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INTEGRATED ACTIVE-REACTIVE POWER DISPATCHING 

MODEL BASED ON DEEP REINFORCEMENT LEARNING 

Zizhao LIN1*, Xuefei LIU2, Qidong TIAN3 

The integrated active and reactive power dispatching model based on deep 

migration reinforcement learning is proposed. Reinforcement learning can guide the 

agent to acquire optimal scheduling knowledge in the source task, and the migration 

network can realize the application of the knowledge learned in the source task to 

new operating scenarios. Through the simulation of IEEE 14 buses, the design 

method of key elements of agent is given, including the construction of state, action 

and reward function. By calculating the similarity of the scene, the dispatching 

strategy under the new scene can be quickly obtained. 

Keywords: artificial intelligence; optimal distribution of active power; automatic 

voltage control; deep reinforcement learning; DDPG algorithm 

1. Introduction 

Power system is a nonlinear artificial system with multivariable coupling 

and complex operation behavior. Power grid dispatching control center is the 

"control center" for safe, reliable and economic operation of power system [1][2]. 

For a long time, the power grid regulation operation is mainly based on the staff 

monitoring the operation state of the power system through equipment to assist in 

analysis, and then making dispatching decisions according to personal judgment 

[3]. Every link in the decision-making depends more on the knowledge level and 

experience of the staff, and the regulators need to participate and lead, which is 

subjective and different. At the same time, the power grid structure is becoming 

more and more complex due to distributed energy access, expansion and other 

factors, the requirements for operation dispatching mode are becoming more and 

more strict, and the complexity of multivariable coupling is increasing [4][6]. It is 

urgent to find an intelligent method to assist in solving the traditional active and 

reactive power integrated dispatching method that depends on Mechanism 

Analysis and dispatcher's personal decision-making, so as to support the economic 

and safe operation of the power grid. 

In the power systems daily operation, there are classical nonlinear 

programming methods and heuristic algorithms for the day ahead scheduling 

 
1 Shenzhen Power Supply Co., Ltd., Shenzhen 518000, China, e-mail: linzizhao@126.com 
2 Shenzhen Power Supply Co., Ltd., Shenzhen 518000, China. 
3 Shenzhen Power Supply Co., Ltd., Shenzhen 518000, China. 



298                                              Zizhao Lin, Xuefei Liu, Qidong Tian 

 

problem of active power allocation and reactive power allocation [7][10]. 

However, due to the discreteness of variables, the objective function and 

constraint conditions of the power system are discontinuous. At the same time, the 

power system is a multivariable coupled nonlinear artificial system. Many local 

optimal solutions often exist in the optimization solution. The traditional 

optimization methods such as Newton's method and Interior Point Method are 

easy to fall into local optimum when solving the day ahead scheduling [11][12]. 

And the classical mathematical methods are often difficult to solve because of the 

optimization model presents the discontinuity, non-derivation, multi extremum 

and multi segment constraints of the optimization model presents [13]. 

On the other hand, traditional heuristic algorithms such as Particle Swarm 

optimization, Genetic Algorithm, artificial bee colony algorithm and Gray Wolf 

Optimizer rely less on mathematical models than traditional optimization 

methods, can solve nonlinear and discontinuous optimization problems, and have 

successful application scenarios in various optimization problems of power 

system [14]-[17]. However, the solution time of such algorithms is too long to 

meet the timeliness of scheduling, especially the real-time optimization task of 

short time scale in large-scale power system [18]. In addition, the classical 

nonlinear programming methods and heuristic algorithms do not have the ability 

of "knowledge learning" and "migration application" [19]. When optimizing the 

scheduling of new scenarios, the solution process must be run from scratch, and 

the optimization experience cannot be accumulated from the solution history [20]. 

As a result, the optimization solution of this kind of algorithm is independent 

every time, and it cannot learn quickly according to the past experience, so it is 

difficult to move and apply to other scenarios. Not only the solution time is too 

long, but also the scope of application is limited by the training set, which is 

difficult to meet the optimal scheduling requirements of increasingly complex 

power systems. 

