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 In this paper, we introduce new types of fuzzy coverings, namely non-inclusive 
coverings, disjoint coverings and projection coverings and we study their prop-erties 
and connections with partitions with crisp sets.
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1. Introduction

Lotfi Zadeh [5] introduced the fuzzy sets in 1965. Fuzzy sets are generalizations of
sets which are used to describe the truth level with a degree of uncertainty between zero
(meaning false) and one (meaning truth). A covering of a set is a collection of fuzzy sets
such that every element of the set has the degree 1 in at least one of the fuzzy sets, see
[1, Definition 1]. Coverings have a high importance in fuzzy control and machine learning,
see [2]. The purpose of this article is to continue our previous work [3, 4] on this topic and
to broaden the view of coverings establishing new types of coverings and also the relations
between coverings.

The article is divided into eight sections, the first one being this Introduction. In the
second section we recall some basic definition regarding fuzzy sets, fuzzy coverings and fuzzy
partitions of fuzzy sets. In the third section, we introduce the notion of permutations of
coverings as two coverings of the same set which have the fuzzy sets reordered, see Definition
3.1, which gives an equivalence relation on coverings. In Section 4 we define an inclusion
relation between coverings, see Definition 4.1, and we prove that this relation is reflexive
and transitive, see Proposition 4.3.

In Section 5 we introduce the notion non-inclusive coverings, i.e. coverings (X, (Ai)i∈I)
such that for any i, j ∈ I, we have that Ai(x) ≤ Aj(x), for all x ∈ X, if and only if i = j.
In Theorem 5.4, we prove that the relation of inclusion previously defined is a relation of
partial order on the class of non-inclusive coverings with respect to the equivalence relation
given by the permutation of coverings.

In Section 6 we introduce the notion of disjoint coverings, i.e. coverings (X, (Ai)i∈I)
such that for any x ∈ X and i ̸= j ∈ I we have Ai(x) ∧ Aj(x) < 1. Note that non-inclusive
and disjoint coverings are both generalization for partitions with crisp sets.

We prove that non-inclusive normal coverings are disjoint, see Proposition 6.4, and
we give a characterization of them in terms of partitions, see Theorem 6.5.

In Section 7 we introduce the projection covering as the family of fuzzy sets (Ai)i∈I

defined on a Cartesian product X × Y such that the projection on each of the coordinates
forms a covering. This implies that there exists f : X → Y and g : Y → X such that for any
i ∈ I, there exist x ∈ X and y ∈ Y such that Ai(x, f(x)) = Aj(g(y), y) = 1. In Theorem
7.12, we prove that if the above functions f and g are unique, then they are bijective and
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g = f−1. Also, we discuss the properties of the converse of a projection covering, i.e. the
projection covering of Y → X with (A⌣

i )i∈I such that A⌣
i (y, x) = Ai(x, y) for all i ∈ I,

x ∈ X and y ∈ Y . Section 8 is dedicated to conclusions.

2. Preliminaries

In this section, we recall some basic definitions regarding fuzzy sets and coverings.
Let X be a nonempty set.

Definition 2.1. We say that A is a fuzzy set, or a fuzzy subset of X, if A : X → [0, 1] is
a function. A(x) is the membership degree to which x belongs to A.

We say that A is a crisp set, if A is a subset of X in the usual sense. Here, we

identify A with its characteristic function, i.e. A(x) =

{
1, x ∈ A

0, x /∈ A
for all x ∈ X.

Definition 2.2. Let A : X → [0, 1] be a fuzzy set. We define:

(1) A↑ : X → [0, 1], A↑(x) =

{
1, A(x) > 0
0, A(x) = 0

(2) A↓ : X → [0, 1], A↓(x) =

{
1, A(x) = 1
0, A(x) < 1

Definition 2.3. Let A,B : X → [0, 1] be two fuzzy sets.
We say that A is included in B and denote it by A ⊆ B if for all x ∈ X we have:

A(x) ≤ B(x).

We say that A is strictly included in B and denote it by A ⊂ B if A is included in B and
there exists an element x ∈ X such that A(x) < B(x).

Definition 2.4. Let A : X → [0, 1] and B : Y → [0, 1] be two fuzzy sets.

(1) The union of the fuzzy sets A and B is the fuzzy set:

A ∨B : X ∪ Y → [0, 1], (A ∨B) (x) = max (A (x) , B (x)) .

