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MULTIPLE (n,m)-HYBRID LAPLACE TRANSFORM. PART

I11: APPLICATIONS TO MULTIDIMENSIONAL HYBRID
SYSTEMS

Valeriu PREPELITA', Tiberiu VASILACHE®

In lucrare sunt prezentate aplicatii ale transformarii hibride multiple de tip
Laplace si z studiate in partea I si Partea a II-a. Aceastd transformare este utilizatd
pentru rezolvarea unor ecuatii multidimensionale diferentiale cu diferente si
integrale. Se deduc solutiile unor astfel de probleme care apar in teoria asteptarii.

Cele mai importante aplicatii ale acestei transformari Laplace multiple se
referd la posibilitatea utilizarii metodelor frecventiale la sistemele de comanda
multidimensional hibride. Se obtin matricele de transfer ale diferitelor clase de
astfel de sisteme, incluzand modele de tip Roesser, Fornasini-Marchesini si Attasi.

Some applications of the multiple hybrid Laplace and z-type transform
studied in Parts I and Il are presented. This transform is used to solve
multidimensional differential-difference and integral equations. The solutions of
such problems which appear in Queueing theory are derived.

The most important applications of this multiple Laplace transform refer to
the possibility to apply frequency-domain methods to multidimensional hybrid
control systems. Transfer matrices of different classes of such systems are derived,
including Roesser, Fornasini-Marchesini and Attasi type models.

Key words: multiple hybrid Laplace and z-type transform, multidimensional
differential-difference and integral equations, queueing systems,
2D Roesser models, 2D Attasi models

1. Introduction

A distinct branch of Systems and Control theory is represented by the
continuous-discrete multidimensional systems which appear as models in many
domains such as image processing, computer tomography, geophysics, in the
study of linear repetitive processes [2], [4], [15] or in the iterative learning control
synthesis [8]. Such hybrid systems were studied in [5], [6], [7], [10], [11].

In the theory of "classical" 1D systems the frequency domain methods,
based on Laplace transform in the continuous case or on z -transform in the

! Prof., Mathematics and Informatics Department I, University POLITEHNICA of Bucharest,
Romania, e-mail: vprepelita@mathem.pub.ro

2 Lecturer, Mathematics and Informatics Department I, University POLITEHNICA of Bucharest,
Romania



116 Valeriu Prepelitd, Tiberiu Vasilache

discrete-time case, play a very important role. In order to extend the frequency
domain methods to multiple hybrid systems, a multiple (n,m)-Hybrid Laplace
Transform was defined in Parts I and II [12], [13] and its main properties were
proved, including time-delay theorems, translation, differentiation and difference
of the original, differentiation of the image, integration and sum of the original,
integration of the image, convolution, product of originals, initial and final values.
Some methods and formulas for determining the original of a given (n,m)-
Hybrid Laplace transform were given.

The aim of this paper is to present the applications of this multiple hybrid
Laplace transform in the study of multidimensional continuous-discrete systems
or for solving multiple hybrid differential-difference and integral equations.

In Section 2 the definitions of the original functions and of the (n,m)-
Hybrid Laplace Transform are recalled.

In Section 3 it is shown that the hybrid Laplace transform can be used to
solve multiple differential-difference and integral equations. This approach is
applied to solve such equations which appear in stochastic processes and in the
Queueing theory.

Section 4 is devoted to the applications of the hybrid Laplace transform to
the study of multidimensional continuous-discrete systems. Transfer matrices are
obtained for multiple hybrid Roesser type, Fornasini-Marchesini type and Attasi
type models (which generalize the 2D discrete-time models introduced in [1], [3]
and [14]), including descriptor systems and systems with delays.

2. Multiple (n,m)-hybrid Laplace transform

We denote by (n) the set {1,2,...,n}.

Definition 2.1. A function f:R"xZ™ — C is said to be a continuous-
discrete original function (or simply an original) if f has the following
properties:

1) f@, stpskysee k) =0 if £, <0 or k, <0 for some ie(n) or

Jjelm).