With the rapid development of artificial intelligence technology and its 

recent success in many fields including autopilot and game, the ability of 

autonomous learning and decision making for deep reinforcement learning in 

complex dynamic systems is reflected. Experts and scholars in the field of power 

have always paid attention to the application of artificial intelligence technology 

in power system [21][23]. Artificial intelligence algorithm has been preliminarily 

applied to active or reactive power dispatching in power system. In recent years, 

some scholars have tried to apply artificial intelligence algorithms such as DQN, 

AC, A2C, PG, DDPG to the research of power grid AVC [24], AGC [25] and load 

side regulation [26], but they only consider the separate optimization of active or 

reactive power. Reference [27] analyzes the current situation and existing 

problems of the application of artificial intelligence in power system, gives the 

design criteria and general framework of regulation system based on artificial 
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intelligence, and expounds the technical difficulties of the application of artificial 

intelligence in power grid regulation. Reference [28] proposed an economic 

generation scheduling and control framework, which can obtain smaller control 

error, smaller total cost and fewer reverse regulation times, so as to solve the 

coordination problem of multi-scale economic scheduling and generation control 

in power system. Reference [29] takes the prediction mechanism of neural 

network as the action selection mechanism of reinforcement learning to solve the 

problem of random disturbance caused by large-scale access of distributed energy 

to the power grid. The above literatures are all successful scenarios of deep 

reinforcement learning in the field of power system, but there are generally low 

data utilization efficiency. It is necessary to retrain an agent for different types of 

tasks, which often requires a lot of interaction with the environment, which limits 

the application of reinforcement learning in some practical scenarios. In addition, 

the scheduling optimization algorithm based on reinforcement learning has 

insufficient generalization ability in unfamiliar scenes. If it is retrained in new 

scenes, it will cost a lot of time. Therefore, how to combine the continuously 

developed advanced algorithms with the needs of the power system field and 

better solve the practical needs of the energy field based on the advantages of 

algorithms is still in a primary exploration stage and quite challenging. 

The innovation of this paper is to apply deep reinforcement learning to 

improve the DDPG algorithm to solve the problem of active and reactive power 

integration and coordinated operation in power dispatching. Different from the 

discrete action interval in other articles, the action interval in this paper is mainly 

continuous action interval; compared with the traditional DDPG method, the 

accuracy of its application in power grid dispatching is improved; compared with 

genetic algorithm and other heuristic algorithms, the accuracy of the application 

of "knowledge transfer" of the improved DDPG algorithm is confirmed, and it has 

significant timeliness. 

2. Active and reactive power integrated dispatching framework of 

power system 

2.1 Basic power system dispatching problems 

The basic task of power system dispatching is to control the operation 

mode of power system so that it can meet the requirements of safe, economic and 

high-quality power supply under normal or accident conditions. 

He key problem of traditional power grid optimal dispatching is that the 

model solution is complex. Some functional decoupling and model simplification 

have to be carried out in order to meet the needs of multi scenario rapid solution. 

Therefore, the operation performance of power grid is difficult to be more 

optimized. In recent years, artificial intelligence methods represented by deep 
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reinforcement learning have made remarkable achievements in solving high-

dimensional nonlinear optimization problems, which makes it possible to train 

agents to effectively deal with the scheduling knowledge of various scenarios, and 

then use the knowledge for integrated scheduling. 

Using the knowledge extraction ability of reinforcement learning method, 

this paper regards the optimal dispatching problem of power system as two 

optimization objectives considering power grid operation cost and voltage level, 

takes the active output of generator, the given voltage of generator and dimmer, 

the compensation of transformer tap and reactive power compensation equipment 

as control variables, and takes power components and network constraints as basic 

constraints, The active and reactive power distribution of power grid is 

coordinated and optimized, and the migration learning method is introduced to 

deal with the complex and changeable operation scenarios of power grid. Under 

this intelligent scheduling architecture, more objectives or complex nonlinear 

constraints can be easily considered in combination with engineering 

requirements. However, in order to facilitate the comparison of the income 

increment brought by intelligent scheduling and traditional scheduling methods, 

this paper defines the integrated scheduling problem as above. 

