

WEIGHTED TRANSLATION PRE-FRAME OPERATORS ON THE SPACE OF VECTOR-VALUED WEAKLY MEASURABLE FUNCTIONS

M.R. Azimi¹, F.Abedi²

In this paper, we first characterize the boundedness of the weighted translation pre-frame operator, namely, $T_{\omega,\varphi,f}$ and its adjoint. Then, we identify the relation between the adjoint of $T_{\omega,\varphi,f}$ and the translation frame operator which is denoted by $S_{\omega,\varphi,f}$. Basically, all results are obtained by using the conditional expectation properties.

MSC2010: 42C99; 46C10

Keywords: Weighted translation, Pre-frame, Conditional expectation, Measurable functions

1. Introduction

Frames were developed as a powerful tool in signal processing. The frame in a Hilbert space was defined by Duffin and Schaeffer [2] in 1952, for investigating some deep questions in non-harmonic Fourier series. A discrete frame is a countable family of elements in a separable Hilbert space, which allows stable and not necessarily unique decomposition of arbitrary elements in an expansion of frame elements. In this paper, \mathcal{H} refers to a Hilbert space over \mathbb{C} , and the closed unit ball of \mathcal{H} is denoted by \mathcal{H}_1 .

Let (X, Σ, μ) be a complete σ -finite measure space and suppose that φ is a measurable transformation (i.e., $\varphi^{-1}\Sigma \subseteq \Sigma$) from X into X such that $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ , that is, φ is non-singular. Let h_φ be the Radon-Nikodym derivative $\frac{d\mu \circ \varphi^{-1}}{d\mu}$ and we always assume that h_φ is almost everywhere finite-valued or, equivalently that $\mathcal{A} := \varphi^{-1}\Sigma \subseteq \Sigma$ is a σ -finite subalgebra. The support of a measurable function f is defined by $\sigma(f) = \{x \in X : f(x) \neq 0\}$. Recall that a measurable function f is said to be bounded away from zero, if there exists $\delta > 0$ such that $|f(x)| \geq \delta$ for almost $x \in X$. For any non-negative Σ -measurable functions f as well as for any $f \in L^2(\Sigma)$, corresponds a measure $v_f(B) = \int_B f d\mu$ for all $B \in \mathcal{A}$, which is absolutely continuous with respect to μ . Then, by the Radon-Nikodym theorem, there exists a unique non-negative \mathcal{A} -measurable function $E(f)$ such that

$$\int_B E(f) d\mu = \int_B f d\mu, \quad \text{for all } B \in \mathcal{A}.$$

Hence, we obtain an operator E from $L^2(\Sigma)$ onto $L^2(\mathcal{A})$, which is called the conditional expectation operator associated with the σ -finite subalgebra \mathcal{A} . The role of this operator is important and we list here some of its useful properties:

- (i) If f is an \mathcal{A} -measurable function, then $E(fg) = fE(g)$.
- (ii) If $f \geq 0$, then $E(f) \geq 0$; if $f > 0$, then $E(f) > 0$.
- (iii) $|E(f)|^p \leq E(|f|^p)$.
- (iv) $E(|f|^2) = |E(f)|^2$ if and only if f \mathcal{A} -measurable.

It is easy to show that for each non-negative Σ -measurable function f or for each $f \in L^2(\Sigma)$,

¹ Department of Mathematics, Faculty of Science, University of Maragheh, Iran, Email: mhr.azimi@maragheh.ac.ir

² Department of Mathematics, Faculty of Science, University of Maragheh, Iran, Email: 1.abedi@yahoo.com

there exists a unique Σ -measurable function g with $\sigma(g) \subseteq \sigma(h_\varphi)$ provided that $E(f) = g \circ \varphi$. We then write $g = E(f) \circ \varphi^{-1}$ though we make no assumptions regarding the invertibility of φ . For more details see [6], [8] and [10].

For a finite-valued Σ -measurable weight function ω , the weighted composition operator on $L^2(\Sigma)$ induced by φ and ω is given by

$$(\omega C_\varphi)f = \omega \cdot f \circ \varphi, \quad f \in L^2(\Sigma),$$

where C_φ is the composition operator on $L^2(\Sigma)$, defined by $C_\varphi f = f \circ \varphi$. Note that the non-singularity of φ guarantees that ωC_φ is well-defined as a mapping of equivalence classes of functions on $\sigma(\omega)$. Boundedness of weighted composition operators $L^p(\Sigma)$ spaces has already been studied in [6]. Namely, ωC_φ is bounded on $L^p(\Sigma)$ for $1 \leq p < \infty$ if and only if $J := h_\varphi E(|\omega|^p) \circ \varphi^{-1} \in L^\infty(\Sigma)$. Throughout this paper, we assume that $J \in L^\infty(\Sigma)$. The major properties of these operators have been studied by Harrington and Whitly [5], Lambert [6], [8] and by many other mathematicians.

The theory of weighted translation pre-frame operators is the generalizations of the theory of c -frames and c -Bessel mappings. The properties of c -frames and c -Bessel mappings have been studied in [4].

