
U.P.B. Sci. Bull., Series C, Vol. 85, Iss. 4, 2023 ISSN 2286-3540

ADDRESSING CHALLENGES IN MODELING REAL-TIME

APPLICATIONS FOR COMPLEX DISTRIBUTED SYSTEMS

Liliana DOBRICA1

The paper explores the current challenges in software modeling of real-time

applications for complex distributed systems taking benefits of the current

abstracted mechanisms and graphical elements supported by UML and its MARTE

profile. The main concerns are focused on modeling the structure and behavior of a

set of various types of tasks that are executed concurrently, modeling asynchronous

events including a more detailed representation of the hardware interrupts

mechanism, modeling timing constraints in structural diagrams, scheduling policies,

concurrency on shared resources and intertask communication mechanisms. A

model-driven development approach based on open-source tools integrated in

Eclipse platform is used to address the modeling challenges.

Keywords: real-time software design, model-driven development, UML,

MARTE, modeling tools, open-source.

1. Introduction

As new software applications have emerged over the last decade, the real-

time notion has evolved for the complex distributed systems (CDS) represented in

the various forms including Internet of Things (IoT) or Cyber-Physical Systems

(CPS). Essentially, the time is not only an issue of an application performance,

but a critical concern for a correct functional execution that should be engineered

properly in a coherent and correct manner. Many of the system development cycle

challenges are addressed during the design and analysis stages using appropriate

modeling technologies. Appropriate modelling approaches need to bridge

solutions of the key problems of the general-purpose computing with the

concurrency, heterogeneity, and sensitivity to timing of specific real-time

requirements for such applications.

Real-time software modeling for a CDS having functionalities to monitor

and control specific elements of the operation environment is not a trivial activity

[1]. Among the key challenges is the selection of proper methodologies and

software tools for modeling the real-time software of complex, coordinated and

time sensitive distributed systems that meet the demands of the certification

standards [2]. When a complex behavior is characterized by concurrency control,

synchronization mechanisms, distributed processing, and nondeterministic

1 Professor, Dept. of Automation and Applied Informatics, UNST POLITEHNICA of Bucharest,

Romania, email: liliana.dobrica@upb.ro

182 Liliana Dobrica

timings, the use of formal modeling languages increases the confidence in the

quality of the expected results and the degree of rigor since early stages of the

development cycle.

Recently many research efforts have been focused on integrating Unified

Modeling Language (UML) specifications in the software development cycle in

industrial context [1]. UML has been defined with the ability to be customized

through its profiling mechanisms to directly support specific concepts of an

individual application domain including real-time constraints [3,4]. Nowadays,

the industry uses UML models for understanding, refinement and improvement of

the system design models. A plethora of methodologies provide guidelines to

specification, modeling and design of real-time CDS [5,6]. These propose

different and complementary architectural viewpoints to be considered in the

system functionality and quality definition at architectural level and allow a

proper management of the system complexity. Decomposition into smaller

elements and their refinement reduces and manages complexity. MARTE is the

UML profile for modeling and analysis of real-time and embedded systems that

provides a wide support for specification, design, verification and validation of

complex systems. [7,8,9]. The modeling concepts provided by MARTE profile

can be used in the software development life-cycle from requirements

specification to detailed design, contributing in this way to a better

communication between stakeholders, standardization and interoperability

between platform tools developers. The presence of MARTE profile annotations

in the architectural design model can contribute considerably to the correctness,

effectiveness and suitability of the model towards addressing stakeholders needs

and expectations.

The purpose of this paper is to address several challenges of modeling

real-time applications for CDS taking the benefits of the current abstracted

mechanisms and graphical elements supported by UML and its MARTE profile.

The exploration starts with a discussion about the current model-based and model-

driven software development approaches, then it continues with the presentation

of challenges in using open-source modeling tools. The next sections present the

main concerns of the real-time applications modeling for the current CDS and

provide specific solutions addressing the key challenges. These research

objectives are to provide models of the structure and behavior of a set of various

types of tasks that are executed concurrently, identify asynchronous events

including a more detailed representation of the hardware interrupts mechanism,

describe how to formalize the timing constraints in the structural diagrams,

scheduling policies, concurrency on shared resources and inter-task

communication mechanisms. A model-driven development approach based on

open-source tools integrated in Eclipse platform is considered to address the

modelling objectives.

