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INTEREST COMMUNITY DETECTION BASED ON 

HETEROGENEOUS GRAPH NEURAL NETWORK AND 

TEMPORAL CONVOLUTIONAL NETWORK 

Pei CAO 1,*, Yongyi LIN 2, Leilei SHI 3, Miaomiao LI 4 

Effectively dividing community structures aids in optimizing resource 

allocation. However, users with low activity pose challenges for direct interest 

extraction. Additionally, user interests migrate over time. Therefore, this paper 

proposes an interest community detection algorithm that leverages heterogeneous 

graph neural network (HGNN) and temporal convolutional network (TCN). Initially, 

a Latent Dirichlet Allocation (LDA) model extracts interest sets from multi-user 

generated content. Subsequently, HGNN dynamically learns node features. TCN 

then models the event propagation process to track user interests. Finally, interest 

communities are delineated based on user labels. Experiments verify the 

effectiveness of the proposed algorithm. 

Keywords: community division, LDA, heterogeneous graph neural networks, 

temporal 

1. Introduction 

Social networks have become an important platform for communication 

and interaction in modern society. With the rapid development of social networks, 

their complexity and size are constantly increasing. In this context, community 

structure, as an important feature of social networks, has attracted increasing 

attention from researchers. Communities are usually defined as a set of nodes in a 

network that have denser connections among themselves than with other nodes [1-

3]. Community structure reflects the close relationships and interest similarities 

among users in the network, which is very important for understanding the 

organizational structure and function of the network. 
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A community is a set of nodes that appear in clusters within social 

networks, characterized by varying degrees of connections between these nodes 

[4]. It is generally accepted that relationships within the same community are 

closer, while relationships between different communities are sparser. Community 

detection is a key task in social network analysis, aiming to identify and divide the 

community structure in the network. Accurate community detection can provide 

support for many practical applications, such as personalized recommendations, 

information propagation analysis, and public opinion monitoring [5]. However, 

the dynamics and complexity of social networks pose enormous challenges to 

community detection. In particular, for new users or users with low activity, it is 

difficult to directly extract their interest features due to the limited content they 

generate. Moreover, user interests migrate over time, making it even more 

difficult to identify communities. 

To address these issues, researchers have proposed various methods of 

community detection. Among them, methods based on user-generated content 

analysis have received widespread attention [6-9]. These methods extract user 

interest features by analyzing text, images, and other content posted by users, and 

then perform community division. However, these methods still have limitations 

in dealing with data sparsity and dynamic changes in interests. 

Recently, advances in deep learning technology have led to significant 

improvements in community detection methods using graph neural networks. [10-

12]. Graph neural networks can effectively learn high-order features of nodes and 

capture complex network structure information. At the same time, temporal 

convolutional networks have performed excellently in processing time-series data, 

providing the possibility for modeling dynamic changes in user interests. [13] 

Based on this context, this paper presents an interest community detection 

algorithm that uses heterogeneous graph neural networks (HGNN) in conjunction 

with temporal convolutional networks (TCN). The algorithm first extracts interest 

sets from multi-user generated contents using the Latent Dirichlet Allocation 

(LDA) topic model, then uses HGNN to dynamically learn node features. Next, 

TCN is used to model the event propagation process and realize user interest 

tracking. Finally, interest communities are divided according to user labels to 

achieve the discovery of overlapping and non-overlapping communities. 

The main contributions of this paper are as follows: 

1) This paper proposes a novel community detection framework that 

combines HGNN and TCN, which can effectively handle data sparsity and 

dynamic changes in interests. 

2) This paper designs an LDA-based interest extraction method that can 

extract potential interests from diverse user-generated content. 

3) This paper proposes an interesting evolution tracking method based on 

TCN that can capture dynamic changes in user interests. 
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4) This paper conducts extensive experiments on the LFR benchmark 

network and four commonly used real network datasets to verify the effectiveness 

of the proposed algorithm. 