() fC,.oyskyy..nk,) is  piecewise smooth on R! for any
(kyy.... k) e 21

(i) IM; >0, 0, € R, ie(n), R;>0, j €(m) such that

GﬁfiJH R

J=1

S¥e

@.1)

n

]

| f(t,- styskyse k)| SMf exp[
1
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Vi;>0,ie(n), Vk; 20, je(m).
We shall denote by f(t;k)=f(¢,....t,;k,...,k,) the value of f at
t=(1,....t,), (ki,....k,,) and similarly F(s;z)=F(s],...,8,3;21,---1Zp) -
Definition 2.2. For any original £, the function

F(sl,...,sn;zl,...,zm)=J:...j:];...];f(tl,...,tn;kl,...,km). 22)

—sit, —Syt, _—k —k,
e Mgz ez It Lt
is called the (n,m)-hybrid Laplace transform ((n,m)-HLT) or the image of f .
We shall use the following notations: for some sets a = {i,,...,i,} < (n)

and B={j,....Jq}c(m), [al=p (the cardinality of ), IBl=q,
Ey={eleca or =0}, Eg={3|8cP or 8=0}; for ecE, and S€Ep,
F=(n\e, s =(m)\&.If e={i} or 8={,}, 7, denote & and 5 respectively.
Given a={i,....,i,} =(n), a p-tuple (yl-l,...,yl-p}e N7 is denoted by v,
of o
ot’ atil%’l ...at:p

Vi
, 8" =s"

I
1

or simply by y and sli 7. The family of all unvoid

. a o o~ _ e — Yi
subsets € of a is denoted by E/ or E,. For ecE,, E=a\e, s —H s
ieg
and s :HS"% and sZF=1 if e=a; if e={y,....,1,} and
n, =(771],...,77,p}eNp, Ne Sve means M; <y;, Vies; f(O'g;k) denotes the limit
from the right f(z,...,t, ,0+,¢ t, ,0+,¢ tski,....k,); if e={i} then

-1 LR ERRRE R M [P ERRE
f(O;L; k) is denoted by £(0/;k). We denote by (z-— 1)B the product
IT & -D.
Jjep
In the sequel we shall use the pair (¢,7) instead of (n,m).

3. Applications of the multiple (¢,7)-hybrid Laplace transformation
to multiple differential-difference and integral equations

Let f be an original function ; j €(r), ZeN*, L=, j,t <(r) and
e:{ejl,...,ejh}e(N*)h.



118 Valeriu Prepelitd, Tiberiu Vasilache

Definition 3.1. The j-first difference ((j,))-difference) of f is the
function

0 if t, <0or k, <0forsomeie(q),/(r)
A SERY = S sty ok, + LK oK) = 3.1)
—f(t,....t B ky, k, 1,k kﬁl,...,kr) otherwise.
The (j,!)-difference of f is defined by induction by
Nk =8, F@ k). (32)
The (B,0)-difference of f A’ f or A’ f is defined by induction by
N f (k) = A A £ (83 K). (3.3)

q . r .
Let T be a subset of |J R} and © a subset of |J Z]. For
. 2
y=s--y,)€l and 8=(0,,...,0,) € ©® we denote a coefficient a

Vipoe ¥y 30y -0,
by a,.
A multiple differential- diﬁ’erence equation has the form
PIPICH —AHX(t k)= f(t:k) (3.4)
yel’ 0e®

where a,eR, Vyel', 0€®; x(t;k) is un unknown original function and
f(t;k) is a given original function.
We consider the boundary conditions

a”f
——(0,+0,)= ggg(tg,k ), €€k, ek, (3.5)
where 7, kB stand for N kﬂ,...,k 5, if a=(oy,....,a7), B=(B,.....0,);
x(t;k+6) denotes x(t;k,,....k; _l,k +0, .k, ek, k60, kLK)
By using Definition 3.1, the equatlon (3.4) can be rewrltten as
> > bye x(t k+0)= f(t.k). (3.6)

vell 6e®

By [12, Theorem 2.17] and by applying the (gq,7)-HLT to equation (3.6)

with boundary conditions (3.5), (3.6) is transformed into an algebraic equation
F(s;2) = C(5;2)

having the solution X(s;z)=
B(s;z)

