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KINEMATICS AND DYNAMICS OF A PLANETARY GEAR 
TRAIN FOR ROBOTICS 

ŞT. STAICU * 

Lucrarea prezentă stabileşte unele relaţii matriceale recurente  privind 
analiza geometrică, cinematică şi dinamică a unui tren de roţi dinţate planetare,  
utilizat în robotică. Prototipul acestui mecanism este un sistem mecanic cu trei 
grade de libertate, care este constituit din şapte elemente şi patru angrenaje conice. 
Controlate de motoare electrice, trei elemente active ale robotului au trei rotaţii 
independente. Presupunând că poziţia şi mişcarea de rotaţie a platformei sunt 
cunoscute, se determină relaţii matriceale şi grafice pentru momentele celor trei 
cupluri active.  

Some recursive matrix relations concerning the geometric analysis, 
kinematics and dynamics of a Bendix wrist planetary bevel-gear train for robotics 
are established in this paper. The prototype of this mechanism is a three-degree-of-
freedom system with seven links and four bevel gear pairs. Controlled by electric 
motors, three active elements of the robot have three independent rotations. 
Supposing that the position and the rotational motion of the platform are known, an 
inverse dynamics problem is developed using the virtual powers approach. Finally, 
some recursive matrix relations and some graphs for the torques of the actuators 
are determined.  
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Introduction 

Generally, a parallel manipulator needs at least six degrees of freedom to 
freely manipulate an object in space. The first three moving links are used 
primarily for manipulating the position, while the second mechanism is used to 
control the orientation of the end-effectors. The subassembly associated with its 
last moving links is called the wrist, and their joint axes are often designed to 
intersect at a common point called the wrist centre. 

Planetary bevel-gear trains with three degrees of freedom are adopted as the 
design concept for robotic wrist (Hsieh and Sheu, 1995). Bevel-gear wrist 
mechanisms have been incorporated in most industrial robots because they are 
simple and compact in size compared to others and can be sealed in a metallic 
housing that keeps the gear trains free of contamination. Furthermore, using bevel 
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gear trains for power transmissions, actuators can be mounted remotely on the 
forearm, thereby reducing the weight and inertia of a robot manipulator. 

In the present paper some recursive matrix relations for the kinematics and 
dynamics of a Bendix wrist planetary bevel-gear train for robotics are established.    
 

1. Inverse geometric model 
 

Since a robot wrist must rotate about three axes, it is a mechanism with three 
degrees of freedom. Further, we present a matrix methodology for the geometric 
analysis and the kinematics using the concept of fundamental circuit of an open-
loop chain (Tsai, 1988, 1999). This method involves the identification of an open-
loop chain and the derivation of the geometric relationship between the 
orientation of the end-effector and the joint angles of the chain, including the 
input actuator displacement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Fig. 1 Bendix wrist mechanism 
 
Let )( 0000 TzyOx  be a fixed Cartesian frame, about which the mechanism 

moves. The wrist architecture consists of seven links, seven turning pairs and four 
bevel gear pairs (Fig. 1). Therefore, the wrist is a 3-dof spherical mechanism, 
which has a limited rotational range about the second joint axis. 

In the Bendix wrist, link a1 , of 1l  in length, masse Am1 and tensor of inertia AJ1̂ , 
one of the three driving parts of the robot, serves as carrier for the b1 - b2 and c1 -

c2 bevel gear pairs, while link a2 , of 2l  in length, masse Am2  and tensor of inertia 
AJ 2

ˆ , serves as carrier for the b2 - b3 and c2 - c3 bevel gear pairs. The gears b1  and 
c1 are sun gear, and gears cb 2,2 are planet gears adjacent to carrier a1 when 
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gear a3 is planet gear adjacent to carrier a2 . Three coaxial members numbered 
cba 1,1,1 are supported by bearings housed in the forearm.  