The structure of this paper is arranged as follows: Section II reviews 

relevant literature and related work; Section III elaborates on the proposed 

algorithm; Section IV presents and analyzes experimental results; finally, Section 

V concludes the paper and outlines directions for future research. 

2. Related work 

The concept of community was first introduced by Newman and Girvan [1] 

in 2002, sparking significant interest in community detection among scholars. 

Through extensive research and experimentation, researchers have proposed 

numerous community detection algorithms. These community detection 

algorithms can be approximately classified into traditional community detection 

algorithms and those based on deep learning. 

Current mainstream traditional community detection algorithms can be 

precisely summarized as hierarchical clustering [2,3], modularity optimization 

[4,5], label propagation [6-8], spectral clustering [9] and information theory [10] 

algorithms. Hierarchical clustering algorithm is an unsupervised machine learning 

method, which includes top-down split hierarchical clustering method and 

bottom-up agglomerative hierarchical clustering method. It divides the dataset 

into multiple hierarchical clusters to reflect the structure and similarity of the data. 

Modularity optimization algorithm originated from the modularity function 

proposed by Girvan and Newman [4], which measures the strength of network 

community structure. A higher modularity value indicates a more distinct 

community structure and better community quality. 

Li et al. [5] combined modularity optimization with genetic algorithms to 

detect community structures using a defined local search operator. The Label 

Propagation Algorithm (LPA), first proposed by Raghavan et al. [6], updates 

unlabeled node labels based on the labeled node information. In this algorithm, 

each node is initially assigned a unique label, which is iteratively updated to adopt 

the most frequent label among its neighboring nodes until the system reaches 

convergence. Finally, nodes with the identical label are classified as the same 

community. Variants such as the parallel LPA [7] and the COPRA algorithm [8], 

which incorporates label membership, further improve the accuracy of this 

approach. While traditional community detection methods have proven effective 

for many network analysis tasks, they often struggle with scalability on large-

scale networks and cannot easily incorporate node attributes or temporal 

dynamics. Additionally, most traditional algorithms require hand-crafted features 

and predefined similarity metrics, limiting their ability to capture complex, 
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hierarchical community structures. Deep learning approaches address these 

limitations by automatically learning effective representations and allowing for 

more flexible integration of multiple data modalities. 

Deep learning-based community detection methods include deep neural 

network, deep graph embedding and graph neural networks (GNNs) [14,15]. Deep 

neural networks excel at constructing and capturing global relationships, with 

convolutional neural networks, autoencoders, and generative adversarial networks 

being the most commonly used models in community detection [16,17]. Deep 

graph embedding maps network nodes to a low-dimensional vector space while 

preserving the underlying structural properties and topological relationships of the 

original network. [12]. GNNs [18] iteratively aggregate feature information from 

local neighborhoods of the graph, enabling node information to propagate through 

the graph after transformation and aggregation. Bruna et al. [19] introduced a 

graph neural network-based approach for addressing the challenge of data-driven 

community detection. Zhang et al. [20] extended the Gumbel Softmax [21] 

method and proposed a new neural network community detection method. 

However, for some new users or users with low activity, there are few 

user-generated contents on social networks. In the process of community division, 

it is difficult to directly extract user interests, and user interests will change with 

time. To solve these problems, this paper proposes a novel community detection 

algorithm that integrates HGNN and TCN to identify interest-based communities. 

Firstly, the LDA topic model is applied to extract user interests. Next, the HGNN 

is leveraged to capture high-order features. Then, the TCN is employed to track 

the evolution of user interests. Finally, interest communities are categorized based 

on user tags. 

3. The HGNN-TC method 

The modeling for interest community detection method, which is based on 

a HGNN and a TCN, is depicted in Fig. 1. Firstly, the LDA topic model is 

employed to analyze the content generated by the user and extract their potential 

interest. Secondly, the HGNN is utilized to dynamically learn and update node 

features to obtain high-order features. Subsequently, the TCN is applied to model 

the event propagation process and facilitate user interest tracking. Finally, the 

interest communities are categorize based on user tags. 

