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TRAJECTORIES IN NON-INERTIAL FRAMES

lon STROE?

In aceasta lucrare sunt prezentate cdteva probleme de dinamicd in sisteme
neinertiale. Sunt studiate miscarea punctelor materiale si migcarea corpurilor in
camp gravitational. Sunt scrise ecuatiile Lagrange pentru miscarea relativa in
raport cu un slstem de referind cu traiectorie cunoscutda §i este stabilitd o ecuatie de
tip Binet pentru miscarea relative.

Cdnd miscarea unui sistem de corpuri care compun o statie orbitald de mari
dimensiuni este descrisd cu sisteme de referintd care au originea in centrul atractiv
(Pamantul), problema integrarii ecuatiilor de migcare prezinta unele dificultati,
deoarece unele coordonate (ca razele vectoare) au valori foarte mari, iar altele (ca
distantele intre corpuri) au valori foarte mici. Unele dificultati pot fi evitate, daca
miscarea relativa a sistemului este studiatd in raport cu un sistem de referintd cu
miscare cunoscutd. Studiul migcarii relative nu este impus de considerente de
integrare, acesta este impus de aspecte practice.

Modelele si metoda elaborata permit rezolvarea unui numd mare de
probleme de dinamica sistemelor in camp gravitational.

Some problems of dynamics in non-inertial frames are presented in this
paper. Motion of particles in gravitational field are studied. Lagrange equations for
relative motion with respect to a reference frame with known trajectory are written
and a Binet type equation for relative motion is established.

When the motion of a system of bodies which compos a large orbital station
is described within reference frames having the origin in the center of the attractive
body (Earth), the problem of integration of motion equations presents some
difficulties, because some coordinates (like the vector radii) have very great values,
and others (like distances between bodies) have very small values. Some difficulties
can be avoided if relative motion of the system is studied with respect to a reference
frame with a known motion. Relative motion study isn’t imposed by integration
considerations; it is imposed by practical aspects. The models and the elaborated
method allow solving a large number of problems of systems dynamics in
gravitational field.
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1. Introduction

The non-inertial reference frame Oxyz is moving with respect to the inertial
reference frame O;x1y1z1 (Fig. 1), so that the Oxy plane coincides with the O;x1y;
plane, during the motion.
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Fig.1. References frames

The polar coordinates r,, v are used in the inertial frame and the cylindrical
coordinates p, 6, z,~ in the moving frame.

Motion equations can be obtained by the theorem of linear momentum
with respect to the moving frame, considering the relative acceleration, the
acceleration of transport and the Coriolis acceleration or by specific equations of
the analytical mechanics. The second method is preferred. It leads to a compact
form of the equations and prime integrals can be found.

2. Motion Equations

Lagrange equations

4 ﬂE —aEsz k=12,...,n
dt\2q, ) 94q,

(1.1)
are used.
The coordinates of the mass center C in an inertial reference frame are:

x, =r,C0sv+pcos(v+6), y, =rsinv+psin(v+8), z, =z (1.2)
The Kinetic energy is

E= %(xﬁ +y2 +z’fc):= %[ff +r2vi+ p? +p2(1) +9)2 +2°

+2(7, cos@ +r,vsin 9)+2p(‘} + QX— 7, 8in @ + r,vcos )]
Using the function

® =7, cos8 +r,vsin@ = d(r, 0,7, v)

(1.3)

: (1.4)
which represents the projection of O, the origin of the moving frame, on the
radius OC, the kinetic energy becomes
E=L[i2 4720 + +p2(1)+6")2 +22 4 2p® +2p(V+é)é)—q)]
2 (1.3")
With the above expressions and function @ given by (1.4), the motion
equations (1.1) become:
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3} o2 dO . 0D 1
Pl + G (740) G = w2 -
d . d(od . 1 L1 '
E|:p2(v+9)j|+pa(%j+p(v+9)q)2;Qe,ZngZ

2.1. Generalized Forces

Force function which corresponds to the mass center M and to an orbital
station of mass my is

U= SMm : +fmvm
(rvz +p° +2r,pcosO + 22)5 P (1.6)
Generalized forces are:
(p+rVCOSQ)me fm m fMmr, psing
Qp:_z 2 zy_ Z’ngz 2 2\3
(rv+p +2r,c080 + z )2 P (rv+p +2r, pCosf + z )A
zfMm
Qz == f 3/ "
(rvz +p2+ 2rvpCOSH+zz)A
(1.7
For
p<<r, and z<<r, (1.8)
relations (1.7) may be approximated by:
me(rvcosé’er) fm,m fMmr, psin@ zfMm
0, ~- : S QT Qo
r\) p r\/ r\)
1.7)

2.2. Particular Motions of the Moving Frame

Equations (1.5) can be used for any plane curve ' =rv(v), which is
described by the origin O of the moving system. In some cases, the relative
motion within frames with a particular motion, which corresponds to practical
problems, are analyzed.

2.2.1. Relative Motion with Respect to a Frame in Rotation

In this case the origin O of the moving reference frame coincides with the
origin O; of the fixed (inertial) frame and the relations from bellow can be
written:

r,=0, 7 =0 (1.9)
Function @, given by (1.4) becomes
®=0 (1.4%)

With the above relations, from (1.5) it follows:
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- .+H - = ’ “ 2.+9 - = , 2 =
p-plyv+6) 0, [p (v )] Qo Z=-0. (1.10)
Equations from [3, pg. 289], which are used in the study of the relative

motion with respect to the Earth-Moon system, performing a rotation with respect
to the mass center of the system are found again.