Bevel gear pairs b1 - b2 - b3 and c1 - c2 - c3 transmit the rotations of the coaxial 
input links to the end-effector. This moving platform of length 3l , masse Am3  and 

tensor of inertia AJ 3
ˆ is attached to the link cba 333 == , which is housed in the 

carrier a2  and is free to arbitrarily undergo three concurrent rotations with respect 
to the centre 0O  

 
Fig. 2 Kinematical scheme of the wrist 

 

Let us consider the rotation angles CBA
101010 ,, ϕϕϕ of the three actuators 

111 ,, CBA as variables giving the instantaneous position of the mechanism (Fig. 2). 
Pursuing the circuits BA,  and C  we obtain the successive transformation 
matrices (Staicu, 1998): 

                               232321212121010 ,, θθθ ϕϕϕ aaaaaa ===  

                               232323212111010 ,, θθθ ϕϕϕ bbbbbb ===  

                               2545434343 , θθ ϕϕ bbbb ==                                                         (1) 

                               232323212111010 ,, θθθ ϕϕϕ cccccc ===  

                               2545434343 , θθ ϕϕ cccc ==  

where one denoted 
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Further on, we introduce a matrix approach, which utilizes the theory of 
fundamental circuits. There exists a real or fictitious carrier for every gear pair in 
a planetary gear train and a fundamental matrix equation for each loop can be 
written as 

                            
,, 11,11,11,

1,,11,1

+−+−+−

−+−+

+==

=

kkkkkkkkk

kkykkkk

N
aaaa k

ααδϕϕ

ϕδϕ

                              (3) 

where 1, −kkϕ and kk ,1+ϕ denote the relative angular displacements of carrier kT and 
planet gear 1+kT , respectively, and 11, +− kk αα are the angles of the gear 1−kT and 1+kT . 
The gear ratios of a gear pair is defined as 11111,1 // −+−+−+ == kkkkkk zzrrN , where 

11 , +− kk rr  and 11 , +− kk zz  denote the radius and the number of teeth of two gears, 
respectively (Fig.3). 

Fig. 3 Gear fundamental circuit 
 

Let us suppose that the absolute motion of the platform attached to planet gear 
a3 is a general rotation around the centre 0O . In the inverse geometric problem, 

however, the orientation of the end- effector is known by intermediate of the three 
Euler’s angles ,, 21 αα 3α  expressed by the functions 

                                  )3,2,1()],
3

cos(1[* =−= ltll
παα .                                    (4) 
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leads to the general rotation matrix 
                                                                    123 aaaa =                                                       (5) 

Geometric conditions of rotation for the platform are given by the following 
identities  
                                           accbbaa TTT === 505050503030                                      (6) 
where 

                               21230 θθθ=a , 132325050 θθθθθ== cb .                               (7) 
From these equations, we obtains the real-time evolution of all characteristic 

joints: A
10ϕ , A

21ϕ , A
32ϕ , B

10ϕ , B
21ϕ , B

32ϕ , ,43
Bϕ ,54

Bϕ C
10ϕ , C

21ϕ , C
32ϕ , C

43ϕ , C
54ϕ . 

 
 2. Kinematics of robotic wrist mechanism 
 

In the design of power transmission mechanisms, it is often necessary to 
analyse the speed ratios between their input and output members and angular 
velocities or angular accelerations of the intermediate members. 

The analysis of the kinematics of bevel-gear wrist mechanisms of gyroscopic 
structure is very complex, due to the fact that the carriers and planet gears may 
have simultaneous angular velocities about nonparallel axes. The conventional 
tabular or analytical method, which concentrates on planar epicyclical gear trains, 
is no longer applicable. To overcome this difficulty, Freudenstein, Longman and 
Chen (1984) applied the dual relative velocity and dual matrix of transformation 
for the analysis of epicyclical bevel-gear trains. Chang and Tsai (1989) and 
Hedman (1993) showed that the kinematical analysis of geared robotic 
mechanisms can be accomplished by applying the theory of fundamental circuits. 