3.1 User interest extraction 

In this paper, the LDA document topic generation model is employed to 

generate user interests. The LDA model is a hierarchical three-layer Bayesian 

probabilistic model that incorporates documents, topics, and words as distinct 

generative layers. By training on document data through unsupervised learning, it 
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effectively extracts latent topic structures from large-scale document collections 

and textual corpora. The LDA model posits that documents consist of multiple 

topics, with each topic comprising a distinct distribution of words. The model 

represents each document as a multinomial distribution over topics, while each 

topic is characterized by a multinomial distribution over words. Through this 

hierarchical structure, it generates both topics and their associated word labels, 

effectively capturing underlying user interests. Fig. 2 shows the LDA topic 

generation model. 

Multi-user UGC

Web topic extraction
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Target aggregation

Heterogeneous mutual attention

Heterogeneous mutual attention

Interactive representationInterest set extraction module

(user-interest) feature extraction module

Interest Evolution tracking module
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Fig. 1. Modeling of HGNN-TC 

 

Suppose document D contains K topics and N words. The modeling 

process is as follows: 

1) Sample the document D with Dirichlet distribution using parameter 

 to generate the document-topic distribution m . 

2) Sample from the document-topic polynomial distribution m  to 

generate topic ,m nZ  for the nth word in document D. 

3) Sample the topic ,m nZ  with a Dirichlet distribution using parameter   

to generate the topic-word distribution k . 

4) Sample from the topic-word multinomial distribution k , and finally 

generate the word ,m n . 

From the above modeling process, it is evident that the LDA model adds a 

layer of Dirichlet prior to both the document-topic distribution and topic-word 

distribution, skillfully avoiding the overfitting problem caused by the increase of 

the user corpus. In addition, the simple and convenient Gibbs Sampling algorithm 

is used to obtain the topic posterior distribution of feature words through 
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continuous iterative sampling. Then the label set  1 2, , , qK k k k=  of document 

D is obtained, where q denotes the number of labels. 
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m ,m n,m nZ
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[1, ]k K

[1, ]mn N

[1, ]m M

 
Fig. 2. LDA Topic Generation Mode 

3.2 Heterogeneous graph neural network module 

HGNN module can be divided into two main components: heterogeneous 

graph construction module and interaction representation module. The interaction 

representation module comprises four sub-modules: heterogeneous cross-

attention, message passing, information aggregation and target edge 

representation. In this paper, user reaction records to events are restated as graph 

structures, where connections to interests are added to the response record and 

reformulated as heterogeneous graph data. Before using the HGNN to extract 

features, the sequence of user experience events needs to be converted into a 

heterogeneous graph data type. 

3.2.1 Heterogeneous graph building blocks 

Three entity types are selected as nodes: users, events and tags. 

 1 2, , , nS s s s=  represents the set of users, where n represents the number of 

users.  1 2, , , mE e e e=  represents the set of events with m denoting the number 

of events.  1 2, , , qK k k k=  represents the set of labels, where q is the number of 

labels. Two types of edges: (Event-Label) and (User-Event) are contained.  

The (Event-Label) edge, denoted as  1 1 1( ) , ,x xE K e k e k +− = , represents 

the relationship between events and labels, indicating the labels associated with 

each event. For example, e1kx indicates that the first event contains label x. 

The (User-Event) edge, denoted as  1 1, 1 1 1, 1( ) ( , ), ( , )x x x xS E s e r s e r+ +− = , 

represents the relationship between users and events, indicating the sequence of 

events experienced by users. For example, s1ex+1 indicates that the first user 
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experienced the x+1-th event. And r1, x+1 indicates whether the user is interested in 

the event, with 1 for interested and 0 for not interested. The PyTorch Geometry 

library is used to construct heterogeneous graphs, and the general process is 

shown in Fig. 3. 

