12 221

Clearly Mα(x) = Πi∈C1(x− αi) = (x− α)(x− α3)(x− α9) = 2x3 + x2 + x+ 1 over

the Galois field GF (33).Also Mα2(x) = 2x3 + x + 1,Mα4(x) = 2x3 + 2x2 + 2x + 1

and Mα7(x) = 2x3 + 2x2 + 1. But {C0, C1, C2, C4, C7} is a set of representatives of

the 3-cyclotomic cosets modulo 13, then x13 − 1 = (x + 2)(2x3 + x2 + x + 1)(2x3 +

x+ 1)(2x3 + 2x2 + 2x+ 1)(2x3 + 2x2 + 1) over F3 and R3,3. Let

C3 = ⟨Mα(x)Mα2(x)Mα4(x)Mα7(x) + uMα(x)Mα2(x)Mα4(x) + u2Mα(x)Mα2(x)⟩

be a cyclic code of length 13 over the ring R3,3. Since

Tor2(C3) = ⟨Mα(x)Mα2(x)⟩,

the code Tor2(C3) has roots {α, α2, α3} in the Galois field GF (33). So,Tor2(C3) is a

ternary 1-error-correcting cyclic code.Also Tor1(C3) = ⟨Mα(x)Mα2(x)Mα4(x)⟩, has
roots {α, α2, α3, α4, α5, α6} in the Galois field GF (33). So, Tor1(C3) is a ternary

3-error-correcting cyclic code. Let w(x) = 2x12+2x10+2x9+2x8+2x7+2x6+2x5+

2x4 + 2x3 + 2x2 + 2x + 2 + u(x11 + 2x5 + 2x4 + 2x2 + 2) + u2(2x12 + 2x11 + x10 +

2x9 + 2x7 + 2x6 + 2x4 + 2x3 + x2 + 2) be a received word with an error polynomial

e(x) = e0(x)+ue1(x)+u2e2(x). Let e0(x) = uxj, where u ∈ F3 and 0 ≤ j ≤ 12. Since

S1 = w0(α) = 022 = α11 = e0(α) = uαj ,

then e0(x) = x11.By using of the Sugiyama decoding algorithm ([6], Section 5.4.3)

and the following table we can decode w1(x) in the code Tor1(C3). Now,we know

that at most three errors have been occuring and the syndromes are

Ś1 = w1(α) = 2, Ś2 = 2α9, Ś3 = 2, Ś4 = α11, Ś5 = 2α3, Ś6 = 2α.
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Now,we summarizes the results in the following table.

i ri(x) hi(x) bi(x)

−1 x6 0

0 2αx5 + 2α3x4 + α11x3 + 2x2 + 2α9x+ 2 1

1 α9x4 + α12x3 + α10x2 + 2α2x+ α 2α12x+ α α12x+ 2α

2 2α11 2α5x+ 2α2 α4x2 + 2α7x+ α11

This implies that exactly two errors have been occuring.Hence σ(x) is a multiple of

b2(x) = α4x2+2α7x+α11. So σ(x) = α2b2(x) = α6x2+2α9x+1. It is easy to check

that σ(x) has roots α and α6.Then the error location numbers are X1 = α12 and

X2 = α7.As the code is ternary, we must determine the error magnitudes E1 and

E2,where e1(x) = E1x
12 + E2x

7. Then we must solve the matrix equation(
α12 α7

α11 α

)(
E1

E2

)
=

(
2

2α9

)
.