, where B(s;z) and C(s;z) are the

polynomials
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. — 7ip ’9/'1,“ gfh
B(si2)=2 2 bus'2 = 2. 2.0, 00,50 0082y 02

yell Oe® yell 0O
and

C(S, Z) = Zwaza Z Z(_l)\s\+\§\ SEZE ngfﬂfl

yell 0O ¢k, ek, 17,<y,—1
gL —k;
) z qu [gg,g (%55 kg )][H Z; ]
Den jed
where Lif is the partial hybrid Laplace Transform [12, Definition 2.14].
,ert 18 described by the

probabilities P, (t)= P(X,; =k), ke N, which verify the system of differential
equations

Application 3.2. A Poisson process (X;)

Py(t) =—1Py(0) 3.7)
Pla@®)=-AB () +AP. (1), k=0,1,... (3.8)
with the initial conditions Fy(0)=1 and £, (0)=0, k=12,...

By using the notation Py (¢) =x(t,k) the system (3.7), (3.8) becomes a
differential-difference system which is transformed (by [12, Theorem 2.6]) as
above, by applying the (¢,7)-HLT, into the algebraic system

sL[x(,0)] - x(0,0) = —AL[x(¢,0)], x(0,0) = F,(0),
szX (s,z) —szL[x(¢,0)] - zZ[x(0, k)] + zx(0,0) =
=—-Az(X(s,z)— L[x(¢,0)]) + ALX (s, 2).

and

which has the solution £[x(z,0)]= !
S+ A

_z(s+A) k)

X(s,2)=————L{x(.0)] =

+7\,Z A

whose original is the usual solution B, (¢) = x(¢,k) = M %, keN.

Application 3.3. In Queueing theory, the transition probabilities
p;()=P(,., =j|& =i) of asystem M /M /1 verify the system of differential
equations (see [9])

Pio(t) = =Apio (1) +up; (¢) (3.9
Pii) =hp; j_1(0) = (A + 1) py () + 1p; 41 (1) (3.10)
with the initial conditions p;;(0)=3;;, where 0 <A <p.
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By denoting p;;(¢) = x;(¢, /) and L[x;(¢, /)]= X;(s,z) and by applying the
(¢,7)-HLT and [12, Theorem 2.6] as in Application 3.2, the differential-
difference system is transformed directly into a set of algebraic equations having
the solutions
z +L[x (#,0)Juz(1—- Z)

(s+A+pW)z—A— MZ

Definition 3.4. A multiple continuous-discrete convolution integral
equation has the form

Xl-(S,Z) -

Ax(tl,...,tq;kl,...,k,)+I:...j: Zx(ul, uilyye )
4=0

gty —uy, ot —usk =1,k —lr)a’u1 du, = f(t,..
where A4 € R and f'and g are original functions.
By applying the (g,7)-HLT, due to [15, Theorem 2.8], equation (3.11) is

transformed into the algebraic equation
AX (s;2)+ X (552)G(s;2) = F(s;2) .

(3.11)
)

,q, 19°° r

4. State space representations and transfer matrices of (¢,7)-D
hybrid systems

We shall use the multiple hybrid Laplace transformation to obtain the
transfer matrices of different classes of hybrid systems. We shall denote the
operator L, ,, by Ly ,, 4,r € N*.

The (g,7)-D hybrid Roesser type model has the state space representation

p)
—x“(t;k) x€(t;k)
ot =4 J + Bu(t;k) 4.1)
Gxd(t;k) X" (#:k)
x(t;k)
y(t;k)=C + Du(t;k) 4.2)
x4 (t;k)
where ¢ =(t},....t,) eR%, k=(ky,....k,) € 2,
xf (t:K) xf! (t:k)
“wh=| .. | xwh=| . | xf@eheR™, n eN, i=lg,

x5 (t:k) xd (t;k)
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(k) eR™ na, eN”, jelr), ut;k)eR™, y(t;k)eRP, m,peN’ ; the

operators 2 and o are defined by

ot
"5 _
gxlc(l‘;k) i ]
1 xld(t;kl'kl,kz,.‘.,kr)
: ixg(t;k) Xtk by +1,. 0Ky
axc(f,k) atz , Gxd(t;k): 2 5 1, 2 yeees k. ‘
ﬁxc(t'k) _xil(t;kl,kz,...,kr+1)_
o, 17
L% |