Construct user, event, and label nodes

Add features for users, events, and tags

Construct two types of edges: (User Event) and (Event Label)

Add Edge: (User-Event) Label

Heterogeneous graph

Event propagation data

 
 

Fig. 3. Heterogeneous Graph Construction Process Diagram 

 

Let's consider a small example with 2 users(s1 and s2),  3 events(e1, e2  and 

e3) , and 3 labels (k1 ="Music", k2 ="Sports" , and  k3 = "Technology") . The 

example scenario are as follow: Event e1 is a "Jazz Concert" tagged with label k1 

(Music). Event e2 is a "Basketball Game" tagged with label k2 (Sports). Event e3 is 

a "Tech Conference" tagged with label k3 (Technology). There are two users with 

different interaction patterns. User s1 experienced events e1 and e3; he was 

interested in e1 , but not in e3. User s2  experienced events e2  and e3, and was 

interested in both.  

The (Event-Label)  Edge (E - K) can be described as follow: 

e1k1: The Jazz Concert is tagged with Music  

e2k2 : The Basketball Game is tagged with Sports  

e3 k3 : The Tech Conference is tagged with Technology  

The (User-Event)  Edges with Interest Indicators (S - E) can be described 

as follow: 

s1e1,  r1,1 = s1e1,1: User 1 experienced the Jazz Concert and was interested  

s1e3, r1,3= s1e3,0: User 1 experienced the Tech Conference but wasn't 

interested  

s2e2, r2,2= s2e2,1: User 2 experienced the Basketball Game and was 

interested  

s2e3, r2,3= s2e3,1: User 2 experienced the Tech Conference and was 

interested  
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3.2.2 Interaction representation module 

Firstly, the node features within the heterogeneous graph are mapped to a 

high-dimensional space as inputs to the interaction representation module. Then, 

the Heterogeneous Graph Transformer (HGT) algorithm [22] is employed to 

obtain the features of each node in the heterogeneous graph.  HGT is a specialized 

HGNN that adapts transformer architectures to heterogeneous graphs, 

emphasizing type-aware attention, temporal dynamics, and scalability. The 

specific steps of the HGT algorithm include heterogeneous mutual attention, 

message passing, target aggregation, and target edge representation. This paper 

takes the attention calculation, message passing, and target aggregation of event 

node e as an example. The update principles for user node s and label node k are 

analogous to those for event node e. 

Step 1: Heterogeneous mutual attention 

In heterogeneous graphs, the neighbors of a node can be different types of 

nodes, and the distribution and length of the representation vectors for these nodes 

may vary. And a node may be connected to neighboring nodes through multiple 

types of edges, each carrying distinct information. Heterogeneous graphs calculate 

the importance of neighboring nodes through heterogeneous mutual attention. 

This paper considers event node e as the target node, with user node s and 

label node k as its neighboring nodes. The weights between them are calculated 

using a triplet relationship. (s, (s-e), e) represents node s pointing to node e 

through edge (s-e), and (k, (k-e), e) represents node k pointing to node e through 

edge (k-e). The target node e is mapped to a vector Q(e), while its neighboring 

nodes s and k are mapped to vectors K(s) and K(k), respectively. The attention 

calculation process for the h-head of the edge (s-e) is as follows: 

[1, ]

A ( ) max( ( ))i

HGT
i h

ttention s e Soft ATT head s e


− = − −                          (1) 

( ), ,

( )( ) ( ( ) ( ) )
s s e ei i ATT i T

s eATT head s e K s W Q e
d


−

−− − =                                (2) 

( 1)( ) ( [ ])i i lK s K Linear H s−= −                                                (3) 

 ( 1)( ) ( )i i lQ e Q Linear H e−= −                                                    (4) 

