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MULTIPLE ),( mn -HYBRID LAPLACE TRANSFORM. PART 
III: APPLICATIONS TO MULTIDIMENSIONAL HYBRID 

SYSTEMS 

 
Valeriu PREPELIŢĂ1, Tiberiu VASILACHE2 

În lucrare sunt prezentate aplicaţii ale transformării hibride multiple de tip 
Laplace şi z studiate în partea I şi Partea a II-a. Această transformare este utilizată 
pentru rezolvarea unor ecuaţii multidimensionale diferenţiale cu diferenţe şi 
integrale. Se deduc soluţiile unor astfel de probleme care apar în teoria aşteptării. 

Cele mai importante aplicaţii ale acestei transformări Laplace multiple se 
referă la posibilitatea utilizării metodelor frecvenţiale la sistemele de comandă 
multidimensional hibride. Se obţin matricele de transfer ale diferitelor clase de 
astfel de sisteme, incluzând modele de tip Roesser, Fornasini-Marchesini şi  Attasi. 

 
Some applications of the multiple hybrid Laplace and z-type transform 

studied in Parts I and II are presented. This transform is used to solve 
multidimensional differential-difference and integral equations. The solutions of 
such problems which appear in Queueing theory are derived. 

The most important applications of this multiple Laplace transform refer to 
the possibility to apply frequency-domain methods to multidimensional hybrid 
control systems. Transfer matrices of different classes of such systems are derived, 
including Roesser, Fornasini-Marchesini and Attasi type models. 

Key words: multiple hybrid Laplace and z-type transform, multidimensional  
                   differential-difference and integral equations, queueing systems,  
                  2D Roesser models, 2D Attasi models 

1. Introduction 

A distinct branch of Systems and Control theory is represented by the 
continuous-discrete multidimensional systems which appear as models in many 
domains such as image processing, computer tomography, geophysics, in the 
study of linear repetitive processes [2], [4], [15] or in the iterative learning control  
synthesis [8]. Such hybrid systems were studied in [5], [6], [7], [10], [11]. 

In the theory of "classical" 1D systems the frequency domain methods, 
based on Laplace transform in the continuous case or on z -transform in the 
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discrete-time case, play a very important role. In order to extend the frequency 
domain methods to multiple hybrid systems, a multiple ),( mn -Hybrid Laplace 
Transform was defined in Parts I and II [12], [13] and its main properties were 
proved, including time-delay theorems, translation, differentiation and difference 
of the original, differentiation of the image, integration and sum of the original, 
integration of the image, convolution, product of originals, initial and final values. 
Some methods and formulas for determining the original of a given ),( mn - 
Hybrid Laplace transform were given. 

The aim of this paper is to present the applications of this multiple hybrid 
Laplace transform in the study of multidimensional continuous-discrete systems 
or for solving multiple hybrid differential-difference and integral  equations. 

In Section 2 the definitions of the original functions and of the ),( mn -
Hybrid Laplace Transform are recalled. 

 In Section 3 it is shown that the hybrid Laplace transform can be used to 
solve multiple differential-difference and integral equations. This approach is 
applied to solve such equations which appear in stochastic processes and in the 
Queueing theory.  

Section 4 is devoted to the applications of the hybrid Laplace transform to 
the study of multidimensional continuous-discrete systems. Transfer matrices are 
obtained for multiple hybrid Roesser type, Fornasini-Marchesini type and Attasi 
type models (which generalize the 2D discrete-time models introduced in [1], [3] 
and [14]), including descriptor systems and systems with delays.  

2. Multiple ),( mn -hybrid Laplace transform 

We denote by 〉〈n  the set },,2,1{ n… . 

Definition 2.1. A function CZR →× mnf :  is said to be a continuous-
discrete original function (or simply an  original) if f  has the following 
properties: 

(i) 0),,;,,( 11 =mn kkttf ……  if 0<it  or 0<jk  for some 〉〈∈ ni  or 
〉〈∈ mj . 

(ii) ),,;,,( 1 mkkf …… ⋅⋅  is piecewise smooth on n
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0>∀ it , 〉〈∈ ni , 0≥∀ jk , 〉〈∈ mj . 