(2) The intersection of the fuzzy sets A and B is the fuzzy set:

A ∧B : X ∩ Y → [0, 1], (A ∧B) (x) = min (A (x) , B (x)) .

(3) The Cartesian product of the fuzzy sets A and B is the fuzzy set:

A×B : X × Y → [0, 1], (A×B) (x, y) = min (A (x) , B (y)) .

Definition 2.5. A fuzzy relation R between the sets X and Y is a fuzzy subset of X × Y ,
i.e. R : X × Y → [0, 1].

Definition 2.6. A fuzzy set A : X → [0, 1] is called normal if there exists x ∈ X such that
A(x) = 1.

Definition 2.7. Let α ∈ [0, 1]. The α−cut of the fuzzy set A : X → [0, 1] is denoted Aα

and it is defined by:

Aα : X → [0, 1] , Aα(x) =

{
1, A(x) ≥ α

0, A(x) < α
.

Remark 2.8. Let A be a fuzzy subset of X. We have that:

(1) If A is a crisp subset, then Aα =

{
X, α = 0

A, α ∈ (0, 1]
.

(2) (Aα)β = Aα for all α ∈ [0, 1] and β ∈ (0, 1].

(3) α ≤ β if and only if Aβ ⊆ Aα, where α, β ∈ [0, 1].
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Lemma 2.9. If A,B : X → [0, 1] are two fuzzy sets then we have:

A ⊆ B if and only if Aα ⊆ Bα, for all α ∈ (0, 1].

Proof. If A ⊆ B then it is clear that Aα ⊆ Bα for any α ∈ (0, 1]. In order to prove the
converse, assume that A(x) > B(x) and choose α := A(x). Then Aα(x) = 1 > Bα(x) = 0,
a contradiction. □

Definition 2.10. ([1, Definition 1]) We say that (X, (Ai)i∈I) is a fuzzy covering, or, simply,
a covering of X, if Ai : X → [0, 1] are fuzzy sets such that for all x ∈ X, there exists i ∈ I
with Ai(x) = 1.

In this case, we can also say that X is covered by the fuzzy sets Ai, where i ∈ I.

Definition 2.11. Let
(
X, (Ai)i∈I

)
and

(
I, (By)y∈Y

)
be two coverings. Their composition

is
(
X, (Ai)i∈I

)
;
(
I, (By)y∈Y

)
=

(
X,

∨
i∈I (Ai(x) ∧By(i))y∈Y

)
.

Proposition 2.12. (See [4, Proposition 2.1] and [4, Proposition 3.1])
The composition of two coverings is a covering. Morover, the composition of two

normal coverings is a normal covering.

Definition 2.13. ([4, Definition 3.1]) A normal covering
(
X, (Ai)i∈I

)
is a covering with the

property that for all i ∈ I, there exists x ∈ X such that Ai(x) = 1.
In other words, a normal covering of X is a covering with normal fuzzy sets.

Definition 2.14. We say that (X, (Ai)i∈I) is a partition if (Ai)i∈I is a collection of non-
empty, disjoint crisp sets whose union is X.

3. Permutations of coverings

Definition 3.1. We say that the covering
(
X, (Bj)j∈J

)
is a permutation of the covering(

X, (Ai)i∈I

)
and we write

(
X, (Ai)i∈I

)
≃

(
X, (Bj)j∈J

)
if there exists a bijective function

ρ : I → J such that

Ai(x) = Bρ(i)(x) for all x ∈ X and i ∈ I.

Proposition 3.2. The relation ≃ defined above is an equivalence relation.

Proof. We have to check that ≃ is:

(1) Reflexive: for any covering
(
X, (Ai)i∈I

)
we have

(
X, (Ai)i∈I

)
≃

(
X, (Ai)i∈I

)
.

Indeed, we can take ρ : I → I to be the identity function on I.

(2) Symmetric: for any coverings
(
X, (Ai)i∈I

)
and

(
X, (Bj)j∈J

)
we have:(

X, (Ai)i∈I

)
≃

(
X, (Bj)j∈J

)
if and only if

(
X, (Bj)j∈J

)
≃

(
X, (Ai)i∈I

)
.

Indeed, if ρ : I → J satisfies Ai(x) = Bρ(i)(x) for all x ∈ X and i ∈ I, then Bj(x) =
Aρ−1(j)(x) for all x ∈ X and j ∈ J .