As shown in (3) and (4), each distinct node type in the heterogeneous 

graph corresponds to a unique linear projection to maximize the simulation of 

distribution differences. When calculating the output ATT-headi(s-e) of the i-th 

head in multi-head attention, the input feature vectors H(l-1) [s] and H(l-1) [e] of 

the l-th layer are first transformed into Key vectors and Query vectors through K-
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Lineari and Q-Lineari according to the types of nodes s and e. Then the importance 

of node s to node e is calculated based on the weight matrix 
( )

ATT

s eW −
 related to the 

type of edge. Finally, 
,( ),s s e e

d


−

 is used to adjust the importance level through, 

where ,( ),s s e e −   represents a learnable parameter that quantifies the relative 

importance of various types of < node, edge, neighbor node > triples in 

heterogeneous graphs. 
1

d
 is used to balance the effect of vector dimensions on 

the result. After completing the single head attention calculation, all h attention 

heads are connected together. 

Step 2: Message passing 

Message passing involves transferring information from the source node to 

the target node, and its computation process runs in parallel with heterogeneous 

mutual attention computation. To mitigate the distributional disparities among 

distinct node types, the edge meta-relationship is integrated into the message 

passing process. 

[1, ]

( ) ( )i

HGT
i h

Message s e MSG head s e


− = − −                                                 (5) 

( 1)

( )( ) ( [ ])i i l MSG

s eMSG head s e M Linear H s W−

−− − = −                        (6) 

MSG-headi(s-e) represents the output of the i-th header during message 

passing. M-Lineari maps the representation vector H(l-1)[s] of its l-1st layer to an 

information vector based on the type of node s. Since two types of nodes may be 

connected by multiple types of edges, the information vector also needs to be 

transformed by the matrix ( )

MSG

s eW − . 

Step 3: Information aggregation 

After completing the above calculation and transmission, it is necessary to 

aggregate the neighbor nodes s and k with different feature distributions to the 

target node e. Then the updated vectors are connected by residuals after linear 

projection. Finally, by concatenating with the initial target node vector, the feature 

H(l)[e] of the target node is calculated by the l-th layer HGT is obtained. The 

calculation process is shown in (7) and (8). 

When aggregating neighboring node information, the information vectors 

of neighboring nodes with different feature distributions are first weighted and 

summed, as shown in (7). Next A-Linear maps 
( )

[ ]
l

H e  to the representation space 
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corresponding to node type of e. Then we concatenate it with the representation 

vector H(l-1)[e] of e in the l-1 layer to obtain the representation vector H(l)[e] of 

the l-th layer. The calculation is shown in (8). 
( )

( )
[ ] ( ( ) ( ))

l

HGT HGT
s N e

H e Attention s e Message s e
 

=  − −                             (7) 

( )( ) ( 1)[ ] ( [ ]) [ ]
ll lH e A LinearH e H e −= − +                                 (8) 

Step 4: Target edge representation 

In order to more accurately represent the features of the edge (User-Label), 

this paper uses the updated user node feature H(l)[s] and label feature H(l)[k] to 

concatenate the feature H[s-k] of the edge (User-Label). 
( ) ( )[ ] [ [ ]; [ ]]l lH s k H s H k− =                                             (9) 

3.3 Interest evolution tracking module  

The interest evolution tracking module uses a TCN to model the 

serialization of user label changes. TCN, an improvement over the convolutional 

neural network (CNN), contains three basic modules: causal convolution, dilated 

convolution and residual connection. Causal convolution ensures that the 

modeling process is sequential, whereby the output at any given time step is 

dependent solely on the current and preceding inputs. Dilated convolution 

increases the receptive field using a certain input interval, allowing each 

convolution to cover a larger range of information. Residual connection enables 

information to pass across layers, which solves the gradient problem in deep 

network training. 