2.2 The basic method of applying active and reactive power integrated 

dispatching based on reinforcement transfer learning 

For the problem of active and reactive power coordination and 

optimization, the traditional reinforcement learning usually includes: observing 

the power grid environment to determine the state quantity, the content of the 

action quantity, designing the corresponding objective function according to the 

actual problems to be solved, the agent takes actions according to the state to 

interact with the environment to obtain returns, taking different actions and the 

obtained returns in the same state to store as experience Apply the learned 

experience to practice. When applying transfer reinforcement learning, the 

difference lies in the clear division of the scope of the source problem and the 

transfer problem, as well as the transfer method. When a new agent obtains a new 

scene, it first judges whether it is an "old problem" under the source problem 

domain. If the source problem domain has this problem label, the existing 

knowledge is adopted; if the label error exceeds the threshold, it is judged as an 

expansion problem and transfer learning is carried out. The whole process is 

shown in Fig. 1. 

 



Integrated active-reactive power dispatching model based on deep reinforcement learning    301 

 

Extended 

neural 

network

New scheduling 

knowledge

Source 

problem 

neural 

network

new task

Determine whether the 

new task belongs to the 

source problem

No

judge

St St+1St St  

a'

R'

a''

R''

neural 

network

a'''

R'''

Solving process of 

source problem

Scheduling 

knowledge Optimization process under data set of multiple 
scenarios in source problem

Yes

1ta +

1tR +

St St+1St St  

a'

R'

a''

R''

a''

'R'''

1ta +

1tR +

Expand the 
solution process 
of the problem

 
Fig. 1. Schematic diagram of the different approaches to the source and expansion problems 

 

 



302                                              Zizhao Lin, Xuefei Liu, Qidong Tian 

 

3. Active and reactive power coordination optimization modeling 

based on Reinforcement Learning 

3.1 Introduction to deep transfer reinforcement learning 

A reinforcement learning solution process can be represented by Markov 

decision process. Usually, a Markov decision process includes state matrix, return 

matrix, action matrix, P,γ. The state matrix consists of all States s in the 

environment that affect the decision-making of agent; the action matrix is 

composed of a set of decision actions a that can be taken by the agent. The return 

matrix is composed of the short-term return r, which return by the environment 

according to s and a, to judge the impact on the s; γ is uncertainty coefficient of 

long-term return, avoid the agent relying too much on future rewards. When the 

dimension of state action matrix of reinforcement learning is very large, the 

exploration stage of finding the optimal strategy is time-consuming; at the same 

time, large data samples for training are often difficult to obtain in practical 

problems, and retraining is very time-consuming. Therefore, scholars have studied 

the possibility of applying the advantages of transfer learning to reinforcement 

learning, hoping to transfer knowledge from source tasks to new tasks to improve 

performance. According to the differences of application methods, there are three 

kinds of transfer settings in reinforcement learning. 

1. Instance Transfer. The simplest migration algorithm collects samples 

from different tasks and reuses them in the learning of target tasks.  

2. Representation Transfer. Each RL algorithm uses specific 

representations for tasks and solutions, such as neural networks, or a set of basis 

functions that approximate the optimal value function. 

3. Parameter Transfer. The migration method changes and adjusts the 

algorithm parameters according to the source task, so as to speed up the learning 

process. 

In this paper, in order to speed up the accuracy and timeliness of online 

application, the idea of parameter transfer is used to optimize the traditional 

reinforcement learning. 

3.2 Reward function design 

Artificial intelligence method is very important for the setting of reward 

function. The setting of reward is the driving force for agents to move in a better 

direction. Setting a good reward function can make the training converge quickly 

and accurately. In this paper, the following objective function is set to solve the 

active and reactive power coordination optimization problem: 
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The control problem of day ahead scheduling is often the problem of 

minimizing the objective function. Reinforcement learning is often trained in the 

direction of maximizing the Q value, so the objective function is slightly 

processed here to make it more consistent with the reinforcement learning mode 

of thinking. The Relu function in equation (1) is a primary function with only a 

positive half axis, and the negative half axis is 0. k1, k2, k3, a, b, c1, c2, c3, are 

constants, k1, k2, k3 is the proportion coefficient, which represents the proportion 

between different targets, because generally speaking, the economy of generator 

cost is more concerned than voltage level. a, b is the base of the exponential 

function. The purpose of using the exponential function is to normalize different 

objective functions to the interval of [0,1]. 