2.2.2. Relative motion with respect to a frame with the origin on a
circle
If the origin O of the moving frame is moving on a circle of radius ry, with

the angular velocity V =1 the function (1.4) becomes

® = r,ncosd = <I)(¢9)’ (1.1)
and the equations (1.5) are written:
b—p(n +9)2 _rVnZCOSH = lva i[pz(n+9)]+prvn25in9 — ng’ 5= in

(1.12)
The above equations can be used in the study of the body motion with
respect to a large vehicle which is not influenced by the presence of the first body.

With the above conditions, kinetic energy given by (1.3”) becomes

E = %[rfnz +p%+ pz(n + 6?)2 +2% 4+ 2pr,nsin @ +2p(n + é)rvncosa]
(1.13)
If a U force function exists, so that:
ou ou ou
Qp:_' QHZ_' Qz:_

Jacobi’s prime integral
E,-Ep-U=h (1.15)
becomes, for (1.12) system
ﬂ[pz + p?0% + 2* —nz(rf + p? +2prvcosé?)]—U =h
2 . (1.16)
For r, = 0, prime integrals which correspond to the motion with respect to
the system in rotation, from [3, pag.289], are obtained.
For some problems, the independent variable t is replaced with the
independent variable v. Derivative of a function f is
af _df dv _ ndf

and (1.12) equations become
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d?p do\’ 1 d 2[ d@) . 1
-p|1+—| —rcosf=—0Q , — 1+— ||+ pr,sind=——-0,,

dv? ,0( dvj Y manp dv[p dv Pty mana

d’z 1

dv?  mn? Q.

(1.18)
3. Binet’s Equation in Relative Motion

If generalized forces (1.7°) are replaced in (1.18) equations, it follows:

2 2

0
d,z)_p L _FVCO30:_1 M (r, cos +p)+fmzv,
dv d

2 3

v n r, Yo,
; 2
%{0{1+$H+pry SineziszerSSInﬁ’ ZI z =—i2ﬂ\fz
v v n r v n°or (1.19)

Solution of the last (1.19) equation is

z=C, cos(i /ﬂsv —VOJ
SR . (1.20)

For circular orbits,

1|M
= ==1
T (1.21)
and (1.20) becomes
z=C.cos(v—v,) (1.207)

With (1.21) condition, the first two (1.19) equations become:

2 2
T AT
dv dv n 7 P dv dv

v (1.22)
From (1.22) it follows
p2(1+ ﬁj =C,
dv (1.23)

Using the first (1.22) relation and (1.23) relation, the path of relative
motion is searched, in the form
p=rpl0) (1.24)
With (1.23) relation, the derivative of a function f with respect to the
variable v is written
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d_f_iﬁ_(&_lJi

- - 2
dv dfdv | p dt9. (1.25)
The first (1.16) equation becomes
2
WAL I L 7| BN
2 P P m,
;7@>_pﬂ R e PP T
.(1.26)
With notation
1
u=—
P (1.27)

The (1.26) equation becomes:

2 2 2
uz(Cp —izj M+£[Cp —%)(ﬂj +C;u3=£+fnzvu2
u dé u u do u n (1.28)

The trajectory of relative motion in the form (1.24) is obtained by
integration of the above equation.

4. Motion of the System of Two Particles

In the case of a system formed by two material points which are
connected through a negligible mass tether, force function is given by

U — & + &
oo (1.29)
and
wm  pm'S? 2.0 vy
Uy =— - 3 (1—3(:0s 0 cos (p)
ooy (1.30)
is obtained,
where 5 =51+ 52 js the distance between the two points of the system,

m = + M s the system mass, and

my (1.31)
Using the relation for the force function U,, motion equations for the
studied system in S, 6, and ¢ coordinates can be obtained. In the case of a circular
orbit the following equations can be written:

m
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S”—S[qﬁ’z +(1+0)? cos? p—1+3cos? cos? ¢} - %QZ
mn

(1.32)
d a2, g2 2. 2, 1 »
E[S (1+8)cos ¢}+3§ sin@cosdcos ¢—m*n2Q9

d 2,4\, 2 N2 i 2.2 pe 1
— (8¢ |+ S (1+ &) singcos g+ 35 cos” Gsingcosgp=——
dv( #)+5% (1+0) sin geosg poosf=— 0,

In the fig. 2 variation of the ratio between length of the tether and initialy
length of the tether with respect to number of mass center rotations in the orbit
are presented . Comparation between results obtained in this case and results
obtained from the second equation (1.32), on the basis of a linear model, show a
more rapid deployement of the tether than in a case of a linear model. Diference
betweent these two cases is espected because linearization of equations leads to
loosing of the inertial forces which favorise a rapid deployement of the tether. In
the figure 3 deployement with a constant strenght in the tether is presented.

no. rot.
Fig. 2 Relative length variation of the tether (without strength)
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Fig. 3 Relative length variation of the tether (constant strength
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5. Conclusions

Relative motion of material points in non-inertial frames with known path
is studied in this paper and interesting results are obtained.
Equations and prime integrals from celestial mechanics ([3]) are found again.
Well known Binet’s equation is written in inertial reference frame.
Similar equation for the motion in non-inertial frame is established in this paper.
Results presented in figs. 2 and 3 can be useful in dynamics of tethered
satellites.
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