(3) Transitive: for any coverings
(
X, (Ai)i∈I

)
,
(
X, (Bj)j∈J

)
and

(
X, (Ck)k∈K

)
such that(

X, (Ai)i∈I

)
≃

(
X, (Bj)j∈J

)
and

(
X, (Bj)j∈J

)
≃

(
X, (Ck)k∈K

)
we have:(

X, (Ai)i∈I

)
≃

(
X, (Ck)k∈K

)
.

Indeed, if Ai(x) = Bρ(i)(x) for all x ∈ X and i ∈ I and Bj(x) = Cτ(j)(x) for all x ∈ X
and j ∈ J , then Ai(x) = C(τ◦ρ)(i)(x) for all x ∈ X and i ∈ I.

□
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Proposition 3.3. Let
(
X, (Ai)i∈I

)
and

(
X, (Bj)j∈J

)
be two coverings. The following are

equivalent:

(1)
(
X, (Ai)i∈I

)
≃

(
X, (Bj)j∈J

)
.

(2)
(
X, ((Ai)α)i∈I

)
≃

(
X,

(
(Bj)α

)
j∈J

)
for all α ∈ (0, 1].

Proof. (1) ⇒ (2) It is clear.
(2) ⇒ (1) Follows from Lemma 2.9. □

4. Inclusions of coverings

Definition 4.1. Let
(
X, (Ai)i∈I

)
and

(
X, (Bj)j∈J

)
be two coverings. We say that the

covering
(
X, (Ai)i∈I

)
is included in the covering

(
X, (Bj)j∈J

)
and we denote it by(

X, (Ai)i∈I

)
⊆

(
X, (Bj)j∈J

)
,

if there exists a function ρ : I → J such that for all x ∈ X and i ∈ I we have:

Ai(x) ≤ Bρ(i)(x).

ρ is called the inclusion function associated to the covering inclusion.

Proposition 4.2. If
(
X, (Ai)i∈I

)
is a fuzzy covering then we have the inclusions:

(1)
(
X, ({x})x∈X

)
⊆

(
X, (Ai)i∈I

)
⊆ (X, {X}).

(2)

(
X,

(
A↓

i

)
i∈I

)
⊆

(
X, (Ai)i∈I

)
⊆

(
X,

(
A↑

i

)
i∈I

)
.

(3)

(
X,

(
A↓

i

)
i∈I

)
⊆

(
X, ((Ai)α)i∈I

)
⊆

(
X,

(
A↑

i

)
i∈I

)
for all α ∈ (0, 1].

Proof. (1) The first inclusion follows from the fact that for any x ∈ X, there exists i ∈ I
with Ai(x) = 1. The second inclusion is clear.

(2) and (3) Taking ρ = 1I , the inclusions follow from the inequalities:

A↓
i (x) ≤ Ai(x) ≤ A↑

i (x), for all x ∈ X, i ∈ I.

A↓
i (x) ≤ (Aα)i(x) ≤ A↑

i (x), for all x ∈ X, i ∈ I.

□

Proposition 4.3. The inclusion relation ⊆ between two coverings of the set X is:

(1) Reflexive: for any covering
(
X, (Ai)i∈I

)
we have:

(
X, (Ai)i∈I

)
⊆

(
X, (Ai)i∈I

)
.

(2) Transitive: for any coverings
(
X, (Ai)i∈I

)
,
(
X, (Bj)j∈J

)
and

(
X, (Ck)k∈K

)
such that(

X, (Ai)i∈I

)
⊆

(
X, (Bj)j∈J

)
and

(
X, (Bj)j∈J

)
⊆

(
X, (Ck)k∈K

)
,

we have that
(
X, (Ai)i∈I

)
⊆

(
X, (Ck)k∈K

)
.

Proof. (1) It is clear, taking ρ = 1I .

(2) Since
(
X, (Ai)i∈I

)
⊆

(
X, (Bj)j∈J

)
, it follows that there exists ρ : I → J such

that Ai(x) ≤ Bρ(i)(x) for all x ∈ X and i ∈ I.

