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USING DIGITAL TWINS IN HEALTH CARE

Adriana BOATA!, Radu ANGELESCU?, Radu DOBRESCU?

This paper aims to summarize the progress made in the use of the Digital
Twin (DT) concept for choosing the right drug for a person, as well as presenting a
subnet model that predicts existing drugs for a particular pathology, based on
genetic expressions involved in the disease, and genes addressed by therapy.
Finally, as a result of the research, the paper discusses how the proposed method
can be applied to search for a medication for the disease caused by the Covid 19
virus, with reference to the results of some clinical trials conducted after the onset of
the pandemic.
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1. Introduction

The concept of Digital Twin (DT), which aims to create in a virtual
environment a digital avatar of a real entity belonging to the physical
environment, appears in the early 2000s as a solution for optimizing
manufacturing processes and product life cycle. The use of DT is favored by
advances in information technology, especially by the rapid evolution of loT
(Internet of Things), especially in its industrial version - 10T (Industrial Internet
of Things). In the use of DT, the essential is the real-time dual exchange of
information between the physical entity and its virtual avatar, which requires a
permanent communication between the virtual environment and the physical
environment, with severe time restrictions (high data processing speed, low
latency data block transfer) and requires a specialized interface for connecting the
two environments, usually based on cyber-physical principles.

Gradually, the DT concept began to be used in other fields, including
medicine and biology. In these two areas the use of DT has been mainly in
scientific research, where DT has been perceived only as a simulation tool. The
essential difference is that in this perspective the severe restrictions of real-time
data exchange disappear, but it appears that the essential problem is to achieve a
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synchronization between the behavior of the physical entity (for example, an
organism or a physiological system) and the dynamics of its virtual representation,
which implies a precise tuning of the time scales at which the physiological
processes take place. On the other hand, in medical applications DT must respect
an important characteristic of the behavior of its industrial correspondent, that of
the permanent exchange of data between the physical environment and the virtual
environment.

In most situations, DT is used as a development environment that
integrates and enables the running of digital processing algorithms borrowed from
Artificial Intelligence techniques (eg. Machine Learning) and Exploratory Data
Analysis (eg. Software Analytics) by creating digital simulation models that are
updated as its counterparts in the physical world undergo changes. In this paper
we used DT for graph representation of spatial networks, used as models for
various types of biological networks (molecular networks, genetic networks) and
we insisted on the advantages offered by DT in processing large volumes of data
extracted from huge medical databases and to highlight the interactions between
the constituent elements of these networks.

2. Integration of the Digital Twin concept in medicine

There are several instances in which DT is perceived in the medical
field, but three of them can be considered truly representative:

1. The use of DT as a support for running medical software programs,
both for assisting the diagnosis process (DT in the position of virtual
doctor) and for therapeutic care (DT in the position of virtual nurse).
The most difficult issue is the certification of such a support so that it
becomes a regulated medical product. For this reason, in this case DT is
used only in triage and screening processes, to facilitate selection in
binary decision processes (eg. healthy / sick; positive test / negative
test) before deciding to send a suspicious patient for examination by a
specialist doctor. In addition, with the help of DT, statistical tests can
be performed to assess the degree of confidence in the method used in
triage.

2. The use of DT as a virtual modeling environment (VME) in terms of
compatibility with the requirements of the Virtual Physiological
Human (VPH) initiative, for the generation and integration of
personalized knowledge about a particular patient who has been
diagnosed with a particular disease. Specifically, in this case DT allows
the clinical data provided by the current medical information systems
of hospitals to be integrated with biometric and behavioral data from
the patient's environment. It can be said that DT thus contributes to the
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creation of an VPH Info structure that ultimately provides rule-based
diagnoses to provide prediction regarding the evolution of the disease
and personalized (patient-oriented) treatment.

3. The use of DT as a virtual framework that allows both legacy and
sharing resources at different levels, as a foundation for the
development of translational medicine. In this case DT is a platform
located on one of the levels of a multi-level structure of hierarchical IT
networks, contributing to offering IT support to ensure standardization
and interoperability of information contained in large medical data
repositories, based on evolved HPC cloud and grid computing and
semantic web technologies.