 Since a kinematical chain is an assemblage of links and joints, these can be 
symbolized in a more abstract form known as equivalent graph representation 
(Fig. 4). For the reason that will be clear later, we use the associated graph to 
represent the topology of the mechanism: vertices denote the links and edges 
denote the joints (Yang and Hsieh, 1991). Two small concentric circles label the 
vertex denoting the fixed link 0 . To distinguish the differences between pairs 
connections, gear pairs b1 - b2 , b2 - b3 , c1 - c2 , c2 - c3  are denoted by thick edges 
and revolute joints are denoted by thin edges. The three edged paths, which start 
from the base link 0 and end at the end-effector link a3 , consist of 
vertices bbbaaa 3,2,1,3,2,1 and ccc 3,2,1 . There are four independent loops and we 
identify four fundamental circuits. 

 
 
 
 
 



Şt. Staicu 8 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Associated graph of the wrist 
 
The kinematics of an element for each circuit (for example the circuit A ) are 

characterized by skew- symmetric matrices given by the recurrence relations 
(Staicu, 2000): 

                                     31,1,0,11,0
~~~ uaa A

kk
T

kk
A
kkk

A
k −−−− += ωωω                           (8) 

These matrices are associated to the absolute angular velocities  
                               A
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A
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A
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A
kkk

A
k ua 1,1,31,0,11,0 , −−−−− =+= ϕωωωω                           (9) 

Knowing the rotation motion of the platform by the relations (4), one develops 
the inverse kinematical problem and determines the velocities A

k
A

kv 00 ,ω  and 

accelerations A
k

A
k 00 ,εγ  of each of the moving links. The following matrix relations 

of connectivity constitute the inverse kinematical model  
                    =++ 330323202131010 uauuauuau TT

i
ATT

i
ATT

i
A ωωω  

                      }{ 332132212111 uaaauaauau TTTTTTT
i ααα ++= , )3,2,1( =i             (10) 

where 321
~,~,~ uuu are three skew-symmetric matrices associated with the orthogonal 

unit vectors 321 ,, uuu . The method is very straightforward and can by 
implemented on a computer for the automated analysis of a planetary gear train. 
This results in a system of linear equations that can be solved for angular 
velocities of all the links. These relations give the relative angular velocities 

AAA
322110 ,, ωωω  as a function of the angular velocities 321 ,, ααα  of the end-effector. 

For the other two circuits CB, of wrist, analogous relations can then be obtained 
with important remark 
                                              kkkkkk N ,11,11, +−+− = ωω                                        (11) 
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Starting from (10), a complete expression of the Jacobian of the mechanism is 
easily written in an invariant form. This square invertible matrix is an essential 
element for the analysis of singularity loci into robot workspace.           

Let us assume now that the mechanism has successively three independent 
virtual motions defined by the angular velocities Av

a10ω =1, Bv
a10ω =0, Cv

a10ω =0, Bv
b10ω =1, 

Cv
b10ω =0, Av

b10ω =0 and Cv
c10ω =1, Av

c10ω =0, Bv
c10ω =0.   

Characteristic virtual velocities expressed as functions of robot’s position are 
given by the above conditions of connectivity concerning the relative velocities of 
three circuits: 
                               TT

i au 30
Av

a30ω = TT
i bu 50

Bv
a50ω = TT

i cu 50
v
a

T
i

Cv
a u 050 ωω =                        (12) 

Concerning the relative angular accelerations ,10
Aε  AA

3221,εε  of the elements of 
circuit A , these are given by some other conditions of connectivity, obtained by 
deriving the relations (10); it results:  
                                         =++ 330323202131010 uauuauuau TT

i
ATT

i
ATT

i
A εεε   

                                      +++= 332132212111{ uaaauaauau TTTTTTT
i ααα  

                                      +++ 3322132221121
~~ uauaauaua TTTTT αααα  

                                      −−+ 32131021103321113
~~ uauauaaua TTAATTT ωωαα                      (13) 

                                     }.~~
3322131010323323203221 uaauauaua TTTAATTAA ωωωω −−  

The angular accelerations A
k 0ε  and the matrices A