Since
(
X, (Bj)j∈J

)
⊆

(
X, (Ck)k∈K

)
, it follows that there exists θ : J → K such that

Bj(x) ≤ Cθ(j)(x) for all x ∈ X and j ∈ J .
Therefore, for all x ∈ X and all i ∈ I we have Ai(x) ≤ Bρ(i)(x) ≤ C(θ◦ρ)(i)(x), hence(

X, (Ai)i∈I

)
⊆

(
X, (Ck)k∈K

)
. □
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Proposition 4.4. Any two fuzzy coverings
(
X, (Ai)i∈I

)
and

(
X, (Bj)j∈J

)
of the set X can

be in one of the mutual disjoint cases:

(1)
(
X, (Ai)i∈I

)
⊆

(
X, (Bj)j∈J

)
and

(
X, (Bj)j∈J

)
⊈

(
X, (Ai)i∈I

)
.

(2)
(
X, (Bj)j∈J

)
⊆

(
X, (Ai)i∈I

)
and

(
X, (Ai)i∈I

)
⊈

(
X, (Bj)j∈J

)
.

(3)
(
X, (Ai)i∈I

)
⊆

(
X, (Bj)j∈J

)
and

(
X, (Bj)j∈J

)
⊆

(
X, (Ai)i∈I

)
and

(
X, (Ai)i∈I

)
̸≃(

X, (Bj)j∈J

)
.

(4)
(
X, (Ai)i∈I

)
≃

(
X, (Bj)j∈J

)
.

(5) Neither of them is included in the other one.

Proof. We can easily produce examples for (1), (2), (4) and (5).

For (3) we can choose two fuzzy coverings
(
X, (Ai)i∈I

)
and

(
X, (Bj)j∈J

)
such that

|I| ̸= |J | and Ai0 = Bj0 = X for some i0 ∈ I and j0 ∈ J . Then the inclusion function of(
X, (Ai)i∈I

)
⊆

(
X, (Bj)j∈J

)
is ρ : I → J , ρ(i) = j0 for all i ∈ I, respectively the inclusion

function of
(
X, (Bj)j∈J

)
⊆

(
X, (Ai)i∈I

)
is θ : J → I, θ(j) = i0 for all j ∈ J . □

5. Non-inclusive coverings

Definition 5.1. We say that
(
X, (Ai)i∈I

)
is a non-inclusive covering if for any i, j ∈ I:

Ai(x) ≤ Aj(x),for all x ∈ X if and only if i = j.

A covering which is not non-inclusive it is called inclusive.

Proposition 5.2. A partition with crisp sets is a non-inclusive covering.

Proof. Let
(
X, (Ai)i∈I

)
be a partition of X, i.e. Ai are nonempty crisp subsets of X. It is

enough to prove that the only function ρ : I → I with the property

Ai(x) ≤ Aρ(i)(x) for all x ∈ X and i ∈ I, (5.1)

is ρ = 1I . Indeed, assume there exists ρ as above with ρ(i0) ̸= i0 for some i0 ∈ I. Let
x0 ∈ X such that Ai0(x0) = 1. From (5.1) it follows that Aρ(i0)(x0) = 1, hence Ai0 and
Aρ(i0) are not disjoint, which is a contradiction. □

Lemma 5.3. Let
(
X, (Ai)i∈I

)
and

(
X, (Bj)j∈J

)
be two non-inclusive coverings such that(

X, (Ai)i∈I

)
⊆

(
X, (Bj)j∈J

)
and

(
X, (Bj)j∈J

)
⊆

(
X, (Ai)i∈I

)
. Then:(

X, (Ai)i∈I

)
≃

(
X, (Bj)j∈J

)
.

Proof. If
(
X, (Ai)i∈I

)
⊆

(
X, (Bj)j∈J

)
then there exists a function ρ : I → J such that for

any x ∈ X and i ∈ I we have Ai(x) ≤ Bρ(i)(x). Similarly if
(
X, (Bj)j∈J

)
⊆

(
X, (Ai)i∈I

)
we have θ : J → I such that for any x ∈ X and j ∈ J we have Bj(x) ≤ Aθ(j)(x).

It follows that for any x ∈ X and i ∈ I, we have

Ai(x) ≤ Bρ(i)(x) ≤ A(ρ◦θ)(i)(x). (5.2)

Since (X, (Ai)i∈I) is non-inclusive, from (5.2) it follows that ρ ◦ θ = 1I and, in particular,
that Ai(x) = Bρ(i)(x).

