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EXTENDING CLOSED ANALYTICAL FORMULAS TO
CASCADE AERODYNAMICS BY USING CONFORMAL
MAPPING AND FAST FOURIER TRANSFORM

Corneliu BERBENTE ', Maria-Ramona DINU 2

Se extinde transformarea conforma a retelelor de pldci la retele de profile
groase, de forma datd. Expresiile analitice inchise ale potentialului complex al
vitezelor sunt, de asemenea, mentinute. In acest scop, se utilizeazd interpretarea
directd, data de autori, efectelor vitezei introduse in amonte, ca singularitati ale
curgerii in planele transformate. De asemenea, se defineste o rellea de placi
atasata de cea reald. Pentru obtinerea conturului circular, se utilizeaza
Transformata  Fourier Rapidd in variabildi complexd, in combinatie cu
transformarea conformad Joukowsky, pentru accelerarea convergentei. Metoda este
validatd. Se prezintd aplicatii la distributiile de viteze §i presiuni pe profile de
turbina.

The conformal mapping for cascade blades is extended to cascade of thick
profiles of given form. The closed analytical expressions for the complex potential of
the velocity field are maintained. To this aim the author’s direct interpretation of the
upstream velocity effects as flow singularities in the transformed planes is used. A
row of plates attached, to the real one is defined. To obtain the circle contour the
Fast Fourier Transform in complex variable is applied, combined with Joukowsky
transform, to accelerate the convergence. The method is validated. Applications to
velocity and pressure distributions for turbine profiles are given.

Keywords: turbine profile; Fast Fourier Transform; complex velocity potential,
conformal mapping.

1. Introduction

The determination of the velocity field in incompressible flow by using the
conformal mapping has several advantages: a direct view of the flow geometry,
more compact formulas and a straightforward implementation of the Joukowsky
condition in order to determine the circulation. Although the numerical have been
strongly developed, a combination between the analytical and numerical
calculation could be the optimal strategy, as one point out in this paper. The
incompressible flow is met in several applications like: hydraulic turbines [1], [2],
[3], [4], wind turbines [5]. It can be as well a possible comparison and an initial
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approximation for subsonic compressible flows [3], [6]. Of course, the
compressor cascades are simpler to solve because the profiles are thinner.

Unlike the other papers where particular profiles are obtained from
transformation of particular contours [7], here more general profiles of given form
are considered. In comparison with [8], a more general interpretation and an
improvement of the method is achieved.

2. The interpretation of the upstream velocity effects as singularities
in the circle plan.

Now let us consider a parallel stream of constant complex velocity at
infinity in the z - plan, w_ (Fig.1), i being the angle of attack.

The simplest problem for cascade flow is to determine the distribution of
speeds and pressure on linear cascade of plates in incompressible stationary flow.

One starts from a closed analytical formula for the conformal mapping of a
row of blades on a circle of radius one [1], [2], [3], namely:

_t{ a, C+R 5 CR+1
Zp(Q)—Zn[e lnC_R+e ln—QR—l+B] , (2.1)

where ¢ is the cascade pitch, A- the angle of installation (A > 0 for turbine and
A < 0 for compressor), { - complex variable in the circle plan, z - complex

variable in the profile plan; R > 1 is a parameter to be determined and B an
adjustment constant.
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Fig. 1. Linear cascade of plates

The complex velocity is written under the form:
w, =V, e (2.2)
where V_ is the velocity modulus.
If i_ is different from zero, a circulation I will occur around every plate
from the cascade.
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One proceeds in two steps: first one determines the effect of w_ ; then one
expresses the effect of T'.

2.1. Determination of the velocity potential without circulation

The relation between velocities in the two plans is:
w

dg
where W is the complex velocity in the plan (.
From the expression (2.1) one notes that, for z — oo correspond two
points outside the circle, namely ¢ = +R . For the corresponding velocities in the
plan { one obtains:

w

(2.3)

w, -t e
W, T 2.4
W) >+ = i (2.4)

i.e. in points ¢ = £R one should have combinations of sources and vortices of the
following intensities:

I, =%tV e ; @ =21-i,. (2.5)

In order to conserve the circle as streamline, at points ¢ =+1/R

combinations of sources and vortices of complex-conjugate intensities have to be

placed, as follows:

sl oV o _ (2.6)
P e One obtains the complex potential

of the flow without circulation:

F)-= t-;;oo . (ei«m . 1n(é/+_§J g m(%]j + const. 2.7)

2.2. Determination of the velocity potential due to circulation

The row of vortices placed on plates of intensity /” disturbs the velocity at

e . : . T
infinity, according to Joukowsky theorem, with a velocity — parallel to the front

of the cascade (Fig.1).
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Fig. 3. Sources and vortices

The additional velocity due to circulation at infinity, w’, is:

' ir —i-A
w=—--e", Z—>®
2t
By introducing (2.1) in the expression (2.6) one obtains:
, ir 1
(W )4_, > E— ,
4r (R

2.8)

2.9)

that is vortices of intensity L should be placed in points ¢ = £R , as well as other

vortices to maintain the circle as a streamline (Fig.3).