Addressing challenges in modeling real-time applications for complex distributed systems 183

2. Background

2.1. Development approaches

Model-based systems engineering (MBSE) is an approach that implements

a part or the whole engineering process of a system starting from requirements by

using appropriate modeling languages. The product is an integrated model that

consists of a structural model, a behavior model of the functionalities, a

performance model and other analysis models.

When MBSE is compared with the traditional V-model of the software

development lifecycle [2], among the main benefits to be mentioned are a better

communication, reduced development risks, quality improvements, increase of

productivity and better knowledge transfer. Communication offers a better

understanding among the development teams by providing interoperability and

the ability to integrate many viewpoints representing various stakeholders’

concerns. Continuous validation and verification of the requirements and a precise

estimation of the development costs reduce the development risks. Better quality

is obtained from having completeness and no ambiguity of the requirements that

can be easily verified with test cases and can be traced during the following

development stages including design and analysis. Increase of productivity is

based on shorter analysis of the requirements changes, reusing of existent models,

reducing errors and integration time. A standard format of the design description

can be easily accessed improving the knowledge transfer.

The modeling effort depends on the purpose which varies depending on

the life stage of the system that can be under development or in operation. When a

new system is created the modeling effort is on the specification, analysis and

design. An existent system can be modeled aiming to provide a characterization of

its components and behavior for training its users about operation or maintenance.

The modification of an existent system involves a modeling effort, too. The

breadth, depth and fidelity of a model are considered to define or match the scope

of the model, its completeness or its understanding. A model has five key

characteristics: abstraction, understandability, accuracy, predictiveness and

inexpensiveness [5]. Moreover, a model should conform to the rules of a

modeling language to ensure its consistency. The modeling tool should enforce

these rules and provide a report of violations.

Model-driven engineering (MDE) is a software engineering community

initiative suggesting that one should first develop a model of the system under

study, which is then transformed into an executable software entity. It is a field of

MBSE in which the process is relying on the production and use of models in a

disciplined and rationalized manner. The system model can target different

execution platforms with different operating systems and hardware resources. It

includes model-to-model transformations and model-to-text-transformations,

184 Liliana Dobrica

platform independent models and platform specific models [10,11,12]. The

abstraction, interoperability and reusability capabilities of MDE are very relevant

to model complex services built on distributed, heterogenous devices.

Current modeling methodologies are continuously improved. From a

model it is possible to analyze, explore different solutions and optimize a system

towards satisfying all its requirements [13,8]. Executable UML is the current

research trend that started with the introduction of UML2.0. A formal

specification with the executable semantics for a subset of UML2, via the

Foundational Subset For Executable UML Models (fUML) have been defined

[14]. A compact and complete specification of complex behaviors including

algorithmic parts combines fUML and a textual action language ALF (Action

Language for Foundational UML) [15] such that the models based on these can be

validated and executed.

2.2. Modeling UML projects with open-source tools

The use of an open-source tool support for the design and analysis of

software for CDS is currently a preferred practice in industry or academic context,

due to the many benefits provided by this approach [16]. One of the most

important benefit is the gain of independence from the proprietary tool vendors,

that can change the conditions under which a tool is commercialized and

maintained and many times these changes can impact a lot on the customers.

Companies or universities involved in software systems modeling, for teaching or

research activities, have experienced many challenges. Such challenges include

vendor lock-in, lack of tools maintenance, tool and service acquisition by another

company or changes in the academic program of the tool vendor. Among

solutions to overrun these challenges is to contribute to research and development

of open-source software (OSS) projects that are designed to be extensible.

Universities’ teams with interest in research and technology join this partnership

in an ecosystem and work together towards the development of a base, common

OSS platform [17,16]. Companies can later build on this OSS platform to develop

their own customized solutions or to provide added value features and services.

Many large companies are supporting this vision of OSS tools for systems

engineering, too.

Eclipse Papyrus is an OSS tool that provides an environment to be used in

MBSE or MDE approaches. Similar to many other OSS modeling tools for

systems or software development, it is based on open standards as a reference for

modeling notation. Eclipse Papyrus has been used in many industrial projects

including design and evaluation of CPS or other CDS with real time constraints.

For several years this tool has become a valid choice in our academic context for

both teaching students and research purposes. Recently, it has been released the

version 6.3.0. of this modeling environment [18]. Papyrus integrates technologies

for a graphical editor that implements all the diagrams of the UML 2.5 standard

Addressing challenges in modeling real-time applications for complex distributed systems 185

specification as defined by OMG [4]. This modeling environment provides also

support with specific tabular and graphical editors required by SysML notation to

enable MBSE approach. The latest version, SysML 1.6, is available on the

Eclipse Market Place [17].