Similarly, for any x ∈ X and j ∈ J we have Bj(x) = Aθ(j)(x) and θ ◦ ρ = 1J . It

follows that ρ and θ are bijective functions and therefore
(
X, (Ai)i∈I

)
≃

(
X, (Bj)j∈J

)
. □
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Theorem 5.4. Let (X, (Ai)i∈I) and (Y, (Bj)j∈J) be two non-inclusive coverings. We denote

(X, (Ai)i∈I), respectively (Y, (Bj)j∈J), their classes with respect to ≃.

We say that (X, (Ai)i∈I) is included in (Y, (Bj)j∈J), if (X, (Ai)i∈I) is included in

(Y, (Bj)j∈J) and we write (X, (Ai)i∈I) ⊆ (Y, (Bj)j∈J).
Then ⊆ is an order relation on N/ ≃, where N is the family of all non-inclusive

coverings.

Proof. It is easy to see that ⊆ is well defined for classes of non-inclusive coverings. Hence,
the conclusion follows from Proposition 4.3 and Lemma 5.3. □

6. Disjoint coverings

Definition 6.1. We say that
(
X, (Ai)i∈I

)
is a disjoint covering if for any x ∈ X and

i ̸= j ∈ I we have:
Ai(x) ∧Aj(x) < 1.

Remark 6.2. A partition with crisp sets is a disjoint covering. Indeed, if (Ai)i∈I is a
partition of X, then Ai(x) ∧Aj(x) = 0 < 1 for any i ̸= j.

Proposition 6.3. If
(
X, (Ai)i∈I

)
is a disjoint covering then for any x ∈ X there exists a

unique i ∈ I such that Ai(x) = 1.

Proof. Assume there exist i, j ∈ I with i ̸= j such that Ai(x) = Aj(x) = 1. We get
Ai(x) ∧Aj(x) = 1. Contradiction. □

Proposition 6.4. Let
(
X, (Ai)i∈I

)
be a disjoint normal covering. Then

(
X, (Ai)i∈I

)
is

non-inclusive.

Proof. Since
(
X, (Ai)i∈I

)
is a normal covering then for any i ∈ I there exists x ∈ I such

that Ai(x) = 1.
Assume, by contradiction, that there exist i ̸= j ∈ I such that for any x ∈ X we

have Ai(x) ≤ Aj(x). Let x ∈ X such that Ai(x) = 1. It follows that Aj(x) = 1 and hence
Ai(x) ∧Aj(x) = 1. Contradiction. □

Theorem 6.5. Let
(
X, (Ai)i∈I

)
be a covering. The following are equivalent:

(1)
(
X, (Ai)i∈I

)
is a disjoint normal covering.

(2)

(
X,

(
A↓

i

)
i∈I

)
is a partition.

Proof. (1) ⇒ (2) Let
(
X, (Ai)i∈I

)
be a normal disjoint covering.

(i) For any x ∈ X we have maxi∈I Ai(x) = 1. Applying ↓ we get
⋃

i∈I A
↓
i (x) = X.

(ii) For any i, j ∈ I, i ̸= j and x ∈ X we have Ai(x) ∧ Aj(x) < 1. Applying ↓ we get

A↓
i ∩A↓

j = ∅;
(iii) For any i ∈ I there exists x ∈ X such that Ai(x) = 1. Applying ↓ we get A↓

i ̸= ∅.

From (i),(ii) and (iii) it follows that

(
X,

(
A↓

i

)
i∈I

)
is a partition.

(2) ⇒ (1) Let
(
X, (Ai)i∈I

)
be a partition. Similarly we have:

(i)
⋃

i∈I A
↓
i (x) = X implies that maxi∈I Ai(x) = 1 for all x ∈ X;

(ii) For any i ̸= j ∈ I we have A↓
i ∩ A↓

j = ∅, which implies that for any x ∈ X we have

Ai(x) ∧Aj(x) < 1;

(iii) For any i ∈ I we have A↓
i ̸= ∅, hence for any i ∈ I there exists x ∈ X such that

Ai(x) = 1.
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From (i),(ii) and (iii) it follows that
(
X, (Ai)i∈I

)
is a disjoint normal covering. □

Theorem 6.6. Let
(
X, (Ai)i∈I

)
and

(
X, (Bj)j∈J

)
be two disjoint coverings such that(

X, (Ai)i∈I

)
⊆

(
X, (Bj)j∈J

)
with the associated inclusion function ρ : I → J . Then:

(1)
(
B↓

j ,
(
Ai|Bj

)
i∈ρ−1(j)

)
is a disjoint covering for any j ∈ J .