The use of DT, from the perspective of the third position mentioned above,
in medicine and biology research is the spearhead of in silico analysis techniques.
Although studies in silico represent a relatively new research pathway, over the
last decade they have been noted for predicting how drugs interact with the body
and with pathogens. There are a wide variety of techniques in silico, but three of
them are the most discussed: 1) Bacterial sequencing techniques; 2) Molecular
modeling; 3) Simulation of the behavior of living cells, including the exchange of
intra- and inter-cellular information.

In the thematic area of the paper (interactions in biological networks), the
number of published papers is low, so we have nominated only three in which it is
suggested to use of DT as an analysis tool. Thus, the paper [1] discusses the
integration of DTs with Multi-Agent Systems (MAS) technologies and presents an
application of agent-based DT to the management of severe traumas. Paper [2]
explains how the performance of a model of the interactions of major organ
systems can be tested by comparing the expected response predicted by DT and
the observed patient response. The only paper that mentions that DT can produce
predictive simulations of the spread of viral infection and the correspondent
immune response to diseases caused by coronaviruses is [3], but the authors state
"no current tools can predict... the most appropriate treatment for an individual
COVID-19 patient”, which is basically the objective of our work.

3. Use of DT in prescribing a medication scheme

DTs are currently the most important tools used in research related to the
third direction. In this regard, in the following are presented details on the aspects
regarding the use of DT as a tool for analyzing biological networks for
establishing the appropriate medication for a disease with unknown treatment. The
strategy recommended in the literature follows the methodology presented in [4]
which is based on the creation of several virtual copies (DT entities) of the
relevant factors in the treatment process of a certain disease which is then
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simulated in the virtual environment. Fig. 1 shows this process, involving patient
DT entities, disease DT entities and drug DT entities, which once introduced into
the virtual environment, allow running a very large number of virtual treatment
scenarios, with the hope that one of these scenarios will lead to the identification
of the better performing drug. The method capitalizes on the advantages of DT in
the ability to run a large number of scenarios, but does not guarantee a definite
positive response, and the assessment of the performance of various drugs is
qualitative (and implicitly subjective) and not quantitative

Fig. 1 The digital twin concept for personalized medicine (adapted after [4])

On the contrary, the strategy adopted in this paper proposes to resort to the
techniques of modeling through biological networks of some interactions at
molecular level, borrowing established procedures in the modeling through
networks of complex systems. This approach allows to capitalize the results of the
research carried out by using DT in the processing of biological networks that
concentrate huge, massive amounts of data (Big Data), and thus fall into the
category of complex systems.

Having in mind the complexity of human biological system, an appropriate
model is likely to be multivariable, multidimensional and nonlinear. It is almost
unanimously accepted that complex systems can be described and analyzed
through network-type models that cover most of the requirements mentioned
above. Several types of biological networks have been defined to cover the
complexity of relationships and interactions between diseases, disease symptoms
and drugs that can combat these diseases.

The Human Disease Network (HDN) is a powerful tool for establishing
the association between disease pairs based on similarity criteria. Another
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important network is the one that represents the diseases through the associated
symptoms, called HSDN (Human Symptoms Disease Networks). In HSDN, the
diseases represent nodes of the network, and the weight of a connecting line
between two nodes (respectively two diseases) quantifies the similarity of the
symptoms associated with each disease [5].

Significant progress in modeling interactions in biological networks has
been made by clinical studies that have shown that genes that share similar
phenotypes or that are characteristic of the same disease tend to encode proteins
that interact with each other. Therefore, analysis of protein-protein interactions
(PPIs) may clarify the relationships between diseases with similar (overlapping)
clinical phenotypes. We can thus construct an extended HDN (eHDN) by
combining information about a disease gene with information about PPI.

The paper [5] defined conceptually and formulated an algorithm for
building a HSDN network. This is done in several steps, which will be briefly
presented below, along with bibliographic references that signal significant
changes that allow the improvement of the initial algorithm:

1) Extracting from the PubMed database the association relations between a
certain disease and a symptom.

In [6] it is recommended to use for this purpose co-occurrence in the Medical
Subject Headings (MeSH) metadata fields of PubMed.

i) A HDN network is built, in which the nodes represent diseases, and the share
of a link represents the similarity criterion between diseases.

iii) The integration of gene-disease associations is performed with the information
extracted from the PPI databases in order to obtain associations between genes
and PPIs that can be shared between different diseases. If the interaction takes
place between directly connected proteins the binding pathway is of length 1
and is called order | link, and if the proteins are connected through an
intermediate, the binding pathway is of length 2 and is called order 11 link [7].

iv) HDN is restored by adding as shares of the shared gene / PPi association and
thus eHDN is obtained [8].

v) The backbone of HSDN is constructed by creating clusters in which a group of
diseases share the same shared gene / PPI associations. By integrating eHDNs
with weights of both disease-gene associations and given PPI, correlations can
now be established between the degree of similarity of symptoms and the
degree of joint exploitation of PPI and genes.

