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USING DIGITAL TWINS IN HEALTH CARE 

Adriana BOATĂ1, Radu ANGELESCU2, Radu DOBRESCU3
 

This paper aims to summarize the progress made in the use of the Digital 

Twin (DT) concept for choosing the right drug for a person, as well as presenting a 

subnet model that predicts existing drugs for a particular pathology, based on 

genetic expressions involved in the disease, and genes addressed by therapy. 

Finally, as a result of the research, the paper discusses how the proposed method 

can be applied to search for a medication for the disease caused by the Covid 19 

virus, with reference to the results of some clinical trials conducted after the onset of 

the pandemic. 
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1. Introduction 

The concept of Digital Twin (DT), which aims to create in a virtual 

environment a digital avatar of a real entity belonging to the physical 

environment, appears in the early 2000s as a solution for optimizing 

manufacturing processes and product life cycle. The use of DT is favored by 

advances in information technology, especially by the rapid evolution of IoT 

(Internet of Things), especially in its industrial version - IIoT (Industrial Internet 

of Things). In the use of DT, the essential is the real-time dual exchange of 

information between the physical entity and its virtual avatar, which requires a 

permanent communication between the virtual environment and the physical 

environment, with severe time restrictions (high data processing speed, low 

latency data block transfer) and requires a specialized interface for connecting the 

two environments, usually based on cyber-physical principles.  

Gradually, the DT concept began to be used in other fields, including 

medicine and biology. In these two areas the use of DT has been mainly in 

scientific research, where DT has been perceived only as a simulation tool. The 

essential difference is that in this perspective the severe restrictions of real-time 

data exchange disappear, but it appears that the essential problem is to achieve a 
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synchronization between the behavior of the physical entity (for example, an 

organism or a physiological system) and the dynamics of its virtual representation, 

which implies a precise tuning of the time scales at which the physiological 

processes take place. On the other hand, in medical applications DT must respect 

an important characteristic of the behavior of its industrial correspondent, that of 

the permanent exchange of data between the physical environment and the virtual 

environment. 

In most situations, DT is used as a development environment that 

integrates and enables the running of digital processing algorithms borrowed from 

Artificial Intelligence techniques (eg. Machine Learning) and Exploratory Data 

Analysis (eg. Software Analytics) by creating digital simulation models that are 

updated as its counterparts in the physical world undergo changes. In this paper 

we used DT for graph representation of spatial networks, used as models for 

various types of biological networks (molecular networks, genetic networks) and 

we insisted on the advantages offered by DT in processing large volumes of data 

extracted from huge medical databases and to highlight the interactions between 

the constituent elements of these networks. 
 

2. Integration of the Digital Twin concept in medicine 
 

There are several instances in which DT is perceived in the medical 

field, but three of them can be considered truly representative: 

1. The use of DT as a support for running medical software programs, 

both for assisting the diagnosis process (DT in the position of virtual 

doctor) and for therapeutic care (DT in the position of virtual nurse). 

The most difficult issue is the certification of such a support so that it 

becomes a regulated medical product. For this reason, in this case DT is 

used only in triage and screening processes, to facilitate selection in 

binary decision processes (eg. healthy / sick; positive test / negative 

test) before deciding to send a suspicious patient for examination by a 

specialist doctor. In addition, with the help of DT, statistical tests can 

be performed to assess the degree of confidence in the method used in 

triage. 

2. The use of DT as a virtual modeling environment (VME) in terms of 

compatibility with the requirements of the Virtual Physiological 

Human (VPH) initiative, for the generation and integration of 

personalized knowledge about a particular patient who has been 

diagnosed with a particular disease. Specifically, in this case DT allows 

the clinical data provided by the current medical information systems 

of hospitals to be integrated with biometric and behavioral data from 

the patient's environment. It can be said that DT thus contributes to the 
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creation of an VPH Info structure that ultimately provides rule-based 

diagnoses to provide prediction regarding the evolution of the disease 

and personalized (patient-oriented) treatment. 

3. The use of DT as a virtual framework that allows both legacy and 

sharing resources at different levels, as a foundation for the 

development of translational medicine. In this case DT is a platform 

located on one of the levels of a multi-level structure of hierarchical IT 

networks, contributing to offering IT support to ensure standardization 

and interoperability of information contained in large medical data 

repositories, based on evolved HPC cloud and grid computing and 

semantic web technologies. 
 

The use of DT, from the perspective of the third position mentioned above, 

in medicine and biology research is the spearhead of in silico analysis techniques. 