(2)
(
X, (Ai)ρ(i)∈K , (Bj)j∈J\K

)
is a disjoint covering for any non-empty subset K ⊂ J .

Proof. (1) We notice that B↓
j is a set for any j ∈ J and it can be covered by the Bj-fuzzy

sets Ai|Bj
.

Let x ∈ B↓
j . We prove that there exists i ∈ ρ−1(j) such that Ai(x) = 1. If this is

not the case, then there exists i′ ∈ I \ ρ−1(j) such that Ai′(x) = 1. Since
(
X, (Ai)i∈I

)
⊆(

X, (Bj)j∈J

)
it follows that 1 = Ai′(x) ≤ Bρ(i′)(x). Therefore, Bj(x) ∧ Bρ(i′)(x) = 1 and

j ̸= ρ(i′). This contradicts the fact that
(
X, (Bj)j∈J

)
is a disjoint covering.

(2) The proof is similar. □

7. Projection coverings

Definition 7.1. A projection covering of X × Y is a pair
(
X × Y, (Ai)i∈I

)
such that(

X, (Ai(−, y))(y,i)∈Y×I

)
and

(
Y, (Ai(x,−))(x,i)∈X×I

)
are coverings.

Proposition 7.2. Let Ai : X × Y → [0, 1] be fuzzy sets. The following are equivalent:

(1)
(
X × Y, (Ai)i∈I

)
is a projection covering.

(2) There exist two functions f : X → Y and g : Y → X such that for all x ∈ X there
exists i ∈ I with Ai(x, f(x)) = 1 and similarly for all y ∈ Y there exists j ∈ I with
Aj(g(y), y) = 1.

(3)
(
X,

(∨
i∈I (Ai(−, y))

)
y∈Y

)
and

(
Y,

(∨
i∈I (Ai(x,−))

)
x∈X

)
are normal coverings.

The function f : X → Y is called a left subfunction of the projection covering
(
X × Y, (Ai)i∈I

)
and the function g : Y → X is called a right subfunction of the projection covering.

Proof. (1) ⇒ (2) If
(
X × Y, (Ai)i∈I

)
is a projection covering then we know that:

(i)
(
X, (Ai(−, y))(y,i)∈Y×I

)
is a covering which means that for all x ∈ X there exist

y ∈ Y and i ∈ I such that Ai(x, y) = 1. Then we can choose f(x) = y.

(ii)
(
Y, (Ai(x,−))(x,i)∈X×I

)
is covering which means that for all y ∈ Y there exist x ∈ X

and i ∈ I such that Ai(x, y) = 1. Then we can choose g(y) = x.

Hence, the functions f and g are well defined with the required properties.
(2) ⇒ (1) For all x ∈ X there exist y = f(x) ∈ Y and i ∈ I such that Ai(x, f(x)) = 1

which means that
(
X, (Ai(−, y))(y,i)∈Y×I

)
is a covering. Similary

(
Y, (Ai(x,−))(x,i)∈X×I

)
is a covering.

(1) ⇒ (3) Assume that there exists an x ∈ X such that for all y ∈ Y we have

∨i∈IAi(x, y) < 1. Then it means that
(
X, (Ai(−, y))(y,i)∈Y×I

)
isn’t a covering. Contradic-

tion.
(3) ⇒ (2) For all x ∈ X there exists y ∈ Y and i ∈ I such that Ai(x, y) = 1. We can

define f : X → Y such that f(x) = y. Similarly for y. □
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Remark 7.3. If X and Y are finite sets and
(
X × Y, (Ai)i∈I

)
is a projection covering then

the number of left subfunctions is
∏

x∈X

(
Σy∈Y

(
maxi∈I

(
A↓

i (x, y)
)))

and the number of right

subfunctions is
∏
y∈Y

(
Σx∈X

(
maxi∈I

(
A↓

i (x, y)
)))

.

Indeed, the result follows from the fact that for each x ∈ X, a left subfunction can
assign any y ∈ Y such that there exists i ∈ I with Ai(x, y) = 1.