Through experiments, it is found that the numerical value is easier to 

stabilize and converge than the value return training neural network between cells. 

Therefore, in order to map different values to the appropriate interval, this paper 

sets the amplification and reduction coefficient c1, c2, c3 to adjust the size of the 

interval mapped to the exponential function. If the generator cost and voltage 

deviation are used to train the network directly, there is a large gap between the 

values of different objective functions, so this paper chooses the form of 

exponential function to normalize it. 

3.3 Constraint equation of active and reactive power coordination 

optimization 

Because the environment of agent interaction is power grid, there are 

certain constraints. The constraint equations include: power balance equation of 

power flow. The upper and lower limits of generator active power and reactive 

power, the upper and lower limits of condenser reactive power, transformer 

transformation ratio, reactive power compensation capacity, and so on, are 

inequality constraints, which are also defined in the action interval. 
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Where, i,j is the node number; n, is the number of nodes;Pi, Qi is active 

power and reactive power injecting into the node i; vi is the voltage amplitude of 

the node.θij Is the voltage phase angle difference between nodes i and j;Gij and Bij 

are the elements in the admittance matrix; PGm is the active power output of the 

generator m; QGm is the reactive power output of the generator m; kTm is the 

selection of tap on load tap changer m; QCm is the selection of capacity of 

capacitor m. 

3.4 Network structure design and hyperparametric optimization 

In addition to the conventional actor network and Critic network, this 

paper also sets up σ network to control the variance of action during exploration. 

After a large number of experiments and relevant scene references [18], the 

parameter is set as: the network input of execution action is N×1 matrix, the 

number of hidden layers is 2, the number of neurons is 1280 and 256 respectively, 

and the number of neurons in the output layer is 256. The activation function uses 

tanh uses mean square error (MSE), and the optimization algorithm is RMSprop. 

The evaluation network consists of s observed by the agent and a taking 

corresponding action. The number of hidden layers is the same as that of the 

execution network. The number of neurons is 1280 and 256 respectively. After 

adding, 128 neurons are connected. The number of neurons in the output layer is 

1, which is the Q value obtained by the evaluation network taking a certain a 

under this s. The activation function of the output layer is relu, and the other 

activation functions use tanh. The network structure diagram is shown in Fig. 2. 

When transfer reinforcement learning is used to train different scenarios, 

the "common knowledge" of active and reactive power integrated scheduling in 

historical scenarios is stored in the neural network. In order to transfer the 

knowledge learned from the source problem to the expansion problem, this paper 

fixes the parameters of the hidden layer in the original Actor and Crtic network 

except the last layer, and only updates the gradient of the last hidden layer during 

training. The reason for this is that the underlying network of neural network often 
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extracts common features, and the knowledge differences with different 

characteristics are often reflected in the last layer of neural network. Appendix A 

gives some super parameters that usually need to be set in transfer reinforcement 

learning network training. The meaning of super parameters is shown in Appendix 

A1.  
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Fig. 2. Schematic diagram of Actor-Critic network structure 

4. Case study 

For the problem of active and reactive power integrated dispatching, the 

division of source problem and expansion problem is very important.In this 

example IEEE-14 node system. The computer configuration used in this 

experiment is: CPU: Intel i7-7700hq;GPU:NVDIA GTX 1060Ti;Memory: 8G 

DDR4;python 3.6; Tensorflow 1.7.1; Tensorboard 1.7.0;pytorch 1.2.0;pypower 

5.1.4. The electrical wiring diagram of IEEE-14 node is shown in Fig. 3. IEEE-14 

node system consists of 5 generators, 11 loads, 17 lines and 3 transformers. Node 