The real matrices 4,B,C,D have the dimensions nxn, nxm, pxn,

q r
pxm respectively, where n = Z ne, + Z ng, - The state vector is x(t;k) € R"
i=1 j=1

x(t,k) =[x (LK) X' (GK)' ). For t={i,...i} c(q) and &={j,....j,} =(r),
the operators 02 and oy are defined by
T

0 o'
EX(ZL;]C)ZWX(Z‘;IC), O'(SX(t;k):X(t;k-i—eb»),

b i

6 0
where e;=e, +---+e,, e;=(0,...,0,10,...,0)0eR"; 5 a0 087° when

T=(q),0=(r) ; agx(t;k):x(t,k) and ogx(t;k)=x(t;k) if 1= and 6=O.
T

Now we shall denote by Agip, A &, A 5,47 5 the matrices
A4,,4

0> il,AAA,i,;O7AO;j],..A,j,, ’Ail,.“,i,;jl,.“,jh N
The notation (t,0) < ({g),(r)) means that t and & are subsets of {g) and
(r) respectively, and (t,0) # ({(¢),{(r)) .
The (g,7)-D hybrid Fornasini-Marchesini type model has the state-space
representation
éox(rk): >, 4 s x(tky+ Y, B R u(t;k) (4.3)
o T admen 0T T wadToey 0T 0
where A5, By 5, C and D are nxn, nxm, pxn and pxm real matrices.
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Particularly, given g+r commuting nxn matrices 4., i€(q), Adj ,
j €(r), one obtains the (q,r)-D hybrid Attasi type model, with the state equation

%ox(t; = > (—1)‘“"75"(]_[ 4, j{]‘[ A, J— osx(t;k)+ Bu(t;k) (4.5)

(#.8)(@) ) ie¥ jes
where 7 =(q)\7,0=(r)\o.
The descriptor models for the three types of systems have the state-equations
similar to (4.1), (4.3) and (4.5), but with the lefthand member replaced
respectively by

0 ¢
—x (t.k
E| ot (k) , gl ox(t; k) (4.6)

ox? (t,k)
where E are square singular matrices of appropriate dimensions.

Now, let us consider the constant delay times a :(al,...,aq) € Rf]r and

b=(by,...,b.) e Z, . We denote by x(¢—a;k —b) the vector
x(tl —al,...,tq —aq;kl —bl,...,k,, _br) .
The (g,7)-D hybrid Roesser type model with time delay has the state space

. a—x “(t;k) Ao{x"(t;k)}rAl{x”(t—a;k—b)}r

representation

ox (£:K) x! (t;k) x'(t—azk —b) (4.7)
+ Bou(t;k) + Bu(t — a;k —b),
x“(t;k) Xt —azk - b)
Wt k) =C +C +
OLd(I;kJ 1Ld(t—ar;k—bj (4.8)

+ Dou(t; k) + Dyu(t —a; k - D).
The (g,7)-D hybrid Fornasini-Marchesini type model with time delays
has the representation

Eﬁm(z,k)_ > A4, aagx(t k)+
ot (2D ot

+ Y AL, aabx(t ak-b)+ Y Bwio;,u(z;k)Jr (4.9)
(7,0)c({ @) <)) 8 (7,0)c({ @) 1)) 81

0
+ Z B, s—osu(t—ak->b),
(T.6)(@)Ar)) T
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v(t;k) = Cox(t;k)+ Cix(t —a; k —b) + Dyu(t; k) + Diu(t —a;k—b).  (4.10)

The (g,r)-D hybrid Attasi type model with time delays can be defined
similarly.