Definition 7.4. The composition of the projection coverings
(
X × Y, (Ai)i∈I

)
and(

Y × Z, (Bj)j∈J

)
is:

(
X × Y, (Ai)i∈I

)
;
(
Y × Z, (Bj)j∈J

)
=

X × Z,

 ∨
y∈Y

(Ai(x, y) ∧Bj(y, z))


(i,j)∈I×J

 .

Proposition 7.5. The composition of two projection coverings is a projection covering.

Proof. Since
(
X × Y, (Ai)i∈I

)
and

(
Y × Z, (Bj)j∈J

)
are projection coverings for all x ∈ X

there exists y ∈ Y and i ∈ I such that Ai(x, y) = 1 and also for this y ∈ Y there exists
z ∈ Z and j ∈ J such that Bj(y, z) = 1.

Then

(
X,

(∨
y∈Y (Ai(−, y) ∧Bj(y, z))

)
(i,j,z)∈I×J×Z

)
is a covering.

Similarly

(
Z,

(∨
y∈Y (Bj(x, y) ∧Bj(y,−))

)
(i,j,x)∈I×J×X

)
is a covering. □

Proposition 7.6. Let
(
X × Y, (Ai)i∈I

)
and

(
Y × Z, (Bj)j∈J

)
be projection coverings.

(1) If f1 and f2 are left subfunctions of
(
X × Y, (Ai)i∈I

)
and

(
Y × Z, (Bj)j∈J

)
then f2◦f1

is a left subfunction of
(
X × Y, (Ai)i∈I

)
;
(
Y × Z, (Bj)j∈J

)
.

(2) If g1 and g2 are right subfunctions of
(
X × Y, (Ai)i∈I

)
and

(
Y × Z, (Bj)j∈J

)
then

g1 ◦ g2 is a right subfunction of
(
X × Y, (Ai)i∈I

)
;
(
Y × Z, (Bj)j∈J

)
.

(3) If f is a bijective left subfunction of
(
X × Y, (Ai)i∈I

)
then f−1 is a right subfunction

of
(
X × Y, (Ai)i∈I

)
.

Proof. (1) If f1 is a left subfunction of
(
X × Y, (Ai)i∈I

)
then for all x ∈ X there exists i ∈ I

such that Ai(x, f(x)) = 1. Similarly if f2 is a left covering of
(
Y × Z, (Bj)j∈J

)
the for all

y ∈ I there exists j ∈ J such that Bj(y, g(y)) = 1.
Let x ∈ X such that f1(x) = y. We have that:

Ai(x, f1(x)) ∧Bj(f1(x), f2(f1(x))) = 1.

(2) The proof is similar with the proof of (1).
(3) If f is bijective, that is f(x) = y is equivalent with f−1(y) = x, then

1 = Ai(x, f(x)) = Ai(f
−1(y), y) for all y ∈ Y.

□

Example 7.7. LetX = {x, y, z}, Y = {a, b} be two sets andR = {(x, a) , (y, a) , (y, b) , (z, b)}
be a relation. Then (X × Y,R) is a projection covering. The projection covering has two
left subfunctions:
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x y z
f1 a a b
f2 a b b

and four right subfunctions:

a b
g1 x y
g2 y y
g3 x z
g4 y z

Note that all the left subfunctions are surjective, but not all the right subfunctions
are injective.

Definition 7.8. The converse of the projection covering
(
X × Y, (Ai)i∈I

)
is(

X × Y, (Ai)i∈I

)⌣
:=

(
Y ×X, (A⌣

i )i∈I

)
,

where A⌣
i (y, x) := Ai(x, y) for all x ∈ X and y ∈ Y .

Proposition 7.9. The converse of a projection covering is a projection covering.

Proof. If
(
X × Y, (Ai)i∈I

)
is a projection covering then

(
X, (Ai(−, y))(i,y)∈I×Y

)
is a cover-

ing which means that
(
X, (A⌣

i (y,−))(i,y)∈Y×I

)
is a covering.

Similarly,
(
Y, (A⌣

i (−, x))(i,y)∈Y×I

)
is a covering. □

Proposition 7.10. (1) If f is a left subfunction of
(
X × Y, (Ai)i∈I

)
then f is a right

subfunction of
(
X × Y, (Ai)i∈I

)⌣
.

(2) If g is a right subfunction of
(
X × Y, (Ai)i∈I

)
, g is a left subfunction of

(
X × Y, (Ai)i∈I

)⌣
.