The change of variable formula will be frequently used throughout this paper and we remind it here as follows:

$$\int_{\varphi^{-1}(B)} f \circ \varphi d\mu = \int_B h_\varphi f d\mu, \quad B \in \Sigma, f \in L^1(\Sigma).$$

Definition 1.1. Let $L^2(X, \mathcal{H})$ be the class of all measurable mappings $f : X \rightarrow \mathcal{H}$ such that

$$\|f\|_2^2 = \int_X \|f(x)\|^2 d\mu < \infty.$$

For any $f, g \in L^2(X, \mathcal{H})$, based on the polar identity, we may conclude that the mapping $x \mapsto \langle f(x), g(x) \rangle$ of X to \mathbb{C} , is measurable and it can be seen that $L^2(X, \mathcal{H})$ is a Hilbert space with the inner product defined by

$$\langle f, g \rangle_{L^2} = \int_X \langle f(x), g(x) \rangle d\mu.$$

We shall write $L^2(X)$ when $\mathcal{H} = \mathbb{C}$.

2. Weighted translation pre-frame operator

Definition 2.1. Let $f : X \rightarrow \mathcal{H}$ be a mapping. We say that f is weakly measurable if for each $h \in \mathcal{H}$, the mapping $x \mapsto \langle h, f(x) \rangle$ of X to \mathbb{C} is measurable.

Definition 2.2. Let $f : X \rightarrow \mathcal{H}$ be weakly measurable. We say that f is a c -frame for \mathcal{H} , if there exist $0 < A \leq B < \infty$ such that

$$A\|h\|^2 \leq \int_X |\langle h, f(x) \rangle|^2 d\mu \leq B\|h\|^2, \quad h \in \mathcal{H}.$$

If only the right hand inequality is satisfied, then we say that f is a c -Bessel mapping for \mathcal{H} . Let $f : X \rightarrow \mathcal{H}$ be a c -Bessel for \mathcal{H} . Let $T_{\omega, \varphi, f} : L^2(X) \rightarrow \mathcal{H}$ be defined by

$$\langle T_{\omega, \varphi, f}(g), h \rangle = \int_X \omega(x)(g \circ \varphi)(x) \langle f(x), h \rangle d\mu(x), \quad h \in \mathcal{H}, g \in L^2(X).$$

It is evident that $T_{\omega, \varphi, f}$ is well-defined and linear. For each $g \in L^2(X)$ and $h \in \mathcal{H}$, we have

$$\begin{aligned}
\|T_{\omega, \varphi, f}(g)\| &= \sup_{h \in \mathcal{H}_1} |\langle T_{\omega, \varphi, f}(g), h \rangle| = \sup_{h \in \mathcal{H}_1} \left| \int_X \omega g \circ \varphi(x) \langle f(x), h \rangle d\mu \right| \\
&\leq \left(\int_X |\omega g \circ \varphi|^2 d\mu \right)^{1/2} \sup_{h \in \mathcal{H}_1} \left(\int_X |\langle f(x), h \rangle|^2 d\mu \right)^{1/2} \\
&= \left(\int_X E|\omega g \circ \varphi|^2 d\mu \right)^{1/2} \sup_{h \in \mathcal{H}_1} \left(\int_X |\langle f(x), h \rangle|^2 d\mu \right)^{1/2} \\
&= \left(\int_X |g \circ \varphi|^2 E(|\omega|^2) d\mu \right)^{1/2} \sup_{h \in \mathcal{H}_1} \left(\int_X |\langle f(x), h \rangle|^2 d\mu \right)^{1/2} \\
&= \left(\int_X |g|^2 h_\varphi E(|\omega|^2) \circ \varphi^{-1} d\mu \right)^{1/2} \sup_{h \in \mathcal{H}_1} \left(\int_X |\langle f(x), h \rangle|^2 d\mu \right)^{1/2} \\
&\leq B^{\frac{1}{2}} \|g\|_2 \|J\|_\infty^{\frac{1}{2}}.
\end{aligned}$$

Consequently, $T_{\omega, \varphi, f}$ is bounded. We shall denote $T_{\omega, \varphi, f} : L^2(X) \rightarrow \mathcal{H}$ by

$$T_{\omega, \varphi, f}(g) = \int_X \omega g \circ \varphi f d\mu, \quad g \in L^2(X),$$

and we call it the weighted translation pre-frame operator of f . For each $g \in L^2(X)$ and $h \in \mathcal{H}$, by an application of the conditional expectation properties and the change of variable formula, we have

$$\begin{aligned}
\langle g, T_{\omega, \varphi, f}^*(h) \rangle &= \langle T_{\omega, \varphi, f}(g), h \rangle = \int_X \omega(x) (g \circ \varphi)(x) \langle f(x), h \rangle d\mu \\
&= \int_X E(\omega(x) (g \circ \varphi)(x) \langle f(x), h \rangle) d\mu \\
&= \int_X (g \circ \varphi)(x) E(\omega(x) \langle f(x), h \rangle) d\mu \\
&= \int_X g(x) h_\varphi E(\omega \langle f, h \rangle) \circ \varphi^{-1} d\mu \\
&= \langle g, h_\varphi E(\bar{\omega} \langle h, f \rangle) \circ \varphi^{-1} \rangle.
\end{aligned}$$