From our point of view, the further exploitation of the construct called the
backbone of HSDN on the principle of a Scientific Data Pipeline (SDP) [9]. SDP
consists of a sequence of steps that process sequentially through various
functional units of input data sets to solve a specific well-defined problem.
Applying SDP to the previously defined molecular biological networks we can
both the interdependence of different diseases and the way of repositioning drugs.
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At the same time, SDP ensures the reproducibility of experiments performed in
various phases of research and facilitates the reuse of functional units by
recombination, which can lead to the development of an improved treatment
scheme, either by selecting a more effective drug or by defining a combination of
drugs.

4. Proof of concept — example of a sub-network integration in HSDN

The algorithm presented above for generating the disease network (part of
HSDN) can be replaced by DisGeNET version 7.0, a platform containing large
collections of genes associated to human diseases [10] and also LINCS L1000
dataset [11], containing gene-expression signatures for various drugs and small
molecules to generate the prediction system.

We provided an algorithm that does disease prediction and one algorithm
for drug recommendation that takes a set of gene expression profiles as input. We
then test the hypothesis of disease prediction and drug recommendation over a set
of gene expression data from GEO (Gene Expression Omnibus) database, using
results from existing papers.
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Fig. 2 Example of basic information from the two sources

In fig. 2 we present the basic information extracted and used from the two
data sources with an example for the disease Aortic coarctation and the drug
garcinol. Note that the scores present in this DisGeNET illustration are the scores
computed in [10]: seven weights are used. For example, Wuniprot is 0.3 if the
association is reported in the UniProt database (https://www.uniprot.org/) and O if
not. The last three weights correspond to the literature (GAD, LHGDN / BeFree).
As it can be observed, the drug inhibits the activity of BICD2, ALDOC and AK2
and promote the activity of ACTA1 and AKR1CL1.


http://www.uniprot.org/)
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After constructing the two algorithms, we test them on a set of data that
contains gene expressions from breast tumor tissues — a model downloaded from
GEO that was created using data from tumor and normal tissue, sequenced using
DNA microarray. We split the input data in two batches: perturbed and control
gene expressions to identify the DEG (differentially expressed genes). To be able
to use the information provided in data sources on gene expression data collected
from humans in real conditions, we need to convert gene expressions in a list of
significant genes. We applied filters and LIMMA [12] to sort the genes into down
regulated genes and up regulated genes. There are multiple algorithms available,
but this one is considered the most efficient in eliminating the noise from data.
Inputting the altered data into LIMMA we get a list of significant genes with their
p-values. We then use the p-values in conjunction with their logFC
(log2foldchange) values. It should be mentioned that from a biological point of
view, the activation process of genetic products has two hypostases:
downregulation and upregulation. Downregulation is the process by which a cell
decreases, in response to an external stimulus, the quantity of a cellular
component, such as protein or RNA. The complementary upregulation process
involves the increase of such cellular components. The majority of differentially
expressed genes are downregulated during malignant transformation. Describing
the whole process of preparing the data does not constitute the subject of this
paper and will be detailed in another one.

To generate the best drug list, that may bring the gene expression back to
the normal state, we apply a scoring mechanism where the basic idea of the score
is to match as many down regulated DEG with genes that are up regulated from
LINCS, and up regulated DEG with downregulated genes for drugs. After picking
the highest score drug, we remove the genes it regulates and rerun the scoring
method, picking the next highest score on the remaining genes. This can be
applied any number of times, based on how many drugs we want our treatment to
have. Computing the drug score is straight forward, after splitting the DEG in 2
sets, one for up regulated genes.

To test the methods presented we used ‘GSE15852’ dataset created by IB
et al. (2010) from GEO T et al. (2013) which is formed from expression data from
human breast tumors and their paired normal tissues. This dataset provides gene
expression for mammary tissues suffering from cancer and their healthy
counterparts. The summary states that they identified a set of 33 significant
differentially expressed gene expression patterns for 43 breast tumors. After
filtering the data and applying LIMMA we do the volcano plot (Fig.3) and mark
the top 30 most significant genes (picked a number like what the paper found).