(3) If
(
X × Y, (Ai)i∈I

)
is a projection covering then

(
Gf ,

(
Ai|Gf

)
i∈I

)
and

(
Gg,

(
A⌣

i |Gg

)
i∈I

)
are coverings, where f : X → Y and g : Y → X are (left, respectively right) subfunc-
tions and Gf denotes the graph of the function f .

Proof. (1) and (2) The results follow from the fact that Ai(x, f(x)) = A⌣
i (f(x), x) for all

x ∈ X. (3) Since f : X → Y is a left subfunction, it follows that for all x ∈ X there exists
i ∈ I such that Ai(x, f(x)) = 1 which means that for all (x, y) ∈ Gf there exists i ∈ I such

that Ai(x, y) = 1. Hence
(
Gf ,

(
Ai|Gf

)
i∈I

)
is a covering. □

Proposition 7.11. If
(
X × Y, (Ai)i∈I

)
is a projection covering, the following are equivalent:

(1) The projection covering has a single left subfunction;
(2) All the right subfunctions are injective.

Proof. (1) ⇒ (2) Assume that there exist two different y1, y2 ∈ Y and i, j ∈ I such that
for an element x0 ∈ X we have Ai(x0, y1) = Aj(x0, y2) = 1. Then we can assume that
the unique left subfunction of the projection covering f : X → Y has f(x0) = y1. But the
function g : X → Y , where g(x) = f(x) for all x ̸= x0 and g(x0) = y2 is a different left
subfunction. We get a contradiction.

This means that for all x ∈ X there exists a unique y0 ∈ Y such that Ai(x, y0) = 1,
where i ∈ I and Ai(x, y) < 1 for all y ̸= y0 and for all i ∈ I. We define h : Y → X, where
h(y) = x such that Ai(x, y) = 1. We can notice that:

• The function is correctly defined.
• The function is injective.
• The function is a right subfunction.
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(2) ⇒ (1) Let Xy = {x ∈ X|Ai(x, y) = 1, i ∈ I} for all y ∈ Y . Assume there exist two
different y1, y2 ∈ Y such that Xy1 ∩Xy2 ̸= ∅. We can define right subfunction g : Y → X
such that g(y1) = g(y2), which is a contradiction. So for all y ∈ Y there exist a unique
x ∈ X such that Ai(x, y) = 1. Then the we notice that

(
X, (Yx)x∈X

)
is a partition and

that the only right function we can define f : X → Y , where f(x) = y such that x ∈ Yx is
surjective. □

Theorem 7.12. Let
(
X × Y, (Ai)i∈I

)
be a projection covering.

(1) If the projection covering has a single left subfunction f : X → Y then f is surjective.
(2) If the projection covering has a single left subfunction f : X → Y and a single right

subfunction g : Y → X then f and g are bijective and f−1 = g.

Proof. (1) Since
(
Y, (Ai(x,−))(x,i)∈X×I

)
is a covering, it follows that for all y ∈ Y there

exists x ∈ X and i ∈ I such that Ai(x, y) = 1. We define a function f : X → Y , with the
property that Ai(x, f(x)) = 1 for all x ∈ X and we note that:

• The function is correctly defined.
• The function is surjective by definition.
• The function f is a left subfunction of

(
X × Y, (Ai)i∈I

)
.

(2) From Proposition 7.11 it follows that g is injective. From Proposition 7.10 we

know that the unique right subfunction in
(
X × Y, (Ai)(i∈I

)
is, in the same time, the unique

left subfunction in
(
Y ×X, (A⌣

i )i∈I

)
and applying (1) again we get that g is surjective, which

means g is bijective. Similarly f is bijective. We notice that f−1 is a right subfunction of the
projection covering and since g is the unique right subfunction it means that f−1 = g. □

8. Conclusion

In this article, we introduced and studied new types of fuzzy coverings: non-inclusive
coverings, i.e. coverings (X, (Ai)i∈I) such that for any i, j ∈ I and x ∈ X we have that
Ai(x) ≤ Aj(x) if and only if i = j, disjoint coverings, i.e. coverings (X, (Ai)i∈I) such that
for any x ∈ X and i ̸= j ∈ I we have Ai(x)∧Aj(x) < 1, and projection coverings, i.e. family
(Ai)i∈I of subsets of X × Y such that the projection on each of the coordinates forms a
covering. Further research include a category theory approach of these notions.
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