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TRAJECTORIES IN NON-INERTIAL FRAMES 

Ion STROE1 

In această lucrare sunt prezentate câteva probleme de dinamică în sisteme 
neinerţiale. Sunt studiate mişcarea punctelor materiale şi mişcarea corpurilor în 
câmp gravitaţional. Sunt scrise ecuaţiile Lagrange pentru mişcarea relativă în 
raport cu un sIstem de referinţă cu traiectorie cunoscută şi este stabilită o ecuaţie de 
tip Binet pentru mişcarea relative. 
  Când mişcarea unui sistem de corpuri care compun o staţie orbitală de mari 
dimensiuni este descrisă cu sisteme de referinţă care au originea în centrul atractiv 
(Pamantul), problema integrarii ecuaţiilor de mişcare prezintă unele dificultăţi, 
deoarece unele coordonate (ca razele vectoare) au valori foarte mari, iar altele (ca 
distanţele între corpuri) au valori foarte mici. Unele dificultăţi pot fi evitate, dacă 
mişcarea relativă a sistemului este studiată în raport cu un sistem de referintă cu 
mişcare cunoscută. Studiul mişcării relative nu este impus de considerente de 
integrare, acesta este impus de aspecte practice.  
  Modelele şi metoda elaborată permit rezolvarea unui numă mare de 
probleme de dinamică sistemelor în camp gravitaţional. 
 
           Some problems of dynamics in non-inertial frames are presented in this 
paper.  Motion of particles in gravitational  field are studied. Lagrange equations for 
relative motion with respect to a reference frame with known trajectory are written 
and a Binet type equation for relative motion is established. 
           When the motion of a system of bodies which compos  a large orbital station 
is described within reference frames having the  origin in the center of the attractive 
body (Earth), the problem of integration of motion equations presents some 
difficulties, because some coordinates (like the vector radii) have very great values, 
and others (like distances between bodies) have very small values. Some difficulties 
can be avoided if relative motion of the system is studied with respect to a reference 
frame with a known motion. Relative motion study isn’t imposed by integration 
considerations; it is imposed  by practical aspects. The models and the elaborated 
method allow solving a large number of problems of systems dynamics in 
gravitational field. 
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1. Introduction 

The non-inertial reference frame Oxyz is moving with respect to the inertial 
reference frame O1x1y1z1 (Fig. 1), so that the Oxy plane coincides with the O1x1y1 
plane, during the motion. 
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The polar coordinates rv, ν are used in the inertial frame and the cylindrical 
coordinates ρ, θ, z,- in the moving frame.  

Motion equations can be obtained by the theorem of linear momentum  
with respect to the moving frame, considering the relative acceleration, the 
acceleration of transport and the Coriolis acceleration or  by specific equations of 
the analytical mechanics. The second method is preferred. It leads to a compact 
form of the equations and prime integrals can be found. 

2. Motion Equations 

           Lagrange equations  

nkQ
q
E

q
E

dt
d

k
kk

,,2,1 …
�

==−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

                               (1.1) 
are used.  
The coordinates of the mass center C in an inertial reference frame are: 

 ( ) ( ) zzryrx cvcvc =++=++= 111 ,sinsin,coscos θνρνθνρν  (1.2) 
 The kinetic energy is 
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 (1.3) 
Using the function 

 ( )νθθνθ ���� ,,,sincos vvvv rrrr Φ=+=Φ ,     (1.4) 
which represents the projection of O, the origin of the moving frame, on the  
radius OC, the kinetic energy becomes 
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    (1.3’) 
With the above expressions and function Φ given by (1.4), the motion 

equations (1.1) become: 
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Fig.1. References frames 
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2.1. Generalized Forces 
 

Force function which corresponds to the mass center M and to an orbital 
station of mass mv is  

 ( ) ρθρρ

mmf

zrr

mMfU v

vv

+
+++

=
2
1

222 cos2     (1.6) 
            Generalized forces are:  
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 For  

 vv rzandr <<<<ρ       (1.8) 
 relations (1.7)  may be approximated  by: 
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(1.7’) 

2.2. Particular Motions of the Moving Frame 

Equations (1.5) can be used for any plane curve ( )νvv rr = , which is 
described by the origin O of the moving system. In some cases, the relative 
motion within frames with a particular motion, which corresponds to practical 
problems, are analyzed. 