Thus, $T_{\omega, \varphi, f}^*(h) = h_\varphi E(\bar{\omega} \langle h, f \rangle) \circ \varphi^{-1}$. Also, for each $h \in \mathcal{H}$, we have

$$\|T_{\omega, \varphi, f}^*(h)\|^2 = \langle T_{\omega, \varphi, f}^*(h), T_{\omega, \varphi, f}^*(h) \rangle = \int_X |h_\varphi E(\bar{\omega} \langle h, f \rangle) \circ \varphi^{-1}|^2 d\mu.$$

Therefore, $\|T_{\omega, \varphi, f}\| = \|T_{\omega, \varphi, f}^*\| = \left(\sup_{h \in \mathcal{H}_1} \int_X |h_\varphi E(\bar{\omega} \langle h, f \rangle) \circ \varphi^{-1}|^2 d\mu \right)^{\frac{1}{2}}$. The mapping $T_{\omega, \varphi, f}^* : \mathcal{H} \rightarrow L^2(X)$ is called the weighted translation analysis operator of f . We define, $S_{\omega, \varphi, f} : \mathcal{H} \rightarrow \mathcal{H}$ by

$$\begin{aligned}
S_{\omega, \varphi, f}(h) &= T_{\omega, \varphi, f} T_{\omega, \varphi, f}^*(h) = T_{\omega, \varphi, f} \left(h_\varphi E(\bar{\omega} \langle h, f \rangle) \circ \varphi^{-1} \right) \\
&= \int_X \omega h_\varphi \circ \varphi E(\bar{\omega} \langle h, f \rangle) f d\mu.
\end{aligned}$$

and we call it the weighted translation frame operator of f .

Note that each element of $L^2(X, \mathcal{H})$ is a c -Bessel mapping for \mathcal{H} . Moreover, for each c -Bessel mapping $f : X \rightarrow \mathcal{H}$, it is not so difficult to verify that $S_{\omega, \varphi, f}$ is invertible if and only if $T_{\omega, \varphi, f}$ is surjective, like as done in [3, Theorem 2.5].

Theorem 2.3. Suppose that a weight function ω is bounded away from zero and for each $x \in X$, the map $x \mapsto \overline{\omega(x)}\langle h, f(x) \rangle$ is $\varphi^{-1}\Sigma$ -measurable. Then $f : X \rightarrow \mathcal{H}$ is a c -frame for \mathcal{H} if and only if the operator $T_{\omega, \varphi, f}$ is a bounded and onto operator.

Proof. Let f be c -frame. By Definition 2.2, it is clear that $T_{\omega, \varphi, f}$ is bounded. We have to prove only that $T_{\omega, \varphi, f}$ is onto. Since $h_\varphi \circ \varphi > 0$ almost everywhere, we may assume that $h_\varphi \circ \varphi \geq \delta$ for some $\delta > 0$. Further, the fact that ω is assumed to be bounded away from zero, allows us to write $|\omega| \geq c$ for some $c > 0$. Then, by using the change of variable formula, we have

$$\begin{aligned} \|T_{\omega, \varphi, f}^*(h)\|^2 &= \int_X |h_\varphi E(\overline{\omega} \langle h, f \rangle) \circ \varphi^{-1}|^2 d\mu = \int_X h_\varphi^2 |E(\overline{\omega} \langle h, f \rangle) \circ \varphi^{-1}|^2 d\mu \\ &= \int_X h_\varphi |E(\overline{\omega} \langle h, f \rangle) \circ \varphi^{-1}|^2 d\mu \circ \varphi^{-1} = \int_X h_\varphi \circ \varphi |E(\overline{\omega} \langle h, f \rangle)|^2 d\mu \\ &\geq \delta \int_X E|\overline{\omega} \langle h, f \rangle|^2 d\mu = \delta \int_X |\omega|^2 |\langle h, f \rangle|^2 d\mu \geq \delta c \int_X |\langle h, f \rangle|^2 d\mu \geq \delta c A \|h\|^2. \end{aligned}$$

Therefore, by [1, Lemma 2.4.1], $T_{\omega, \varphi, f}$ is onto.

Conversely, let $T_{\omega, \varphi, f}$ be a bounded and onto operator. By [1, Lemma 2.4.1], there exists $c > 0$ such that for each $h \in \mathcal{H}$, $c\|h\|^2 \leq \|T_{\omega, \varphi, f}^*(h)\|^2$. On the other hand, by the change of variable formula, we have

$$\begin{aligned} c\|h\|^2 &\leq \|T_{\omega, \varphi, f}^*(h)\|^2 = \int_X |h_\varphi E(\overline{\omega} \langle h, f \rangle) \circ \varphi^{-1}|^2 d\mu \\ &= \int_X h_\varphi |E(\overline{\omega} \langle h, f \rangle) \circ \varphi^{-1}|^2 d\mu \circ \varphi^{-1} = \int_X h_\varphi \circ \varphi |E(\overline{\omega} \langle h, f \rangle)|^2 d\mu \\ &= \int_X h_\varphi \circ \varphi E(|\overline{\omega} \langle h, f \rangle|^2) d\mu \leq \|h_\varphi \circ \varphi\|_\infty \int_X |\overline{\omega} \langle h, f \rangle|^2 d\mu \\ &\leq \|h_\varphi \circ \varphi\|_\infty \|\omega\|_\infty^2 \int_X |\langle h, f \rangle|^2 d\mu. \end{aligned}$$