Papyrus Moka for Eclipse is another modeling tool that can be integrated

in this environment. It is used to provide execution, debugging and animation of a

modeled system [18]. These three capabilities distinguish by the following

characteristics:

• In execution, when an UML model behavior is represented by composite
structure, activity or state machines diagrams can be executed to assess if the
system will behave as expected.

• In debugging, when the modeled system does not behave well, the Moka
debug framework enables the user to control the execution of the model. It can
suspend the current model execution and then the user can observe if the
associated values of defined variables are appropriate.

• In animation, the execution flow of an application model can be visually
followed by the user of the tool by activating the animation capability. Thus,
the user can see how the model elements on diagrams can change their visual
representation when executed.

There exist other technologies that use Papyrus, extend it or complement it

for specialized aspects. Among these it can be mentioned Papyrus-RT for Real-

time Systems Modeling, Papyrus for Robotics or other Eclipse UML profiles in

Repository. Eclipse UML profiles Repository includes technologies under an

Eclipse MDT sub-project, most of them in the incubation phase, where various

standards including standardized UML profiles have been developed. Here there

is no centralized repository and sometimes there are incompatibilities between

different tools. The implementation of the MARTE profile is in this category in

the incubation phase.

2.3. Real time applications modeling for the current CDS

The main concerns in real-time applications modeling are related to

scheduling of tasks and latency requirements. A real-time CDS has to support

arbitrary release times for their tasks and deadlines, scheduling under various

resource constraints, preemption or minimization of jitter, predictability of the

consequences of every scheduling decision, reliability in the face of failures and

partitions, robustness in the face of overload conditions, tasks with different levels

of criticality, approximation of computation to meet hard deadlines. Many real-

time CDS have low latency requirements because a small increase in system

latency may significantly cost the business using the CDS [19,20].

186 Liliana Dobrica

The main challenges in modeling real-time CDS include the realization in

a consistent manner of the entire model and the management of concurrency in

structural modeling, behavior modeling, state-machine models or component

diagrams. Quality assurance is represented by the analysis of the CDS model

based on specific methods and tools [10,2]. The purpose of the structural

modeling is dependent on the decomposition hierarchy describing the problem

scope, interfaces between hardware and software components and defining the

software system scope and components. Behavior modeling considers the

interaction sequences among software model elements. State-machine models

provide a perspective on the reactions to external input events of the model

elements. Concurrency management refers to modeling activities that are

performed in parallel in a specific manner to manage multiple input sequences or

unpredictable processing loads. A distributed processing environment needs to

model a deployment view describing how is the allocation of the software

components to various processing nodes. Model analysis before stepping into the

next development stage indicates whether the entity of interest will be able to

fulfill the intended purpose or is suitable towards addressing the stakeholders

needs and expectations [21].

Working with a solution defined by a platform-based modeling concept

gives good results. This is represented in Fig. 1 and a detailed description is

provided in [7] where the platform is “the full complement of hardware and

software that underlies and supports an application”.

Fig 1. The platform concept of MARTE [17]

Addressing challenges in modeling real-time applications for complex distributed systems 187

3. Addressing challenges in modeling a real-time CDS

Problems that can arise in modeling a real-time application for CDS are

defined by the concurrency, heterogeneity and timing constraints. The real-time

CDS model consists of a set of concurrent and interacting tasks that can be

described graphically in a UML class diagram. The model of a task is to release

jobs in a recurrent manner with periodic, sporadic or jittering policies depending

on whether the release time is deterministic, bounded by a minimum but not

maximum value, or constrained between a minimum and a maximum value,

respectively. A job is a sequence of computational blocks, each characterized by

a nondeterministic execution time constrained between a minimum and a

maximum value. Computational blocks are associated with an entry-point for the

attachment of a function method to the corresponding low-level implemented

component. Computational blocks belonging to jobs of different tasks may have

semaphore synchronization and message passing communication. Also they may

require computing resources, in which case they are associated with a priority

level and run under static priority preemptive scheduling.

3.1. Addressing challenges in structural modeling

Structural modeling of CDS with timing constraints uses UML class

diagrams with MARTE profile. From an application designer perspective, the

main concerns are to identify the elements that represent concurrent tasks and to

specify application meaningful information concerning their concurrency

properties such as priority and deadline. MARTE stereotype used to represent

concurrent tasks is «SWSchedulableResource» that is applied to UML active

classes.