2.2.1. Relative Motion with Respect to a Frame in Rotation 
 In this case the origin O of the moving reference frame coincides with the 
origin O1 of the fixed (inertial) frame and the relations from bellow can be 
written: 

 0,0 == vv rr �        (1.9) 
 Function Φ, given by (1.4) becomes 

 Φ = 0         (1.4’) 
            With the above relations, from (1.5) it follows: 
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  (1.10) 
Equations from [3, pg. 289], which are used in the study of the relative 

motion with respect to the Earth-Moon system, performing a rotation with respect 
to the mass center of the system are found again. 

 
2.2.2. Relative motion with respect to a frame with the origin on a 

circle 
If the origin O of the moving frame is moving on a circle of radius rv, with 

the angular velocity �ν = n , the function (1.4) becomes 

 ( )θθ Φ==Φ cosnrv ,       (1.11) 
and the equations (1.5) are written: 
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             (1.12) 
The above equations can be used in the study of the body motion with 

respect to a large vehicle which is not influenced by the presence of the first body. 

 With the above conditions, kinetic energy given by (1.3’) becomes 
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           If a U force function exists, so that: 
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  Jacobi’s prime integral 

 E2 - E0 - U = h        (1.15) 
becomes, for  (1.12) system 
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 For rv = 0, prime integrals which correspond to the motion with respect to 
the system in rotation, from [3, pag.289], are obtained. 
 For some problems, the independent variable t is replaced with the 
independent variable ν. Derivative of a function f is  
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and (1.12) equations become 
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3. Binet’s Equation in Relative Motion  

          If generalized forces (1.7’) are replaced in (1.18) equations, it follows: 
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 Solution of the last (1.19) equation is 
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 For circular orbits, 
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and (1.20) becomes 

 ( )0cos νν −= zCz .       (1.20’) 
            With (1.21) condition, the first two (1.19) equations become: 

01,11 2
232

2

2

2

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=⎟

⎠
⎞

⎜
⎝
⎛ +−

ν
θρ

νρ
ρ

ν
θρ

ν
ρ

d
d

d
dmf

r
Mf

nd
d

d
d v

v .  (1.22) 

 From (1.22) it follows 
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 Using the first (1.22) relation and (1.23) relation, the path of relative 
motion is searched, in the form 

 ( )θρρ=         (1.24) 
 With (1.23) relation, the derivative of a function f with respect to the 
variable ν is written 
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 The first (1.16) equation becomes  
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 With notation 

 ρ
1

=u
         (1.27) 

The (1.26) equation becomes: 
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The trajectory of relative motion in the form (1.24) is obtained by 
integration of the above equation. 

4. Motion of the System of Two Particles 

              In the case of a system formed by two material points which are 
connected through a negligible mass tether, force function is given by 

         2

2

1

1

r
m

r
mU μμ

+=
,                 (1.29) 

 and  

( )U m
r

m S
r2

2

3
2 2

2
1 3= − −

μ μ
θ ϕ

ν ν

*
cos cos

               (1.30) 
 is obtained,  
where S S S= +1 2  is the distance between the two points of the system, 
m m m= +1 2  is the system mass, and 
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             Using the relation for the force function U2, motion equations for the 
studied system in S, θ, and ϕ coordinates can be obtained. In the case of a circular 
orbit the following equations can be written: 
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              In the fig. 2 variation of the ratio between  length of the tether and initialy 
length of the tether with respect to number of  mass center rotations in the orbit 
are presented . Comparation between results obtained in this case and results 
obtained from the second equation (1.32), on the basis of a linear model, show a 
more rapid deployement of the tether than in a case of a linear model. Diference 
betweent these two cases is espected because linearization of equations leads to 
loosing of the inertial forces which favorise a rapid deployement of the tether. In 
the figure 3 deployement with a constant strenght in the tether is presented. 
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Fig. 2 Relative length variation of the tether (without strength) 

 Fig. 3 Relative length variation of the tether  (constant strength 
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5. Conclusions 

Relative motion of material points in non-inertial frames with known path 
is studied in this paper and interesting results are obtained.  
Equations and prime integrals from celestial mechanics ([3]) are found again. 

 Well known Binet’s equation is written in inertial reference frame. 
Similar equation for the motion in non-inertial frame is established in this paper. 

Results presented in figs. 2 and 3 can be useful in dynamics of tethered 
satellites. 
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