Since $\|h_\varphi \circ \varphi\|_\infty \|\omega\|_\infty^2 > 0$, we get that $A\|h\|^2 \leq \int_X |\langle h, f \rangle|^2 d\mu$ for some constant $A > 0$. The only thing to be proved is that f is c -Bessel. For this, the change of variable formula and the properties of the conditional expectation are essentially used to obtain that

$$\begin{aligned} \delta c \int_X |\langle h, f \rangle|^2 d\mu &\leq \delta \int_X |\omega|^2 |\langle h, f \rangle|^2 d\mu = \delta \int_X E|\overline{\omega} \langle h, f \rangle|^2 d\mu \\ &\leq \int_X h_\varphi \circ \varphi |E(\overline{\omega} \langle h, f \rangle)|^2 d\mu = \int_X h_\varphi |E(\overline{\omega} \langle h, f \rangle) \circ \varphi^{-1}|^2 d\mu \circ \varphi^{-1} \\ &= \int_X h_\varphi |E(\overline{\omega} \langle h, f \rangle) \circ \varphi^{-1}|^2 h_\varphi d\mu = \int_X |h_\varphi E(\overline{\omega} \langle h, f \rangle) \circ \varphi^{-1}|^2 d\mu \\ &= \|T_{\omega, \varphi, f}^*(h)\|^2 \leq \|T_{\omega, \varphi, f}^*\|^2 \|h\|^2. \end{aligned}$$

Hence, $\int_X |\langle h, f \rangle|^2 d\mu \leq B\|h\|^2$ for some $B > 0$, since $\|T_{\omega, \varphi, f}^*\| > 0$. \square

Let $f : X \rightarrow \mathcal{H}$ be a c -Bessel mapping for \mathcal{H} and let F be a measurable subset of X . Then, it is clear that $f\chi_F : X \rightarrow \mathcal{H}$ and $f|_F : F \rightarrow \mathcal{H}$ are c -Bessel mappings for \mathcal{H} . So, we can embed $L^2(F)$ in $L^2(X)$ as a closed subspace. Now, for each $h \in \mathcal{H}$ and each $g \in L^2(X)$, consider the following:

$$\int_X \omega g \circ \varphi(x) \langle f(x)\chi_F(x), h \rangle d\mu = \int_F \omega g \circ \varphi(x) \langle f(x), h \rangle d\mu.$$

According to this equation, the operators $T_{\omega, \varphi, f|_F}$ and $T_{\omega, \varphi, f\chi_F}$ can be uniquely determined in such a way that for any disjoint measurable subsets $F, G \subseteq X$, one has

$$T_{\omega, \varphi, f|_F} + T_{\omega, \varphi, f|_G} = T_{\omega, \varphi, f\chi_F} + T_{\omega, \varphi, f\chi_G} = T_{\omega, \varphi, f\chi_{(F \cup G)}} = T_{\omega, \varphi, f|(F \cup G)}.$$

Similar to [9, Theorem 3.1], for a c -Bessel mapping $f : X \rightarrow \mathcal{H}$ and a sequence of measurable subsets of X , namely $\{F_i\}_{i=1}^{\infty}$, we have $\lim_{n \rightarrow \infty} \|T_{\omega, \varphi, f|_{\bigcup_{i=1}^n F_i}}\| = \|T_{\omega, \varphi, f|_{\bigcup_{i=1}^{\infty} F_i}}\|$. Furthermore, for a sequence $\{F_i\}_{i=1}^{\infty}$ of pairwise disjoint and measurable subsets of X , $\sum_{i=1}^{\infty} T_{\omega, \varphi, f|_{F_i}} = T_{\omega, \varphi, f|_{\bigcup_{i=1}^{\infty} F_i}}$.

Theorem 2.4. *Let K be a Hilbert space, $f : X \rightarrow \mathcal{H}$ be a c -Bessel mapping for \mathcal{H} , and $u : \mathcal{H} \rightarrow K$ be a bounded linear mapping. Then:*

(i) *The mapping $uf : X \rightarrow K$ is a c -Bessel mapping for K , and*

$$uT_{\omega, \varphi, f} = T_{\omega, \varphi, uf}$$

(ii) *Suppose that a weight function ω is bounded away from zero and for each $x \in X$, the map $x \mapsto \overline{\omega(x)}\langle h, f(x) \rangle$ is $\varphi^{-1}\Sigma$ -measurable. Let f be a c -frame for \mathcal{H} . Then, uf is a c -frame for K if and only if u is surjective.*

Proof. (i) Since

$$\sup_{h \in \mathcal{H}_1} \int_X |\langle h, u(f(x)) \rangle|^2 d\mu \leq \|u\|^2 \sup_{h \in \mathcal{H}_1} \int_X |\langle h, f(x) \rangle|^2 d\mu,$$

uf is a c -Bessel mapping for K . For each $g \in L^2(X)$, we have

$$\begin{aligned} \langle T_{\omega, \varphi, uf}(g), k \rangle &= \int_X \omega g \circ \varphi(x) \langle u(f(x)), k \rangle d\mu \\ &= \int_X \omega g \circ \varphi(x) \langle f(x), u^*(k) \rangle d\mu = \langle T_{\omega, \varphi, f}(g), u^*(k) \rangle = \langle uT_{\omega, \varphi, f}(g), k \rangle. \end{aligned}$$

Hence, $T_{\omega, \varphi, uf} = uT_{\omega, \varphi, f}$.