The complex potential of the flow due to circulation is then:

F(¢)= _i lnﬂJr const
: 4z R*-(*-1 '
The total complex potential of the flow in the plan { is the sum:
F({)=F()+F(S) -

(2.10)

The Joukowsky condition is a null velocity at the trailing edge i.e.:

(Z,,_?Jgp =0, (pp=1 0.=-6,),
Where from one obtains the circulation:
_ 4R cos(6,)
T RP+1 cosd
and the velocity, v, on the profile (plate):
-v R’ -sin(g, + ) —sin(p, —6) r R* -1
Vv,  R-sin(A+6)-sin(1-0) 4.7V, R®-sin(4+6)-sin(A-0)

0

-tV -sin(i, )

(2.8)

(2.11)

(2.12)

(2.13)
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The angle 0, and the parameter R are determined from the system of two
equations given bellow:

14+2Rcosf, + R? . 2Rsin @
é:l- cos Aln €05% 5 +251n/1tan’1$
t 1-2Rcos, + R R -1
2
tand, = —tan A 2.14
* R*+1 (.19

Remarks.1. According to Carafoli theory [2], for profiles with round
trailing edge, the Joukowsky condition is maintained in the form (2.11), leading
to a null velocity on the profile trailing edge.

2. The intensity of singularities (sources and vortices) is conserved by
conformal mapping, but these singularities are placed in changed positions with
respect to the circle (points M, N - Fig.6).

3. The cascade of profiles of given shape

If the blade shape, thickness and angle of installation are specified, one
will determine the function that transforms the outside of the unit circle to outside
the cascade profiles.

First one defines an attached cascade of plates (Fig.4) by choosing a
chord plate attached to the given profile, satisfying the condition:

Attached A
chord plate

Fig.4. The attached cascade of plates
t
< eos(2), 3.1

leading to:
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|(x—xc)sin¢9+(y—yc)cos6?|<%cos(/1+¢9) (3.2)

where 7 - cascade pitch, 4 — cascade profiles installation angle, (x, y.) is the center
of the attached plate chord and 4 its inclination angle (Fig.4).

The total transformation consists of the relation (2.1) applied to the
attached cascade of plates which transforms the cascade of profiles into a shape £
(z2 plane) and the transformation g witch is leading this shape on the unit circle

(Fig. 5 - plane K) [4], [5]:
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Fig. 5. Successive transformations

To determine the transformation, one will first calculate the contour E
coordinates using Newton-Raphson method.
Then one will determine a closest to the contour E ellipse of equation:
ax,” +by,” +cx,y, +dx, +ey, +1=0 (3.3)
The contour coordinates (x,,y;) verify the equation (3.2) with
approximation ¢&;
ax,” +by,’ +cx,y, +dx, +ey, +1=¢,i=1,2,...,n (3.4)
One defines closest an ellipse whose coefficients (@, b, ¢, d, e) verify the
condition of minimum amount with the weights w;, :

S=>¢g'w, =min (3.5)
i=1
Then one will apply the Joukowsky transform to obtain a circle from
ellipse:
2 22
g=|z+ S vz, =2 0 (3.6)
z 4

where: zj is centre, 7 the axial inclination and a and b are the semi-axes of the
closest ellipse.
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The advantage is that the transformed contour C (Fig.5) is close to a circle
and the transformation to a final circle K is accelerated. The five parameters
(a, b, ¢, d, e) are obtained by applying the least squares method.

If z; is the function that transforms the unit circle in the contour C, for
finding this transform one uses the Fast Fourier Transform (FFT). A FFT is a way
to compute the result more quickly because one obtains the result in only
O(NlogN) instead of O(N 2) operations. Then one uses the development:

n-=2
z=Yu {7, n=2",seN. (3.7)
j=—1

The above truncated Laurent series takes into account that in a flow
outside a contour, the points at infinity have to correspond to each other by
conformal mapping [9]. One takes equally spaced points on circle and one writes:

¢ =exp(iks); =2x/n: k=0;(n—-1) ; i=~-1

1 n—1 -
u_; ==y explijks); j=-1;(n-2) 3.8)
N k=0
[/ \
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Fig. 6. The position of singularities

The coefficients u_; are determined so that the coordinates (x;y;) are close

enough to the curve C. The velocity potential is easily written as before (see also
(2.7)), the outer singularities being placed in the new points M, N (Fig.6).One
obtains the total potential in a closed analytical formula:

F(g)—%- e InE M | o p S EG —Eln(g_gM)(g_gN)+const.
27 c—6y c—¢c, ) 4 (c-¢ce-sc)

(3.9)
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The Joukowsky condition is imposed at the point F’, the correspondent of
the trailing edge point F, of the given profile.