Solution of this matrix equation implies that E1 = 2 and E2 = 1.Therefore e1(x) =

2x12 + x7. Similarly w2(α) = 2α8, then e2(x) = 2x8.�

In continue let Ck be a cyclic code of length n over the ring Rk,p, then for

i = 1, 2, . . . , k − 1 the code Tork−1(Ck) is defined as:

Tork−1(Ck) = {t(x) ∈ Fp[x]

⟨xn − 1⟩
|uk−1t(x) ∈ Ck}

It is clear that Tork−1(Ck) is a cyclic code over the finite field Fp.Also for i =

1, 2, . . . , k − 1 the code Ck,ui
is defined as Ck,ui

= {ci(x) ∈ Fp[x]
⟨xn−1⟩ | c0(x) + uc1(x) +

· · ·+ ui−1ci−1(x) + ui+1ci+1(x) + · · ·+ uk−1ck−1(x) ∈ Ck}, for some c0(x), c1(x),

. . . , ck−1(x) ∈ Fp[x]
⟨xn−1⟩ . It is clear that Tori(C) and Ck,ui

are cyclic codes over the

finite field Fp, for i = 1, 2, . . . , k − 1.

Lemma 4.4. Let Ck = ⟨g+up1+ · · ·+uk−1pk−1, ua1+ · · ·+uk−1qk−2, u
2a2+ · · ·+

uk−1rk−3, . . . , u
k−2ak−2+uk−1s1, u

k−1ak−1⟩ be a cyclic code of length n over the ring

Rk,p, then Tori(C) = ⟨ai(x)⟩ for i = 1, 2, . . . , k − 1, and dH(Ck) = dH(Tork−1(Ck)).

Proof. The proof is similar to proof of Lemma 3.1. �

Lemma 4.5. Let Ck = ⟨g + ua1 + u2a2 + uk−2ak−2 + uk−1ak−1⟩ be a cyclic code of

length n over the ring Rp,n, and n is relatively prime to p, then for i = 1, 2, . . . , k −
1, the relation Ck,ui

= Tori(Ck) = ⟨ai(x)⟩ does hold.

Proof. Let t(x) ∈ Tori(Ck), then uit(x) ∈ Ck. So t(x) ∈ Ck,ui
.Conversely let ci(x) ∈

Ck,ui
, then c0(x)+uc1(x)+ · · ·+uk−1ck−1(x) ∈ Ck for some polynomials c0(x), c1(x)

, . . . , ck−1(x).So, by Theorem 3.3, c0(x) + uc1(x) + · · · + uk−1ck−1(x) = (r0(x) +

ur1(x)+· · ·+uk−1rk−1)(x))(g(x)+ua1(x)+u2a2(x)+uk−2ak−2(x)+uk−1ak−1(x)).Then

ci(x) = g(x)ri(x) + a1(x)ri−1(x) + · · · + ai(x)r0(x) for i = 1, 2, . . . , t − 1. Since

ai(x) | ai−1(x) | . . . | a2(x) | a1(x) | g(x), we must have ci(x) ∈ ⟨ai(x)⟩ = Tori(C). �
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Theorem 4.3. Let Ck be a cyclic code of length n over the ring Rk,p. If w(x) =

w0(x) + uw1(x) + · · · + uk−1wk−1(x) is a received word with an error polynomial

e(x) = e0(x) + ue1(x) + · · ·+ ut−1et−1(x),

wH(e0(x)) ≤ ⌊(dH(Tork−1(Ck)− 1)

2
⌋

and for i = 1, 2, . . . , k − 1,

wH(ei(x)) ≤ ⌊(dH(Tori(Ck)− 1)

2
⌋,

then w0(x) can be decoded in the code Tork−1(Ck) and for i = 1, 2, . . . , k − 1,wi(x)

can be decoded in the code Tori(Ck).

Proof. The proof is similar to proof of Theorem 4.2. �

5. Conclusions

We have described a decoding method for cyclic codes over the ring
Fp[u]
⟨uk⟩ , when

the code length is an arbitrary number.A natural open problem is to extend this work

for cyclic codes over chain rings, which residue field of chain ring is of characteristic

prime number p. Another useful direction for further study would be to present a

decoding algorithm for cyclic codes over the ring
Fp[u]
⟨uk⟩ with considering the Lee

weight.
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