The TCN infrastructure is shown in Fig. 1, with a convolution kernel k=3 

and expansion factor d= [1, 2, 4] [23]. The input of TCN is the feature of the 

(User-Label) edge updated by the interactive characterization module, and the 

output is the user interest state matrix s

tP . After linear mapping and softmax 

function, a two-dimensional vector is obtained to represent the probabilities of 

user interest and disinterest in the label. The calculation formula is as follows: 

max( ( ))s s

t tP Soft Linear P=                                             (10) 

3.4 Interest community division 

Based on the calculation result s

tP  of the interest evolution tracking 

module, the label with the highest probability of user interest at time t is selected 

as the user label. Users sharing the identical label are aggregated into an interest 
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community set  1 2, ,..., qC C C C= , where q denotes the number of communities. 

At this point, the division of non-overlapping communities can be achieved. 

By selecting the top n tags with the highest interest probability for users at 

time t as user labels and subsequently classifying users with the same labels into 

the same interest community, it is possible to achieve the division of overlapping 

communities. 

4. Experiments 

To evaluate the efficacy of our proposed algorithm, comparative analyses 

against four established methods (GCN [24], GAT [25], GraphSAGE [26], and 

LCFS [27]) are conducted on both the LFR benchmark network and four widely-

adopted real-world networks (Karate, Football, Polbooks, and DBLP). 

The performance of the proposed algorithm is evaluated using Precision, 

Recall, and their harmonic mean (F1-score). The true community membership of 

node v is denoted as Ci, while the community detection algorithm assigns it to 

community Di, then 

iD C
Pr ecision=

D


                                                            (11) 

i

i

D C
Recall=

C


                                                                       (12) 

Pr ecision Recall
F1 score 2

Pr ecision Recall


− = 

+
                                                      (13) 

A single metric, either Precision or Recall, cannot effectively reflect the 

performance of an algorithm. In some cases, an increase in Precision may reduce 

Recall, and vice versa. Therefore, this paper comprehensively adopted both 

metrics and their harmonic mean, the F1-score, to verify the effectiveness of the 

algorithm. The F1-score ranges from 0 to 1, where higher values indicate superior 

accuracy in identifying overlapping nodes by the algorithm. 

4.1 Experiments on simulated network data sets 

Both the node degree and community size in the LFR benchmark network 

follow a power-law distribution.  The LFR benchmark is a commonly used tool 

for testing community discovery algorithms. The parameters of the LFR network 

generation program are presented in Table 1.  

In this experiment, the parameters are configured as follows: n=5000, 

k=10, kmax=50, with the mu value ranging from [0.1, 0.5] in steps of 0.05, 

totaling 10 values, while other parameters are set by default. The parameter mu 

represents the mixed proportion, defined as the ratio of external links (connections 
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between a node and nodes outside its community) to the node's total degree.  For 

example, when mu = 0.2, 80% of a node's connections are intra-community while 

20% are inter-community links. The higher the mu, the greater the connection 

ratio between nodes in and outside the community, making community discovery 

more difficult. Conversely, a lower mu indicates a clearer community structure. 

 
Table 1 

The parameter of LFR 

parameter meaning 

n Number of nodes in the network 

k Average degree of a node 

mu Mixed parameter 

kmax Maximum degree of a node 

Cmin Minimum community size 

Cmax Maximum community size 

t1 Power rate distribution index of node degree 

t2 Power rate distribution index of community size 

 

Each experiment is replicated 5 times per dataset, with the mean values 

reported as the final results and illustrated in Fig. 4. 

 
(a)Precision                                                              (b)Recall 

 
(c)F1-score 

 

Fig. 4. Experimental results on the LRF dataset 

 

When mu=0.05, although there are differences in the experimental results 

of the five algorithms, the values of F1 score, Precision, and Recall are all high, 

indicating good performance of the algorithms. As the mixing coefficient mu 

increases, the community structure becomes more complex, leading to varying 
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degrees of performance degradation across all five algorithms. Among them, 

GCN and GAT algorithms exhibit the most significant performance degradation. 

When mu>0.35, the performance of the GCN algorithm rapidly decreases, with F1 

score and Precision approaching 0 and Recall values below 0.5. 