The velocity distribution results from the relation:

d:
_|9F] |42, (.11)
dc| |dg
Then one calculates the pressure coefficient, C,:
2
szl—[V] (3.12)
Vw

4. Validation and applications

4.1. Test and validation. To validate and test the proposed method,
especially as regard the FFT, one remarks that, if the first obtained contour (£-
Fig.5) would be exact an ellipse, the calculation is completely analytical. We
proceed as follows:

a. one takes an ellipse of semi-axis s = 1.4, [ = 1.1 with the centre at
(-0,0675; 0,2923) and 7 = 103" in the plan z,, transformed in a cascade of profiles
(b=50;t/b=1.4;4=25%i,=10°;5s=1.4;/=1.1) in plan z, (Fig. 7);

b. then one chooses an attached cascade of plates as in Fig. 7 and applies
the general procedure. The results are compared in Fig. 8 and Fig. 9. One obtains
a very good agreement and thus the method is validated ( mainlyregarding the
truncated Laurent series and FFT).

Remark. If the chord C, of the attached cascade is even the chord AF one
obtains an exact solution. However, in general, the chord AF of the given profile
is not the best selection.

£
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X

Fig. 7 Turbine cascade: Profile b=50; t/b=1.4; A=25"; i,=10°; s=1.4; I=1.1
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Fig. 8. The distribution of speeds
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Fig. 9. The distribution of pressure

4.2. Applications

The following parameters were varied: 1) #/b - the relative cascade pitch;
A — cascade installation angle. From Table 1 one observes:

- when the installation angle 4 is constant and the relative pitch decreases,
R increases and the contour £ is deformed very much;

- when the relative pitch is constant, the installation angle increases, R
decreases.
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Table 1
Variation of cascade profiles parameters

|/1| 5 10 20 30 40 45
t/b R R R R R R
0,80 1,32512 1,32078 1,30346 1,27480 1,23522 1,21154
0,90 1,42146 1,41675 1,39795 1,36672 1,32322 1,29695
0,95 1,47175 1,46691 1,44757 1,41542 1,37057 1,34344
1,00 1,52322 1,51827 1,49851 1,46566 1,41982 1,39207
1,10 1,62915 1,62406 1,60376 1,57004 1,52311 1,49477
1,20 1,73834 1,73320 1,71266 1,67865 1,63154 1,60326
1,30 1,85013 1,84498 1,82444 1,79056 1,74392 1,71613
1,40 1,96401 1,95889 1,93852 1,90506 1,85931 1,83227
1,50 2,07959 2,07453 2,05446 2,02160 1,97702 1,95087
1,60 2,19657 2,19160 2,17190 2,13978 2,09652 2,07134
1,70 2,31472 2,30985 2,29057 2,25928 2,21740 2,19321
1,80 2,43386 2,42910 2,41028 2,37985 2,33938 2,31615
1,90 2,55384 2,54919 2,53084 2,50129 2,46222 2,43993
2,00 2,67453 2,66999 2,65214 2,62346 2,58575 2,56435

One proposes a given airfoil design (Fig.7-9) the simulation is performed
for the attached chord plate (C,) by varying its inclination angle € and center

position (Table 2).
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Fig. 10. Turbine profile: Profile b=50 t/b=1.5 A=30
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Fig. 11. The distribution of speeds
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AL

Fig.12. The distribution of pressure
Table 2
Effects of attached chord
b 0 A R t/b; b, Cy/C,
11 [
2 37 | 1,449303 1,00068 50,47784 1,01420
4 39 | 1,451820 | 1,00131 50,44593 1,02881
5 40 | 1,478071 1,00200 50,41165 1,05708
7
9

5 F

50,51224

42 | 1,503385 | 1,00284 | 50,36901 1,09170
44 | 1,553692 | 1,00385 50,31845 1,14942
11 | 46 | 1,574308 | 1,00442 | 50,29016 | 1,17924
-1 | 34 | 1,459136 | 1,00008 | 50,50818 1,01010
-3 | 32 | 1,482677 | 1,00006 | 50,50915 1,02459
9 -5 | 30 | 1,515388 | 1,00027 | 50,49815 1,04821
b - initial plate chord, Cy-cascade chord, t/b;- the new relative pitch, b; — new chord plate,
C,-attached chord plate.

For positive angles 6 one achieves an increase of angle of installation, a

decrease of density, but also an increase of R (Table 3).

DA N | |W|N|—

Table 3
Effects of 8 angle
Nr. 0 A R Ch/Ca bl t/bl
et. | [T ][]
1 1 36 | 1,590844 | 1,14416 50,37777 1,00266
2 3 38 | 1,580900 50,36384 1,00294
3 5 40 | 1,570441 50,34968 1,00323
4 7 42 | 1,559470 50,33516 1,00351
5 8 43 | 1,553794 50,32991 1,00362
6 -2 | 33 | 1,604785 50,40204 1,00218
7 -3 | 32 | 1,609171 50,40491 1,00212
8 -4 | 31 | 1,613425 50,41532 1,00192
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5. Conclusions

The proposed method is stable, fast convergent and determines a variety of
profiles, with velocities and pressure distributions in the full spectrum of motion.

The main advantages of the conformal mapping are preserved and
analytical expressions for velocity potentials are obtained.

In order to apply the FFT to conformal mappings, the Laurent series
relating the flows in two complex plans was conveniently applied, in combination
with Joukowsky transform.

The proposed method allows a detailed study of the influence of the
cascades parameters with reduced computational effort, as done in this paper.
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