1 is a balance node, and nodes 3, 6 and 8 are dimmers that only provide reactive 
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power.The consumption characteristic curve of nodes 1 and 2 is a quadratic 

function curve, and the parameters are shown in the appendix. Continuous 

reactive power compensation equipment is set on nodes 1, 2, 3, 6, 8 and 14, and 

its value range is shown in Table 1. Refer to the objective function in expression 

(1), in this paper k1 = 2, k2 = k3 = 0.5; a = 2, b = 5; c1 = 8000, c2 = c3 = 100. The 

dimensions and descriptions of State and Action are shown in Table 2, and some 

parameter settings in DDPG are shown in appendix. In order to verify the 

effectiveness and accuracy of the proposed method, in the first experiment, the 

results of traditional DDPG algorithm and various heuristic algorithms under 96 

loads on the test day are studied. In the second study, the computational effect and 

experimental time between DDPG algorithm and DDPG migration algorithm are 

compared. 
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Fig. 3. IEEE-14 node system electrical diagram 

4.1 An example of using DDPG method to solve active and reactive 

power integrated dispatching 

As shown in Fig. 4, a total of 2880 sets of data of 96 points per day for 30 

days in a month are simulated as source problems for training, in which the 

maximum value of total load is no more than 220MW and the minimum value is 

no less than 160MW. 96 points per day with great differences are used as 

migration training and expansion problems for testing during training. As shown 
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in Fig. 5, the maximum value of total load is 252MW and the minimum value is 

157MW. Fig. 6 shows the load curve of each node on the test day. 
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Fig. 6. Load curve of each bus on the test day 

 

Table 1 

Operating range of reactive power compensation equipment 

Node number Value range (B) Node number Value range (B) 

1 [-10,10] 6 [0,25] 

2 [0,20] 13 [0,60] 

3 [0,20] 14 [0,100] 

 

Firstly, the traditional DDPG algorithm is used to train on the historical 

data set. A total of about 1000 rounds of training are carried out. There are 200 

iterations in each round, which is actually equivalent to 2 × 105 iterations. The 

setting of super parameters is shown in Appendix B2. The loss function of the 

training process is shown in Fig. 7, which shows the last training loss value of 

each round. The loss value of actor is the opposite number in the figure. 
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Fig. 7. Actor-Critic Loss during source problem training 

 

Input 96 scenarios on the test day into the trained DDPG model to obtain 

the generator cost curve and voltage curve under each scenario, as shown in Figs. 

8 and 9. 

 
Fig. 8. DDPG algorithm-based generator cost at each bus in each time period under the test day 
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Table 2 

State and action design 

 Dimension Detailed information 

State 27 

[PG1,PG2,V1,V2,V3,V4,V5,T1,T2,T3 

,B1,B2,B3,B4,B5,B6, 

PL1, PL2, PL3, PL4, PL5, PL6,PL7, PL8, PL9, PL10, PL11] 

Action 15 
[ΔP G2,ΔV1,ΔV2,ΔV3,ΔV4,ΔV5, 

ΔT1,ΔT2,ΔT3,ΔB1,ΔB2,ΔB3,ΔB4,ΔB5,ΔB6] 
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Fig. 9. DDPG algorithm-based voltages at each bus in each time period under the test day 

 

Table 3 

Error of DDPG algorithm 

Error name Before migration 

Maximum error 239.75$/h 

Maximum error rate 2.5154% 

Average error 166.7445$/h 

Average error rate 2.32% 

 

4.2 An example of using DDPG migration method to solve active and 

reactive power integrated dispatching 

Based on the trained DDPG model in example 1, the migrated DDPG 

algorithm is used in example 2 to explore and train the knowledge of integrated 
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active and reactive power scheduling under 96 loads in the test day. A total of 

about 500 trainings are carried out for 20 iterations each time. The super 

parameters of the training are shown in Appendix, and the loss function of the 

training is shown in Fig. 10. Fig. 10 shows the last training loss value of each 

round. Similarly, the loss value of Actor is the opposite number in the figure. 
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Fig. 10. Actor-Critic Loss under Transfer Reinforcement Learning 

 

This paper compares the optimal solutions of the other methods in three 

different cases. The comparison of errors before and after transfer learning is 

shown in Table 4.The generator cost under 96 loads before and after migration is 

shown in Fig. 11, and the voltage level under 96 loads after migration is shown in 

Fig. 12. 