The performance of the proposed algorithm, along with GraphSAGE and 

LCFS algorithms, remains relatively stable. They maintain good performance 

across different mu values, with F1-score, Precision, and Recall values 

consistently above 0.7. When mu<0.3, LCFS algorithm performs well. The 

proposed algorithm yields marginally lower F1-score, Precision, and Recall 

values compared to the LCFS algorithm. When mu=0.3, the Precision and Recall 

values of our algorithm are slightly lower than that of GraphSAGE. At mu = 0.5, 

our algorithm exhibits marginally lower Precision than GraphSAGE. After 

mu>0.3, the values of F1-score, Precision and Recall of this algorithm are 

generally the highest. It can be seen that our algorithm performs normally in 

simple networks but excels in complex networks.  

As mu increases, our algorithm's performance decreases the slowest and 

fluctuates the least, with almost no noticeable decline in Precision, Recall, and F1-

score. Tables 2 and 3 present the absolute decreases and decline rates, 

respectively, of Precision, Recall, and F1-score metrics across all five algorithms. 
 

Table 2 

The decline values of the Precision, Recall and F1-score 

Algorithm Precision Recall F1-score 

GCN 0.86 0.54 0.88 

GAT 0.56 0.20 0.55 

GraphSAGE 0.13 0.09 0.13 

LCFS 0.20 0.30 0.25 

Our algorithm 0.12 0.06 0.09 

 

Table 3 

The decline rates of the Precision, Recall and F1-score 

Algorithm Precision Recall F1-score 

GCN 98.4% 55.1% 97.4% 

GAT 58.9% 19.9% 57.8% 

GraphSAGE 12.9% 9.4% 13.6% 

LCFS 20.4% 29.9% 25.5% 

Our algorithm 12.6% 6.2% 9.5% 

 

The minimal decline in performance metrics as μ increases demonstrates 

superior robustness to community structure blurring compared to baseline 

methods. This stability can be attributed to the complementary nature of our 

hybrid approach. While HGNN effectively captures complex heterogeneous 

relationships between users and content, TCN provides temporal resilience by 
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modeling interest evolution patterns that remain detectable even as community 

boundaries become less distinct. 

4.2 Experiments on real network data sets 

Comparative experiments were conducted on four widely recognized real-

world datasets: Karate, Football, Polblogs, and DBLP. The data summaries for the 

four networks are provided in Table 4. The experimental results of the five 

algorithms on these four data sets are illustrated in Fig. 5. 
Table 4 

The information of four Data sets information 

Data set Nodes Edges Community 

Karate 34 78 2 

Football 115 616 12 

Polblogs 1490 19090 2 

DBLP 17725 105781 4 

 

On the Karate dataset, the GCN algorithm achieves the highest F1-score 

and Recall values, while the LCFS algorithm has the highest Precision, nearly 1. 

Our algorithm, GraphSAGE, and GAT perform similarly. On the Football dataset, 

our algorithm and GAT algorithm perform best, with our algorithm having the 

highest F1-score and Precision values, and GAT algorithm having the highest 

Recall values. On the Polbooks dataset, the GraphSAGE algorithm has 

experienced overfitting. Our algorithm demonstrates comparable performance to 

LCFS, achieving similarly high values across all three metrics: F1-score, 

Precision, and Recall. On the DBLP dataset, our algorithm has the highest F1 

score and Recall values, while the GCN algorithm has the highest Precision.  

 
(a) Karate                                                                (b) Football 
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(c) Polbooks                                                           (d) DBLP 

Fig. 5. Experimental results on real network dataset 

 

Our algorithm achieves the highest F1-score on the Football and DBLP 

datasets, slightly lower than LCFS on Polbooks dataset, and second only to GCN 

on Karate dataset. This demonstrates that our algorithm has good performance on 

both simple and complex datasets, with particularly strong performance on 

complex networks. Our algorithm can effectively balance Precision and Recall to 

make the community division more reasonable. 