The plot in Fig.3 shows the statistical significance, known as P value,
versus the fold change FC (magnitude of change). It is possible to easy select by
visual identification statistically significant genes, which have higher FC. These
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plots are commonly used in omics experiments such as genomics or proteomics,
in order to highlight the significant changes. Using the logFC values alone has
been demonstrated to not be reliable in detecting significance, because of noise
present in data, and using only p-values does not help us in determining the way
the gene expression varied.
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Fig. 3 GSE15852 experiment volcano plot

Running the disease prediction, we get the top 3 most likely disease
results: Malignant neoplasm of breast (score: 118.57), Glycogen Storage Disease
Type I1b (score: 116.0) and Breast carcinoma (96.36). So, the most-likely disease
is Malignant neoplasm of breast. Running the second method to generate a two-
drug combination therapy gives us vorinostat (score 9) + trichostatin (score 8) —
two drugs already used with good results in the treatment of breast cancer,
according to literature available.

5. Using DT for analysis of molecular networks in COVID-19 context

Without being directly linked to the DT concept, many recent research
have focused on molecular network analysis to urgently find a suitable treatment
for the fight against coronavirus 2019-nCoV/SARS-CoV-2, considering that such
solution may appear much faster than developing and accepting a vaccine (which
we now know it was not the case). We will present below how the method
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described above for using DT in HDSN construction for the selection of a suitable
drug based on IIP analysis. First, however, we will present how the protein-to-
protein interactions are carried out through the multilayer modules, in order to
identify and validate disease modules. To standardize the scientific language, we
will refer to the methodology proposed by the research team coordinated by A-L.
Barabasi [13], who considers that in the molecular networks of interactome type
can be found three types of modules: topological, functional and disease.
Topological modules contain nodes that tend to interact with each other with
priority, and not with nodes outside the module. The functional modules
correspond to the network neighborhoods in which the nodes located in the same
network that are involved in strongly connected cellular functions tend to interact
with each other with priority. Disease modules are groups of nodes in which a
change (eg mutation or change in gene expression) is always caused by a
phenotype of the disease. The hypothesis accepted in this paper is that in complex
biological networks these three types of models can overlap, in the sense that pair
associations can be created between a topological and a functional module, and
that a disease module can cause alteration or even destruction of a functional
module. We can now explain how a human interactome developed under DT
technology can be used in the particular case of Covid-19 infection. We will
consider three types of protein-protein interactions: viral-human PPI (occurring in
the viral interactome), human-human PPI, and drug-human PPI (both occurring in
the human interactome). The working hypothesis is that there is no connection
between the viral interactome and the human interactome, and as such there is no
interaction between drug and virus, the connection between virus and drug
module being made indirectly through the human interactome

In addition to the work already mentioned ([13]), we point out 3 other
papers that use this methodology to find a suitable medication for Covid-19. Thus,
in [14] the implementation of a platform based on a pharmaceutical drug network,
which quantifies the interactions of the host virus with target drugs in the human
PPI network. The authors of the paper [15] propose the selection of a subset of
human proteins that can bind to approved drugs, based on information about the
interaction of human proteins and viruses. Finally, in [16] results are published on
the efficacy of highly popular drugs in clinical trials (Remdesivir and the
association Lopinavir / Ritonavir). Referring to these papers, we specify that the
main original contribution of our paper is how the DT platform uses the criterion
of network proximity between the drug target and HCoV-associated proteins

6. Conclusions
This paper aims to extract some of the international achievements over the

last decade in medical research based on information networks integrated in a
formal framework that allows the use of a series of quantitative approaches and
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predictive tools to study pathogen - human host interactions, aimed at revealing
the molecular mechanisms of infection, identifying comorbidities, and rapidly
detecting drug candidates for appropriate treatment.

In particular, we presented the most effective possible drug selection
scheme through a mechanism for highlighting the proximity of the nodes of a
network of protein-protein interactions that integrates two subnetworks in a
complex network of human interactions (called human interactom). The limited
resources did not allow to obtain quantifiable results and moreover a concrete
action in this respect can only succeed through the work of a large team, in a
specialized research center.
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