Although studies in silico represent a relatively new research pathway, over the 

last decade they have been noted for predicting how drugs interact with the body 

and with pathogens. There are a wide variety of techniques in silico, but three of 

them are the most discussed: 1) Bacterial sequencing techniques; 2) Molecular 

modeling; 3) Simulation of the behavior of living cells, including the exchange of 

intra- and inter-cellular information. 

In the thematic area of the paper (interactions in biological networks), the 

number of published papers is low, so we have nominated only three in which it is 

suggested to use of DT as an analysis tool. Thus, the paper [1] discusses the 

integration of DTs with Multi-Agent Systems (MAS) technologies and presents an 

application of agent-based DT to the management of severe traumas. Paper [2] 

explains how the performance of a model of the interactions of major organ 

systems can be tested by comparing the expected response predicted by DT and 

the observed patient response. The only paper that mentions that DT can produce 

predictive simulations of the spread of viral infection and the correspondent 

immune response to diseases caused by coronaviruses is [3], but the authors state 

"no current tools can predict… the most appropriate treatment for an individual 

COVID-19 patient”, which is basically the objective of our work. 
 

3. Use of DT in prescribing a medication scheme 
 

DTs are currently the most important tools used in research related to the 

third direction. In this regard, in the following are presented details on the aspects 

regarding the use of DT as a tool for analyzing biological networks for 

establishing the appropriate medication for a disease with unknown treatment. The 

strategy recommended in the literature follows the methodology presented in [4] 

which is based on the creation of several virtual copies (DT entities) of the 

relevant factors in the treatment process of a certain disease which is then 
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simulated in the virtual environment. Fig. 1 shows this process, involving patient 

DT entities, disease DT entities and drug DT entities, which once introduced into 

the virtual environment, allow running a very large number of virtual treatment 

scenarios, with the hope that one of these scenarios will lead to the identification 

of the better performing drug. The method capitalizes on the advantages of DT in 

the ability to run a large number of scenarios, but does not guarantee a definite 

positive response, and the assessment of the performance of various drugs is 

qualitative (and implicitly subjective) and not quantitative 

 
Fig. 1 The digital twin concept for personalized medicine (adapted after [4]) 

 

On the contrary, the strategy adopted in this paper proposes to resort to the 

techniques of modeling through biological networks of some interactions at 

molecular level, borrowing established procedures in the modeling through 

networks of complex systems. This approach allows to capitalize the results of the 

research carried out by using DT in the processing of biological networks that 

concentrate huge, massive amounts of data (Big Data), and thus fall into the 

category of complex systems.  

Having in mind the complexity of human biological system, an appropriate 

model is likely to be multivariable, multidimensional and nonlinear. It is almost 

unanimously accepted that complex systems can be described and analyzed 

through network-type models that cover most of the requirements mentioned 

above. Several types of biological networks have been defined to cover the 

complexity of relationships and interactions between diseases, disease symptoms 

and drugs that can combat these diseases. 

The Human Disease Network (HDN) is a powerful tool for establishing 

the association between disease pairs based on similarity criteria. Another 
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important network is the one that represents the diseases through the associated 

symptoms, called HSDN (Human Symptoms Disease Networks). In HSDN, the 

diseases represent nodes of the network, and the weight of a connecting line 

between two nodes (respectively two diseases) quantifies the similarity of the 

symptoms associated with each disease [5].  

Significant progress in modeling interactions in biological networks has 

been made by clinical studies that have shown that genes that share similar 

phenotypes or that are characteristic of the same disease tend to encode proteins 

that interact with each other. Therefore, analysis of protein-protein interactions 

(PPIs) may clarify the relationships between diseases with similar (overlapping) 

clinical phenotypes. We can thus construct an extended HDN (eHDN) by 

combining information about a disease gene with information about PPI. 

The paper [5] defined conceptually and formulated an algorithm for 

building a HSDN network. This is done in several steps, which will be briefly 

presented below, along with bibliographic references that signal significant 

changes that allow the improvement of the initial algorithm: 

i) Extracting from the PubMed database the association relations between a 

certain disease and a symptom. 