k
A
k 00

~~ ωω + A
k 0

~ε  are easily 
calculated with the recurrence relations  
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3. Equations of motion 

 
Such bevel-gear wrist is often built with direct drive actuators and hence, the 

dynamics of this robot has a very important effect on the actuator torques. 
Therefore, the derivation of a dynamic model is desirable for the design of an 
efficient controller. 

The motion of the Bendix wrist is controlled by three electric motors, 111 ,, CBA  
which generate three moments 310103101031010 ,, ummummumm CCBBAA === having the 
directions of the coaxial axes CBA zOzOzO 101010 ,, . Considering that the mobile 
platform motion is given, the position, angular velocity, angular acceleration as 
well as the velocity and acceleration of the centre of mass are known of each 
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element. The inertia force and the resultant moment of inertia forces acting at 
rigid body kT are also evaluated with respect to the wrist centre 0O . On the other 

hand, the characteristic vectors ** , kk mf designate the action of the weight gmk  and 
of any other external and internal applied forces at the same element of the 
mechanism. 

In the context of the real-time control, neglecting the frictional forces and 
considering the gravitational effect, the relevant objective of a dynamic model is 
to determine the input torques, which must be exerted by the actuators in order to 
produce a given trajectory of the end-effector. 

In the inverse dynamic problem, in the present paper one applies the principle 
of virtual power in order to establish some recursive matrix relations for the 
torques of the three active couples. This fundamental principle states that a 
mechanism is under dynamic equilibrium if and only if the virtual power 
developed by all external, internal and inertia forces vanishes during any general 
virtual displacement, which is compatible with the constraints imposed on the 
mechanism. Applying the fundamental equations of parallel robots dynamics 
obtained in a matrix compact form by Ştefan Staicu (2000), the following matrix 
relation results 

                           =Am10
Tu3 { AM1

Av
a21ω+ AM 2

Av
a32ω+ AM 3 +     

                                   Bv
a21ω+ BM 2

Bv
a32ω+ BM 3

Cv
a21ω+ CM 2

Cv
a32ω+ CM 3 }                     (15) 
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The relations (15) and (16) represent the inverse dynamic model of the planetary 
gear trains. We can obtain analogous expressions for the torques CB mm 1010 , exerted 
by the other two 11 ,CB actuators.                    

The procedure developed above leads to very good estimates of the actuators 
torques for given displacement of end-effector, provided that the inertial 
properties of the gears are known with sufficient accuracy and that friction is not 
significant. It is also remarked that, depending on the masses and inertias of the 
bodies, the present matrix dynamic model leads to interesting and useful results 
for purposes of control. The new dynamic approach developed here is completely 
general and can be used for any gyroscopic bevel-gear train with revolute 
actuators. 
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As application let us consider the commonly known Bendix wrist which has 
the following characteristics: 

        05.021 == ll m, 075.03 =l m 02.01 =Br m, 025.02 =Br m, 02.03 =Br m, 

        015.01 =Cr m, 02.02 =Cr m, 02.03 =Cr m, 25.01 =Am kg, 35.02 =Am kg, 

       15.1333 === CBA mmm kg, 15.01 =Bm kg, 20.02 =Bm kg, 10.01 =Cm kg 

       15.02 =Cm kg, παπαπα === *
3

*
2

*
1 ,

4
,

3
, 6=Δt s. 

Finally, the graphs of the torques Am10 (Fig. 5), Bm10 (Fig.  6), Cm10 (Fig. 7) of three 
actuators are obtained. 

                               
Fig. 5 Torque Am10 of first actuator 

                               
Fig. 6 Torque Bm10 of second actuator 



Şt. Staicu 12

 
Fig. 7 Torque Cm10 of third actuator 

   
5. Conclusion 

 
     Based on the principle of virtual work, the new approach described above is 
very efficient and establishes a direct recursive determination of the variation in 
real-time of the torques of the actuators. The dynamical approach can be 
transformed into a model for automatic command of a bevel-gear wrist 
mechanism.  
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