We shall denote by ),,;,,();( 11 mn kkttfktf ……=  the value of f  at 
),,( 1 nttt …= ,  ),,( 1 mkk …  and similarly ),,;,,();( 11 mn zzssFzsF ……= . 

Definition 2.2. For any original f , the function 
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is called the ),( mn -hybrid Laplace transform ( ),( mn -HLT) or the  image of f . 
We shall use the following notations: for some sets 〉〈⊂= nii p},,{ 1 …α   

and 〉〈⊂=β mjj q},,{ 1 … , p=α ||   (the cardinality of α ),  q=β || , 

α⊂εε=α |{E  or }∅=ε , β⊂δδ=′β |{E  or  }∅=δ ; for α∈ε E  and β′∈δ E , 

εε \~ 〉〈= n , δδ \~
〉〈= m . If }{i=ε  or }{ j=δ , ji ~,~  denote ε~  and δ~  respectively. 

Given  〉〈⊂=α nii p},,{1 … , a p-tuple p
pii N∈γγ },,(
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…  is denoted by αγ  

or simply by γ  and 
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from the right ),,;,,,0,,,,0,,,( 111111 11 mn kkttttttf
pp
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);0( kf +
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+ .  We denote by β− )1(z  the product 
)1( −∏

β∈
j

j
z .  

In the sequel we shall use the pair ),( rq  instead of  ),( mn . 

3. Applications of the multiple ),( rq -hybrid Laplace transformation 
to multiple differential-difference and integral equations 

Let f  be an original function ; 〉〈∈ rj , *N∈l , 〉〈⊂= rjj h},,{ 1 …β  and 
h

hjj )(},,{ 1
∗∈θθ=θ N… . 
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Definition 3.1. The j-first difference ( )1,( j -difference) of f  is the 
function 
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 The ),( lj -difference of f  is defined by induction by 
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 The ),( θβ -difference of f  fθ
βΔ  or fθΔ  is defined by induction by 
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 A multiple differential-difference equation has the form 
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where R∈γθa , Γ∈γ∀ , Θ∈θ ; );( ktx  is un unknown original function and 
);( ktf  is a given original function. 

We consider the boundary conditions 
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By using Definition 3.1, the equation (3.4) can be rewritten as 
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By [12, Theorem 2.17] and by applying the ),( rq -HLT to equation (3.6) 
with boundary conditions (3.5), (3.6) is transformed into an algebraic equation 

having the solution 
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where ζε ~,~
,rqL  is the partial hybrid Laplace Transform [12, Definition 2.14]. 

 Application 3.2. A Poisson process +∈RttX )(  is described by the  

probabilities )()( kXPtP tk == , N∈k , which verify the system of differential 
equations 

)()( 00 tPtP λ−=′         (3.7) 
…,1,0),()()( 11 =λ+λ−=′ ++ ktPtPtP kkk       (3.8) 

with the initial conditions 1)0(0 =P  and 0)0( =kP , …,2,1=k    
By using the notation ),()( ktxtPk =  the system (3.7), (3.8) becomes a 

differential-difference system which  is transformed (by [12, Theorem 2.6]) as 
above, by applying the ),( rq -HLT, into the algebraic system 
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 Application 3.3. In Queueing theory, the transition probabilities 
)|()( ijPtp tij === + ττ ξξ  of a system 1// MM  verify the system of differential 

equations (see [9]) 
)()()( 100 tptptp iii μ+λ−=′        (3.9) 

)()()()()( 1,1, tptptptp jiijjiij +− μ+μ+λ−λ=′     (3.10) 

with the initial conditions ijijp δ=)0( , where μ<λ<0 . 
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 By denoting ),()( jtxtp iij =  and ),()],([ zsXjtx ii =L  and by applying the 
),( rq -HLT and [12, Theorem 2.6] as in Application 3.2, the differential-

difference system is transformed directly into a set of algebraic equations having 
the solutions 
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Definition 3.4. A multiple continuous-discrete convolution integral 
equation has the form  
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where R∈A and f and g are original functions. 
By applying the ),( rq -HLT, due to [15, Theorem 2.8], equation (3.11) is 
transformed into the algebraic equation 

);();();();( zsFzsGzsXzsAX =+ . 