The mean and variance of the three performance indicators (F1-score, 

Precision, and Recall) for the five algorithms across the four data sets are shown 

in Table 5 and Table 6.  
Table 5 

The mean of the Precision, Recall and F1-score on the four data sets 

 F1-score Recall Precision 

GCN 0.82 0.82 0.87 

GAT 0.76 0.78 0.82 

GraphSAGE 0.81 0.83 0.86 

LCFS 0.80 0.78 0.85 

Our algorithm 0.84 0.84 0.86 

 
Table 6 

The variance of the Precision, Recall and F1-score on the four data sets 

 F1-score Recall Precision 

GCN 0.013 0.012 0.002 

GAT 0.031 0.028 0.018 

GraphSAGE 0.023 0.019 0.009 

LCFS 0.005 0.017 0.015 

Our algorithm 0.005 0.007 0.003 

 

Our algorithm has the highest mean F1-score and Recall, and the second-

highest mean Precision. The variance of our algorithm's F1-score and Recall is the 

highest, and the variance of its Precision is the second lowest, significantly lower 

than those of other algorithms.  

The advantage of marginal performance stems from our integration of 

temporal dynamics and interest in tracking mechanisms absent in purely structural 
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approaches. This underscores the importance of incorporating time-evolving user 

interests when detecting communities in dynamic social networks. 

5. Conclusion and future work 

This paper proposes an interest community discovery algorithm based on 

the HGNN and TCN to address the challenges posed by "cold start users", 

specifically the difficulty in directly extracting user interests and tracking interest 

evolution. First, the LDA model is used to extract multi-user interests, forming an 

interest set. Next, a HGNN dynamically learns node features to obtain higher-

order features. Then, a TCN is used to model the event propagation process, 

achieving user interest tracking. Finally, the interest communities are divided 

according to the user labels. This method can effectively discover both non-

overlapping and overlapping communities. 

While the proposed algorithm shows promising results, there are several 

directions for future research: 

1) Scalability: As social networks continue to grow in size and complexity, 

further work is needed to optimize the algorithm's performance on large-scale 

networks (e.g., parallel computing, graph sampling). 

2) Real-time processing: Developing techniques for real-time community 

detection and interest tracking could enhance the algorithm's applicability in 

dynamic social media environments (e.g., incremental learning procedures, 

efficient index structures). 

3) Multi-modal data integration: Incorporating diverse types of user-

generated content (e.g., images, videos) could provide richer insights into user 

interests and community structures. 

4) Interpretability: Enhancing the interpretability of the model's decisions 

could provide valuable insights for network analysts and improve trust in the 

algorithm's outputs. We can develop visualization tools that highlight temporal 

patterns in interest evolution. 

5) Privacy preservation: As community detection often involves sensitive 

user data, developing privacy-preserving techniques for interest extraction and 

community discovery is an important area for future work. We can develop 

privacy-aware interest representations that intentionally obscure individual-

identifying information while preserving community-level patterns. 

6) Cross-platform analysis: Extending the algorithm to handle data across 

diverse social media platforms would facilitate a holistic analysis of user interests 

and community structures across different online environments. 

7) Adaptive learning: Developing mechanisms for the algorithm to 

adaptively adjust its parameters based on changing network dynamics could 

further improve its performance and robustness. We can design reinforcement 
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learning frameworks to optimize community detection strategies based on quality 

metrics. 

In conclusion, this paper presents a significant step forward in addressing 

key challenges in community detection within social networks. By combining 

advanced machine learning techniques with a deep understanding of social 

network dynamics, our approach offers a powerful tool for elucidating significant 

community structures. As social networks continue to evolve and shape our digital 

interactions, the development of sophisticated community detection algorithms 

will remain a crucial area of research, with far-reaching implications for fields 

such as social science, marketing, and information dissemination. 
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