 

 
 

Fig. 11. Comparison of generator costs under different scenarios 
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Table 4 

Comparison of errors before and after transfer learning 

Error name Before migration After migration 

Maximum error 239.75$/h 98.92$/h 

Maximum error rate 2.5154% 1.1325% 

Average error 166.7445$/h 38.4160$/h 

Average error rate 2.32% 0.5576% 
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Fig. 12. Voltage diagrams for each time period at each bus after Transfer Reinforcement Learning 

 

The comparison of cumulative time consumption between migration 

DDPG algorithm and genetic algorithm (GA), particle swarm optimization (PSO) 

and biogeographic optimization algorithm (BBO) in 96 comparative experiments 

is shown in Fig. 13. 
 

 
Fig. 13. Comparison of calculation time required for different method experiments 
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The migration DDPG algorithm needs 12 minutes and 31 seconds for 

offline training under 96 loads, but it has obvious advantages over other 

comparison algorithms. When the migration DDPG algorithm is applied online, 

the calculation time is less than 1 s. It can be seen that heuristic algorithms such as 

genetic algorithm and particle swarm optimization algorithm do not have off-line 

training time, but they need to be recalculated to deal with different situations 

each time, which takes a lot of time to apply.  

Because the parameters of the shallow neural network are fixed, the 

unnecessary exploration range is greatly reduced when re exploring different load 

levels. It can be considered that the migration training gives a closer initial 

solution to the expansion problem on the basis of the source problem, so on the 

one hand, the convergence is guaranteed, on the other hand, the calculation time is 

shortened. In addition, the results of transfer learning are improved regardless of 

generator cost or voltage amplitude. This experiment has good results, and 

provides a new idea and research method for active and reactive power integrated 

scheduling with a large number of samples. 

5. Conclusion 

Aiming at the problem of active and reactive power coordination and 

Optimization in power system, based on the deep transfer reinforcement learning 

algorithm, this paper proposes a scheme architecture that can be quickly applied 

online. Because this method can solve high-dimensional, continuous and 

nonlinear problems, it is a new idea and a new test in the field of active and 

reactive power coordination optimization. Artificial intelligence and 

reinforcement learning algorithms accumulate experience on the basis of 

experiments. After a period of training, the neural network makes the parameters 

of random initialization converge to the feasible region. The requirements of this 

method for hardware computing power become more stringent with the increase 

of problem dimension. Therefore, it has always been people's desire to speed up 

the network convergence speed, reduce the training time and improve the 

operation efficiency of intelligent algorithms. This paper provides an integrated 

scheduling and migration model of active and reactive power, which provides a 

new idea and mode for training in multi load scenario. 
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APPENDIX A 
 

Table A1 

Improve the hyperparameters and descriptions of DDPG algorithm settings 

Parameter Meaning description 

Tau Smoothing coefficients of target networks in Actor and Critic networks 

α Learning rate of evaluation network in Actor network and Critic network 

Batch_size Number of extracts from the experience pool per training 
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Capacity Size of experience pool 

σ Controls the initial value of the variance of the exploration range 

γ Discount factor 

Episode Rounds of agent training 

Step One iteration in each round of agent training 

APPENDIX B 

Table B1 

Related definitions of DDPGC 

Node number a b c 

1 3 0.043 20 

2 3 0.25 20 

 

Table B2 

DDPG hyperparameter settings 

Parameter Figure 

Tau 0.000001 

α 0.000001 

Batch_size 64 

Capacity 100000 

σ 2 

 

 

Table B3 

Hyperparameter setting of DDPG migration method 

Parameter Figure 

Tau 0.0001 

α 0.0001 

Batch_size 16 

Capacity 1000 

σ 1 

γ 0.95 

 