(ii) Suppose that u is surjective. By (i), it is clear that $T_{\omega, \varphi, uf}$ is also surjective. Hence, by Theorem 2.3, uf is a c -frame for K . Conversely, suppose that uf is a c -frame for K . Then by Theorem 2.3, $T_{\omega, \varphi, uf}$ is surjective and again by (i), u is clearly surjective. \square

Proposition 2.5. *Let $f : X \rightarrow \mathcal{H}$ be a c -frame for \mathcal{H} . Then :*

- (i) $\sup_{h \in \mathcal{H}_1} \|T_{\omega, \varphi, f}^*(h)\|^2 = \|S_{\omega, \varphi, f}\|$.
- (ii) $\inf_{h \in \mathcal{H}_1} \|T_{\omega, \varphi, f}^*(h)\|^2 = \|S_{\omega, \varphi, f}^{-1}\|^{-1}$.
- (iii) $\|S_{\omega, \varphi, f}^{-1}\|$ and $\|S_{\omega, \varphi, f}\|$ are the optimal values satisfying

$$\|S_{\omega, \varphi, f}^{-1}\|^{-1} \leq S_{\omega, \varphi, f} \leq \|S_{\omega, \varphi, f}\|.$$

Proof. By scrutinizing the proof of [9, Theorem 3.3], the desired results can be similarly proved. \square

3. dual of c -Bessel mapping

Definition 3.1. *Let f, g be c -Bessel mappings for $h \in \mathcal{H}$. We say that f equals weakly to g whenever $T_{\omega, \varphi, f}^* = T_{\omega, \varphi, g}^*$, which is equivalent with $\langle h, f \rangle = \langle h, g \rangle$ a.e., for all $h \in \mathcal{H}$.*

Theorem 3.2. *Let f, g be c -Bessel mappings for \mathcal{H} . Then, the following assertions are equivalent:*

- 1) For each $h \in \mathcal{H}$, $h = T_{\omega, \varphi, f}(\langle h, g \circ \varphi^{-1} \rangle)$.
- 2) For each $k \in \mathcal{H}$, $k = T_{\omega, \varphi, g}(\langle k, f \circ \varphi^{-1} \rangle)$.
- 3) For each $h, k \in \mathcal{H}$, $\langle h, k \rangle = \int_X \omega \langle h, g(x) \rangle \langle f(x), k \rangle d\mu$.
- 4) For each $h \in \mathcal{H}$, $\|h\|^2 = \int_X \omega \langle h, g(x) \rangle \langle f(x), h \rangle d\mu$.
- 5) For each orthonormal bases $\{\gamma_j\}_{j \in J}$ and $\{e_i\}_{i \in I}$ for \mathcal{H} ,

$$\langle e_i, \gamma_j \rangle = \int_X \omega \langle e_i, g(x) \rangle \langle f(x), \gamma_j \rangle d\mu \quad i \in I, j \in J.$$

6) For each orthonormal bases $\{e_i\}_{i \in I}$ for \mathcal{H} ,

$$\int_X \omega \langle e_i, g(x) \rangle \langle f(x), e_j \rangle d\mu = \langle e_i, e_j \rangle \quad i, j \in I.$$

Proof. (1) \rightarrow (2). Choose $h, k \in \mathcal{H}$ arbitrarily. Then,

$$\begin{aligned} \langle h, k \rangle &= \left\langle T_{\omega, \varphi, f}(\langle h, g \circ \varphi^{-1} \rangle), k \right\rangle = \int_X \omega \langle h, g(x) \rangle \langle f(x), k \rangle d\mu \\ &= \overline{\int_X \omega \langle k, f(x) \rangle \langle g(x), h \rangle d\mu} = \overline{\left\langle T_{\overline{\omega}, \varphi, g}(\langle k, f \circ \varphi^{-1} \rangle), h \right\rangle} \\ &= \left\langle h, T_{\overline{\omega}, \varphi, g}(\langle k, f \circ \varphi^{-1} \rangle) \right\rangle. \end{aligned}$$

Hence, $k = T_{\overline{\omega}, \varphi, g}(\langle k, f \circ \varphi^{-1} \rangle)$. The implication (2) \rightarrow (3) is proved in a similar way. The proofs of the other implications can be approached like [9, Theorem 3.4] and we omit them. \square

Definition 3.3. Let f, g be c-Bessel mappings for \mathcal{H} . We say that f, g is a dual pair, if one of the assertions of Theorem 3.2 is satisfied.