4. State space representations and transfer matrices of ),( rq -D  
hybrid systems 

We shall use the multiple hybrid Laplace transformation to obtain the  
transfer matrices of different classes of hybrid systems. We shall denote the 
operator mn,L  by rq,L , ∗∈Nrq, . 

The ),( rq -D hybrid Roesser type model has the state space representation 
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The real matrices DCBA ,,,  have the dimensions nn× , mn× , np× , 
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The ),( rq -D hybrid Fornasini-Marchesini type model has the state-space 
representation 
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where δτ,A , δτ,B , C  and D  are nn× , mn× , np×  and mp×  real matrices. 
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 Particularly, given rq +  commuting nn×  matrices 
icA , 〉〈∈ qi , 

jdA , 

〉〈∈ rj , one obtains the  ),( rq -D hybrid Attasi type model, with the state equation 

);();()1();(
),(),( ~~

1|||| ktBuktxAAktx
t rq j

d
i

c
rq

ji
+

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∂
∂ ∑ ∏∏

〉〈〉〈⊂ ∈∈

−−−+

δτ
δ

δτ

δτ σ
τ

σ    (4.5) 

where δδττ \,\~ 〉〈=〉〈= rq . 
      The descriptor models for the three types of systems have the state-equations 
similar to (4.1), (4.3) and (4.5), but with the lefthand member replaced 
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where E  are square singular matrices of appropriate dimensions.  
Now, let us consider the constant delay times q
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The ),( rq -D hybrid Roesser type model with time delay has the state space 
representation 
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The ),( rq -D hybrid Fornasini-Marchesini type model with time delays 
has the representation 
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);();();();();( 1010 bkatuDktuDbkatxCktxCkty −−++−−+= .    (4.10) 
The ),( rq -D hybrid Attasi type model with time delays can be defined 

similarly. 
 By applying the multiple ),( rq -hybrid Laplace transformation to the 
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hence the left-hand member can be written as 
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the output equation (4.2) is transformed into 
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By solving (4.11) with respect to the state vectors );( zsX c
i , );( zsX d

j  and 
by replacing them in (4.12) one obtains the input-output map 

);();();( zsUzsHzsY = , where );( zsH  is the transfer matrix of the ),( rq -D 
hybrid Roesser type system: 

DBAIzIsECzsH
jdic nj

r

j
ni

q

i
+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⊕⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−

==
⊕⊕

1

11
);( .   (4.13) 



124                                        Valeriu Prepeliţă, Tiberiu Vasilache 

Here ⊕  indicates the direct sum and nI  the unit matrix of order n . For nIE =  
(4.13) gives the transfer matrix for the standard system. 
 In the same manner, by using [12, Theorem 2.13] one can obtain the 
transfer matrix of the time delay system (4.7), (4.8): 
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Now, let us consider the hybrid Fornasini-Marchesini type systems. By 
[12, (2.14 ii)], for null boundary conditions, equation (4.9) becomes, with the 
notations ∏
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jzs  for 〉〈⊂τ q , 〉〈⊂δ r : 

);();(),( ,
),(),(

,
),(),(

zsUzsBzsXzsAzsXzEs
rqrq

rq δτδτ
δτ

δτδτ
δτ

∑∑
〉〈〉〈⊂〉〈〉〈⊂

〉〈〉〈 +=  

By solving this equation with respect to );( zsX  and by replacing );( zsX  in the  
transformed equation (4.4), one obtains the transfer matrix of the system (4.3), 
(4.4) (with (4.6)) 
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Particularly, for the ),( rq -D hybrid Attasi type system (4.5), (4.4), we get the 
separable transfer matrix 
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Similarly, we can show that the corresponding time-delay system (4.9), (4.10)  has 
the transfer matrix 
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were ase−  denotes 
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6. Conclusion 

In this paper the applications of the multiple ),( mn -Hybrid Laplace  
Transformation have been emphasized, including differential-difference and 
integral equations, as well as the frequency-domain representation of 
multidimensional hybrid control systems. This approach can be continued by 
some topics such as the realization theory of these systems or the frequency-
domain compensation.  
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