By applying the multiple (g,7)-hybrid Laplace transformation to the

systems described above and taking into account [12, Theorems 2.11, 2.13 and

2.18] we can get the input-output maps of these systems in the frequency domain.
In order to simplify the formulae, we shall consider null boundary

conditions, i.e. x(tl,...,tq;kl,...,kr)zo if t; =0 for some ie(g) or kj =0 for

some jelr. We use the notations X(s;2)= [,q’,,[x(t;k)] ,

X€(s32) = £y, [x° ()] etc. By [12, (2.12i) and (2.141)], the state equation (4.1),

modified as in (4.6), becomes

51X1 (5;2) | _Xf(s;z)_
s, XS(s:z XE(s:z
El ! q(5:2) =4 q(5:2) + Bu(s;z), (4.11)
leld (s;2) de (s52)
_Z,,Xﬁl (552) | _X,d (s52) |

hence the left-hand member can be written as

E((é silnq J @ (é Zj]”u, ]]X(s; z);

the output equation (4.2) is transformed into
X(s,2)

Y(s;z)=C
[Xd (s,2)

]+DU(s;z). (4.12)

By solving (4.11) with respect to the state vectors X[ (s;z), X ;Z (s;z) and

by replacing them in (4.12) one obtains the input-output map
Y(s;z)=H(s;z)U(s;z), where H(s;z) is the transfer matrix of the (g,r)-D
hybrid Roesser type system:

-1

q r
H(s;z)=C| E ((—le-[nc_}@{@zjlna’} -A| B+D. (4.13)

i=1
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Here @ indicates the direct sum and /,, the unit matrix of order n. For E=1,

(4.13) gives the transfer matrix for the standard system.
In the same manner, by using [12, Theorem 2.13] one can obtain the
transfer matrix of the time delay system (4.7), (4.8):

q ro 3
H(s;z) = C0+C{exp[z aiSiH z zjbf X
j=1

i=1

q r
x| E [(—Bsilan@ @zjly, ||—40-
i=1 j=1 ’
-1

q —bD.
-4 exp(— aisiD Z z jbf X (4.14)
1

J=1

b
§ J
a;S; Zj +

VR

x| By + By exp(—

Il
—_
~.

1l
—_

1

-
+ Dy + Dy exp(—z as; || D, ZJ_.bf .
i=1 j=1
Now, let us consider the hybrid Fornasini-Marchesini type systems. By
[12, (2.14 ii)], for null boundary conditions, equation (4.9) becomes, with the

notations s, :Hs,. , Ss ZHZ/. for tc{(q), dc(r):

iet i€o
Es z,,X(s,2) = Z A, 55.25X(s32) + Z B, s5.z,U(s;z2)
(7.5)=(@)4r) (#.5)=(@)<r)
By solving this equation with respect to X (s;z) and by replacing X (s;z) in the
transformed equation (4.4), one obtains the transfer matrix of the system (4.3),
(4.4) (with (4.6))

-1
H(s;z) = C(Es<q>z<r> - Z Aussrz(s] ( z Br’ésrz(sj.
(7.6)=(q) () (7.6)=(q)r))

Particularly, for the (q,7r)-D hybrid Attasi type system (4.5), (4.4), we get the

separable transfer matrix
-1

-1
H(s,z):C[ﬁ (siI—Acl_)] 11 (zjl—-44))| B+D.

i=1 j=1
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Similarly, we can show that the corresponding time-delay system (4.9), (4.10) has
the transfer matrix

H(s;z)=(C,+Cie “z")-

-1
.[Es<q>z<f>— D AysSizs— D Al’rﬁsfz&e_asz_bj : (4.16)

(7,6)=(q.r) (7,6)=(q.r)

—as _—b —as _—b
( z BO’Tﬁsfngr Z BLTﬁsrzge z J+DO+D1e z ",
(r.8)=(q.7) (£.0)=(q.F)
q b r
—as _ e - e
were e~ denotes exp Z;‘ a;s; | and z = denotes H zj '

6. Conclusion

In this paper the applications of the multiple (n,m)-Hybrid Laplace

Transformation have been emphasized, including differential-difference and
integral equations, as well as the frequency-domain representation of
multidimensional hybrid control systems. This approach can be continued by
some topics such as the realization theory of these systems or the frequency-
domain compensation.
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