Remark 3.4. Let f, g be a dual pair. Since every function in $L^2(X)$ is c-Bessel mapping, thus, for each $h \in \mathcal{H}$, we have

$$\begin{aligned} \|h\|^2 &= \int_X \omega \langle h, g(x) \rangle \langle f(x), h \rangle d\mu \leq \int_X |\omega \langle h, g(x) \rangle \langle f(x), h \rangle| d\mu \\ &\leq \left(\int_X |\langle h, g(x) \rangle|^2 d\mu \right)^{1/2} \left(\int_X |\omega \langle h, f(x) \rangle|^2 d\mu \right)^{1/2} \\ &\leq \left(\int_X |\langle h, g(x) \rangle|^2 d\mu \right)^{1/2} \|h\| B^{\frac{1}{2}} \|\omega\|_{\infty}. \end{aligned}$$

Hence, g is a c-frame for \mathcal{H} .

Theorem 3.5. Suppose that a weight function ω is bounded away from zero and for each $x \in X$ and $h \in \mathcal{H}$, the map $x \mapsto \overline{\omega(x)} \langle h, f(x) \rangle$ is $\varphi^{-1}\Sigma$ -measurable. Let f be a c-frame for \mathcal{H} . Then the following arguments hold.

1) For each $h \in \mathcal{H}$, we find the following formulas

$$h = T_{\omega, \varphi, S_{\omega, \varphi, f}^{-1}} \left(h_{\varphi} E(\overline{\omega} \langle h, f \rangle) \circ \varphi^{-1} \right),$$

and

$$h = T_{\omega, \varphi, f} \left(h_{\varphi} E(\overline{\omega} \langle S_{\omega, \varphi, f}^{-1}(h), f \rangle) \circ \varphi^{-1} \right).$$

- 2) In the formula $h = T_{\omega, \varphi, f} \left(h_{\varphi} E(\overline{\omega} \langle S_{\omega, \varphi, f}^{-1}(h), f \rangle) \circ \varphi^{-1} \right)$, $h_{\varphi} E(\overline{\omega} \langle h, S_{\omega, \varphi, f}^{-1} f \rangle) \circ \varphi^{-1}$ has the least norm among all of the retrieval formulas.
- 3) For each $h \in \mathcal{H}$, $h = T_{\omega, \varphi, f} \langle h, g \circ \varphi^{-1} \rangle$ if and only if there exists a c-Bessel mapping l for \mathcal{H} such that $g \circ \varphi^{-1} = S_{\omega, \varphi, f}^{-1} f + l$, where for each $k \in \mathcal{H}$, $\langle k, l \rangle \in \ker(T_{\omega, \varphi, f})$.
- 4) The map f has just one dual if and only if $\mathcal{R}(T_{\omega, \varphi, f}^*) = L^2(X)$.

Proof. (1) Since f is c -frame, then by Theorem 2.3, $T_{\omega,\varphi,f}$ is onto and hence $S_{\omega,\varphi,f}$ is an invertible operator as argued earlier. Consequently, for each $h \in \mathcal{H}$, we obtain that

$$\begin{aligned} h &= S_{\omega,\varphi,f}^{-1} S_{\omega,\varphi,f}(h) = S_{\omega,\varphi,f}^{-1} T_{\omega,\varphi,f} T_{\omega,\varphi,f}^*(h) \\ &= T_{\omega,\varphi,S_{\omega,\varphi,f}^{-1} f} \left(h_\varphi E(\bar{\omega} \langle h, f \rangle) \circ \varphi^{-1} \right). \end{aligned}$$

Moreover, we have

$$\begin{aligned} h &= S_{\omega,\varphi,f} S_{\omega,\varphi,f}^{-1}(h) = T_{\omega,\varphi,f} T_{\omega,\varphi,f}^* \left(S_{\omega,\varphi,f}^{-1}(h) \right) \\ &= T_{\omega,\varphi,f} \left(h_\varphi E(\bar{\omega} \langle S_{\omega,\varphi,f}^{-1}(h), f \rangle) \circ \varphi^{-1} \right). \end{aligned}$$

(2) Choose $\phi \in L^2(X)$ and let $h = T_{\omega,\varphi,f}(\phi)$. Then, for each $g \in \mathcal{H}$, we have

$$\begin{aligned} \langle h, g \rangle &= \left\langle T_{\omega,\varphi,f} \left(h_\varphi E(\bar{\omega} \langle S_{\omega,\varphi,f}^{-1}(h), f \rangle) \circ \varphi^{-1} \right), g \right\rangle \\ &= \int_X \omega \left(h_\varphi E(\bar{\omega} \langle S_{\omega,\varphi,f}^{-1}(h), f \rangle) \circ \varphi^{-1} \right) \circ \varphi \langle f, g \rangle \, d\mu \\ &= \int_X \omega(x) (h_\varphi \circ \varphi)(x) E(\bar{\omega} \langle S_{\omega,\varphi,f}^{-1}(h), f(x) \rangle) \langle f(x), g \rangle \, d\mu. \end{aligned}$$

In the same way, we get that

$$\langle h, g \rangle = \langle T_{\omega,\varphi,f}(\phi), g \rangle = \int_X \omega(x) (\phi \circ \varphi)(x) \langle f(x), g \rangle \, d\mu.$$