In [6] it is recommended to use for this purpose co-occurrence in the Medical 

Subject Headings (MeSH) metadata fields of PubMed. 

ii) A HDN network is built, in which the nodes represent diseases, and the share 

of a link represents the similarity criterion between diseases. 

iii) The integration of gene-disease associations is performed with the information 

extracted from the PPI databases in order to obtain associations between genes 

and PPIs that can be shared between different diseases. If the interaction takes 

place between directly connected proteins the binding pathway is of length 1 

and is called order I link, and if the proteins are connected through an 

intermediate, the binding pathway is of length 2 and is called order II link [7]. 

iv) HDN is restored by adding as shares of the shared gene / PPi association and 

thus eHDN is obtained [8]. 

v) The backbone of HSDN is constructed by creating clusters in which a group of 

diseases share the same shared gene / PPI associations. By integrating eHDNs 

with weights of both disease-gene associations and given PPI, correlations can 

now be established between the degree of similarity of symptoms and the 

degree of joint exploitation of PPI and genes. 

From our point of view, the further exploitation of the construct called the 

backbone of HSDN on the principle of a Scientific Data Pipeline (SDP) [9]. SDP 

consists of a sequence of steps that process sequentially through various 

functional units of input data sets to solve a specific well-defined problem. 

Applying SDP to the previously defined molecular biological networks we can 

both the interdependence of different diseases and the way of repositioning drugs. 
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At the same time, SDP ensures the reproducibility of experiments performed in 

various phases of research and facilitates the reuse of functional units by 

recombination, which can lead to the development of an improved treatment 

scheme, either by selecting a more effective drug or by defining a combination of 

drugs.  
 

4. Proof of concept – example of a sub-network integration in HSDN 
 

The algorithm presented above for generating the disease network (part of 

HSDN) can be replaced by DisGeNET version 7.0,  a platform containing large 

collections of genes associated to human diseases [10] and also LINCS L1000 

dataset [11], containing gene-expression signatures for various drugs and small 

molecules to generate the prediction system. 

We provided an algorithm that does disease prediction and one algorithm 

for drug recommendation that takes a set of gene expression profiles as input. We 

then test the hypothesis of disease prediction and drug recommendation over a set 

of gene expression data from GEO (Gene Expression Omnibus) database, using 

results from existing papers.  

Fig. 2 Example of basic information from the two sources 
 

In fig. 2 we present the basic information extracted and used from the two 

data sources with an example for the disease Aortic coarctation and the drug 

garcinol. Note that the scores present in this DisGeNET illustration are the scores 

computed in [10]: seven weights are used. For example, WUniProt is 0.3 if the 

association is reported in the UniProt database (https://www.uniprot.org/) and 0 if 

not. The last three weights correspond to the literature (GAD, LHGDN / BeFree). 

As it can be observed, the drug inhibits the activity of BICD2, ALDOC and AK2 

and promote the activity of ACTA1 and AKR1C1. 

http://www.uniprot.org/)
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After constructing the two algorithms, we test them on a set of data that 

contains gene expressions from breast tumor tissues – a model downloaded from 

GEO that was created using data from tumor and normal tissue, sequenced using 

DNA microarray. We split the input data in two batches: perturbed and control 

gene expressions to identify the DEG (differentially expressed genes). To be able 

to use the information provided in data sources on gene expression data collected 

from humans in real conditions, we need to convert gene expressions in a list of 

significant genes. We applied filters and LIMMA [12] to sort the genes into down 

regulated genes and up regulated genes. There are multiple algorithms available, 

but this one is considered the most efficient in eliminating the noise from data. 

Inputting the altered data into LIMMA we get a list of significant genes with their 

p-values. We then use the p-values in conjunction with their logFC 

(log2foldchange) values. It should be mentioned that from a biological point of 

view, the activation process of genetic products has two hypostases: 

downregulation and upregulation. Downregulation is the process by which a cell 

decreases, in response to an external stimulus, the quantity of a cellular 

component, such as protein or RNA. The complementary upregulation process 

involves the increase of such cellular components. The majority of differentially 

expressed genes are downregulated during malignant transformation. Describing 

the whole process of preparing the data does not constitute the subject of this 

paper and will be detailed in another one.  

To generate the best drug list, that may bring the gene expression back to 

the normal state, we apply a scoring mechanism where the basic idea of the score 

is to match as many down regulated DEG with genes that are up regulated from 

LINCS, and up regulated DEG with downregulated genes for drugs. After picking 

the highest score drug, we remove the genes it regulates and rerun the scoring 

method, picking the next highest score on the remaining genes. This can be 

applied any number of times, based on how many drugs we want our treatment to 

have. Computing the drug score is straight forward, after splitting the DEG in 2 

sets, one for up regulated genes. 

To test the methods presented we used ‘GSE15852’ dataset created by IB 

et al. (2010) from GEO T et al. (2013) which is formed from expression data from 

human breast tumors and their paired normal tissues. This dataset provides gene 

expression for mammary tissues suffering from cancer and their healthy 

counterparts. The summary states that they identified a set of 33 significant 

differentially expressed gene expression patterns for 43 breast tumors. After 

filtering the data and applying LIMMA we do the volcano plot (Fig.3) and mark 

the top 30 most significant genes (picked a number like what the paper found). 