Therefore,

$$\begin{aligned} \langle h, g \rangle - \langle h, g \rangle &= \left\langle T_{\omega,\varphi,f} \left(h_\varphi E(\bar{\omega} \langle S_{\omega,\varphi,f}^{-1}(h), f \rangle) \circ \varphi^{-1} - \phi \right), g \right\rangle \\ &= \int_X \omega \left(h_\varphi E(\bar{\omega} \langle S_{\omega,\varphi,f}^{-1}(h), f \rangle) \circ \varphi^{-1} - \phi(x) \right) \circ \varphi \langle f(x), g \rangle \, d\mu = 0. \end{aligned}$$

So, $T_{\omega,\varphi,f} \left(h_\varphi E(\bar{\omega} \langle S_{\omega,\varphi,f}^{-1}(h), f \rangle) \circ \varphi^{-1} - \phi \right) = 0$.

Eventually, $h_\varphi E(\bar{\omega} \langle S_{\omega,\varphi,f}^{-1}(h), f \rangle) \circ \varphi^{-1} - \phi \in \ker(T_{\omega,\varphi,f})$. Since f is a c -Bessel mapping for \mathcal{H} , we obtain that $h_\varphi E(\bar{\omega} \langle S_{\omega,\varphi,f}^{-1}(h), f \rangle) \circ \varphi^{-1} \in \mathcal{R}(T_{\omega,\varphi,f}^*)$. But, $L^2(X) = \ker(T_{\omega,\varphi,f}) \oplus \mathcal{R}(T_{\omega,\varphi,f}^*)$. Consequently,

$$\|\phi\|^2 = \|h_\varphi E(\bar{\omega} \langle S_{\omega,\varphi,f}^{-1}(h), f \rangle) \circ \varphi^{-1} - \phi\|^2 + \|h_\varphi E(\bar{\omega} \langle S_{\omega,\varphi,f}^{-1}(h), f \rangle) \circ \varphi^{-1}\|^2$$

and (2) is proved.

(3) Let g be a c -Bessel mapping for \mathcal{H} . For each $h \in \mathcal{H}$, assume that $h = T_{\omega,\varphi,f} \langle h, g \circ \varphi^{-1} \rangle$. Let $g \circ \varphi^{-1} - S_{\omega,\varphi,f}^{-1} f = l$. By Theorem 3.2, for each $h, k \in \mathcal{H}$, we have

$$\begin{aligned} \left\langle T_{\omega,\varphi,f} \langle k, l \rangle, h \right\rangle &= \left\langle T_{\omega,\varphi,f} \langle k, g \circ \varphi^{-1} \rangle, h \right\rangle - \left\langle T_{\omega,\varphi,f} \langle k, S_{\omega,\varphi,f}^{-1} f \rangle, h \right\rangle \\ &= \int_X \omega \langle k, g \rangle \langle f, h \rangle - \int_X \omega \langle k, S_{\omega,\varphi,f}^{-1} f \circ \varphi \rangle \langle f, h \rangle = \langle k, h \rangle - \langle k, h \rangle = 0. \end{aligned}$$

Hence, for each $k \in \mathcal{H}$, $\langle k, l \rangle \in \mathcal{R}(T_{\omega,\varphi,f}^*)^\perp = \ker(T_{\omega,\varphi,f})$. Now, let $g \circ \varphi^{-1} = S_{\omega,\varphi,f}^{-1} f + l$. Then, for each $h \in \mathcal{H}$, we have

$$\begin{aligned} \int_X \omega \langle f, h \rangle \langle k, g \rangle \, d\mu &= \int_X \omega \langle f, h \rangle \langle k, (S_{\omega,\varphi,f}^{-1} f + l) \circ \varphi \rangle \, d\mu \\ &= \int_X \omega(x) \langle f(x), h \rangle \langle k, S_{\omega,\varphi,f}^{-1} f \circ \varphi \rangle \, d\mu + \int_X \omega(x) \langle f(x), h \rangle \langle k, l \circ \varphi \rangle \, d\mu \\ &= \langle k, h \rangle + \left\langle T_{\omega,\varphi,f} \langle k, l \rangle, h \right\rangle = \langle k, h \rangle. \end{aligned}$$

Thus, by Theorem 3.2, $h = T_{\omega, \varphi, f} \langle h, g \circ \varphi^{-1} \rangle$.

(4) Let $\mathcal{R}(T_{\omega, \varphi, f}^*) \neq L^2(X)$. Pick $l \in \mathcal{R}(T_{\omega, \varphi, f}^*)^\perp$ with $\|l\| = 1$. Consider the map $k : X \rightarrow L^2(X)$ defined by $k(x) = l \circ \varphi(x)l$. For each $t \in L^2(X)$, the map $X \rightarrow \mathbb{C}$, defined by the assignment $x \mapsto \langle t, k(x) \rangle$ is Σ -measurable and $\int_X |\langle t, k(x) \rangle|^2 d\mu = \int_X |\langle t, l \circ \varphi(x)l \rangle|^2 d\mu = \int_X |\langle t, l \rangle|^2 |l \circ \varphi(x)|^2 d\mu = |\langle t, l \rangle|^2 \leq \|t\|^2$. Thus, k is a c -Bessel mapping for $L^2(X)$. Let $v : L^2(X) \rightarrow \mathcal{H}$ be a mapping such that $v(l) \neq 0$. Then vk is c -Bessel mapping for \mathcal{H} , and so $S_{\omega, \varphi, f}^{-1}f + vk$ is a c -Bessel mapping for \mathcal{H} . Let $h \in \mathcal{H}$. Since

$$\begin{aligned} \int_X \omega \langle h, S_{\omega, \varphi, f}^{-1}f(x) + vk(x) \rangle \langle f(x), h \rangle d\mu \\ = \int_X \omega \langle h, S_{\omega, \varphi, f}^{-1}f(x) \rangle \langle f(x), h \rangle d\mu + \int_X \omega \langle h, vk(x) \rangle \langle f(x), h \rangle d\mu \\ = \|h\|^2 + \langle v^*(h), l \rangle \int_X \omega \overline{l \circ \varphi(x)} \langle f(x), h \rangle d\mu \\ = \|h\|^2 + \langle v^*(h), l \rangle \langle T_{\omega, \varphi, f}(l), h \rangle = \|h\|^2, \end{aligned}$$

it is inferred that $S_{\omega, \varphi, f}^{-1}f + vk$ is the dual of f . Moreover, the equation

$$\langle v(l), vk(x) \rangle = \langle v(l), l \circ \varphi(x)v(l) \rangle = \overline{l \circ \varphi(x)} \langle v(l), v(l) \rangle$$

implies that $S_{\omega, \varphi, f}^{-1}f + vk$ is not weakly equal to $S_{\omega, \varphi, f}^{-1}f$. Conversely, suppose that $L^2(X) = \mathcal{R}(T_{\omega, \varphi, f}^*)$. Now, put $g \circ \varphi^{-1} = S_{\omega, \varphi, f}^{-1}f + l$, where for each $k \in \mathcal{H}$, $\langle k, l \rangle \in \ker(T_{\omega, \varphi, f}) = \mathcal{R}(T_{\omega, \varphi, f}^*)^\perp = \{0\}$. Therefore, $l = 0$ weakly, so f has just one dual. \square

Example 3.6. Let $X = [0, 2]$, Σ be the Lebesgue measurable subsets of X and μ be the Lebesgue measure on X . Also let $\varphi : X \rightarrow X$ be a non-singular measurable transformation with $h_\varphi \in L^\infty$ and let $f : X \rightarrow L^2(X)$ be a c -Bessel mapping for $L^2(X)$. For $A \subseteq X$, put $h = \chi_A$. Then, for $T_{\omega, \varphi, f} : L^2(X) \rightarrow L^2(X)$ the following is obtained

$$\langle T_{\omega, \varphi, f}(g), \chi_A \rangle = \int_0^2 \int_A \omega f(x) d\nu g \circ \varphi d\mu,$$

where ν is the Lebesgue measure on A . Since $g \circ \varphi \in L^1(\mu)$ and $f(x) \in L^1(\nu)$, then by the Fubini's theorem, $f(x)g \circ \varphi \in L^1(\mu \times \nu)$ and

$$\int_A T_{\omega, \varphi, f}(g) d\nu = \int_A \int_0^2 \omega f(x) g \circ \varphi d\mu d\nu.$$

It follows that the formula of the bounded operator $T_{\omega, \varphi, f}$ on $L^2(X)$ is $T_{\omega, \varphi, f}(g) = \int_0^2 \omega f(x) g \circ \varphi d\mu$.

REFERENCES

- [1] O. Christensen, Frames and Bases, An Introductory Course, Kegs. Lyng by, Denmark November, 2007.
- [2] R. J. Duffin, A. C. Shaeffer, A class of non- harmonic Fourier series, Trans. Amer. Math. Soc., **72** (1952), 341-366.
- [3] H. Emamalipour, M.R. Jabbarzadeh and Z. Moayyerizadeh, A Substitution vector valued integral operator, J. Math. Anal. Appl. **431**(2015), 812-821.
- [4] M. H. Faroughi, E. Osgooei, c -frame and c -Bessel mappings, Bull. Iranian Math. Soc. **38** (2012), no. 1, 203-222.
- [5] D. Harrington, R. Whitley, Seminormal composition operators, J. Operator Theory **11** (1984), no. 1, 125-135.
- [6] T. Hoover, A. Lambert, and J. Queen, The Markov process determined by a weighted composition operator, Studia Math. **72** (1982), no. 3, 225-235.
- [7] E. Kreyszig, Introductory Functional Analysis with Applications, Wiley, New York, 1978.
- [8] A. Lambert, Hyponormal composition operators, Bull. London Math. Soc. **18** (1986), no. 4, 395-400.
- [9] Z. Moayyerizadeh, H. Emamalipour, Weighted composition operator valued integral, Matematiche (Catania) **71** (2016), no. 2, 161-172.
- [10] M. M. Rao, Conditional Measure and Applications, Marcel Dekker, New York, (1993).