The plot in Fig.3 shows the statistical significance, known as P value, 

versus the fold change FC (magnitude of change). It is possible to easy select by 

visual identification statistically significant genes, which have higher FC.  These 
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plots are commonly used in omics experiments such as genomics or proteomics, 

in order to highlight the significant changes. Using the logFC values alone has 

been demonstrated to not be reliable in detecting significance, because of noise 

present in data, and using only p-values does not help us in determining the way 

the gene expression varied. 
 

Fig. 3 GSE15852 experiment volcano plot 

 

Running the disease prediction, we get the top 3 most likely disease 

results: Malignant neoplasm of breast (score: 118.57), Glycogen Storage Disease 

Type IIb (score: 116.0) and Breast carcinoma (96.36). So, the most-likely disease 

is Malignant neoplasm of breast. Running the second method to generate a two- 

drug combination therapy gives us vorinostat (score 9) + trichostatin (score 8) – 

two drugs already used with good results in the treatment of breast cancer, 

according to literature available. 
 

5.  Using DT for analysis of molecular networks in COVID-19 context 
 

Without being directly linked to the DT concept, many recent research 

have focused on molecular network analysis to urgently find a suitable treatment 

for the fight against coronavirus 2019-nCoV/SARS-CoV-2, considering that such 

solution may appear much faster than developing and accepting a vaccine (which 

we now know it was not the case). We will present below how the method 
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described above for using DT in HDSN construction for the selection of a suitable 

drug based on IIP analysis. First, however, we will present how the protein-to-

protein interactions are carried out through the multilayer modules, in order to 

identify and validate disease modules. To standardize the scientific language, we 

will refer to the methodology proposed by the research team coordinated by A-L. 

Barabasi [13], who considers that in the molecular networks of interactome type 

can be found three types of modules: topological, functional and disease. 

Topological modules contain nodes that tend to interact with each other with 

priority, and not with nodes outside the module. The functional modules 

correspond to the network neighborhoods in which the nodes located in the same 

network that are involved in strongly connected cellular functions tend to interact 

with each other with priority. Disease modules are groups of nodes in which a 

change (eg mutation or change in gene expression) is always caused by a 

phenotype of the disease. The hypothesis accepted in this paper is that in complex 

biological networks these three types of models can overlap, in the sense that pair 

associations can be created between a topological and a functional module, and 

that a disease module can cause alteration or even destruction of a functional 

module. We can now explain how a human interactome developed under DT 

technology can be used in the particular case of Covid-19 infection. We will 

consider three types of protein-protein interactions: viral-human PPI (occurring in 

the viral interactome), human-human PPI, and drug-human PPI (both occurring in 

the human interactome). The working hypothesis is that there is no connection 

between the viral interactome and the human interactome, and as such there is no 

interaction between drug and virus, the connection between virus and drug 

module being made indirectly through the human interactome 

In addition to the work already mentioned ([13]), we point out 3 other 

papers that use this methodology to find a suitable medication for Covid-19. Thus, 

in [14] the implementation of a platform based on a pharmaceutical drug network, 

which quantifies the interactions of the host virus with target drugs in the human 

PPI network. The authors of the paper [15] propose the selection of a subset of 

human proteins that can bind to approved drugs, based on information about the 

interaction of human proteins and viruses. Finally, in [16] results are published on 

the efficacy of highly popular drugs in clinical trials (Remdesivir and the 

association Lopinavir  / Ritonavir). Referring to these papers, we specify that the 

main original contribution of our paper is how the DT platform uses the criterion 

of network proximity between the drug target and HCoV-associated proteins 

6. Conclusions  
 

This paper aims to extract some of the international achievements over the 

last decade in medical research based on information networks integrated in a 

formal framework that allows the use of a series of quantitative approaches and 
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predictive tools to study pathogen - human host interactions, aimed at revealing 

the molecular mechanisms of infection, identifying comorbidities, and rapidly 

detecting drug candidates for appropriate treatment. 

In particular, we presented the most effective possible drug selection 

scheme through a mechanism for highlighting the proximity of the nodes of a 

network of protein-protein interactions that integrates two subnetworks in a 

complex network of human interactions (called human interactom). The limited 

resources did not allow to obtain quantifiable results and moreover a concrete 

action in this respect can only succeed through the work of a large team, in a 

specialized research center. 
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