In Fig. 2 Task is an active class and a «SwSchedulableResource». The type

of the «SwSchedulableResource» is ArrivalPattern, that is provided by MARTE

being used to specify real-time characteristics of a task for analysis. Also, the

Task class is a shared superclass taking the benefit of the UML generalization-

specialization mechanism to avoid duplication of definitions, while still

maintaining separation between three alternatives. The CDS is modeled in an

event-driven manner having both external events arriving to the system and

internal events generated by each task at its competition. The task system has

three types of tasks based on the different kinds of external events arriving at the

system: periodic, sporadic and singular. A PeriodicTask has an execution period

and is activated by a stream of events that are generated periodically. A

SingularTask is activated by an event that is generated only once. A SporadicTask

is activated by a stream of events that have a minimum and maximum interarrival

times, which are the minimum time and, respectively, maximum time between the

generation of two events. Event classes are represented in MARTE by the

different arrival patterns as described in Fig. 2 in the ArrivalPattern.

188 Liliana Dobrica

Many important properties of the application model element are provided

by the «SwSchedulableResource». The list of properties includes: entryPoints,

priorityElements, stackSizeElements, heapSizeElements, activateServices,

resumeServices, suspendServices, terminateServices, deadlineElements. Some of

these are specified in the application model being relevant for the required service

to the platform that offers a quality level of its service.

A platform view, particularly of the operating system designer, has

relevant concerns for a behavior including activateService, suspendService,

resumeService and terminateService that are defined in the state machine model of

a task.

Fig. 2. Structural view model of the application

Modeling an application includes design decisions about scheduling

policies, synchronization mechanisms and the resource-based model of mutual

exclusion. Scheduling policies are established by the SystemScheduler that is a

MARTE «Scheduler» stereotype. The attribute schedPolicy is for FixedPriority

scheduling algorithm This is a design choice from a list of SchedPolicyKind

which is an enumeration of the following: EarlistDeadlineFirst, FIFO,

FixedPriority, LeastLaxityFirst, RoundRobin, TimeTableDriven, etc. For instance,

using fixed priority algorithms different scheduling strategies are allowed,

including preempted and non-preempted scheduling or interrupt service routines,

sporadic server scheduling or periodic polling servers.

Concurrency conflicts to shared resources are specified with

«SwMutualExclusionResource» stereotype that support mutual exclusion

techniques. The application model includes a BinarySemaphore and MutEx. A

Addressing challenges in modeling real-time applications for complex distributed systems 189

mutex is similar to a binary semaphore, but the difference is that it can only be

released by the task that currently holds it. The concurrent access protocol for the

mutex is PCP, that is a priority ceiling protocol. By selecting this protocol, the

ceiling priority value has to be specified in the ceiling attribute. PCP regulates the

access to shared resources by raising the priority of any locking task to the highest

priority of any task that ever uses that lock. The BinarySemaphore class has the

p() and v() operations to access and, respectively, to release the semaphore. The

model uses stereotypes «Acquire» and «Release».

The complex mutex that uses a ceiling protocol and handles the incoming

acquire requests based on FIFO waiting policy is represented in the application

model. The binarySemaphore is used to access SensorDataRepository.

Additionally, the concept protected passive unit («PpUnit») is used in the

application model represented by the stereotype. The concPolicy attribute is a

guarded value because it involves mutual exclusion such that only a single

concurrent access is allowed while others are blocked until their turn comes. Two

basic communication techniques between tasks, shared data communication and

message-based communications are abstracted in MARTE and can be used in

modeling applications (see Fig. 2).

Fig 3. PeriodicTimer creation and interaction

Fig. 4. Timing information in the sequence

diagram

Shared data repositories support the exchange of information between

tasks and «SharedDataComResource» stereotype represent these. Message-based

communication involves placing information generated by a source task into a

message buffer which is then delivered to the destination task. Conceptually the

last technique involves the movement of data from one location to another

through the network of a distributed system. In the application design it could be

used for interaction synchronous operation calls or asynchronous signals.

190 Liliana Dobrica

3.2. Addressing challenges with timing constraints and asynchronous

events

The application modeling with MARTE includes modeling timing

mechanisms such as clocks and timers for representation of timing constraints. A

clock interrupt may trigger a computational block and a periodic timer may be

used to awake periodic tasks. Also, time is associated with behavior by specifying

timing information that represents either timing requirements, such as deadlines,

or timing properties such as execution durations.

Fig. 3 illustrates the occurrence of a periodic timeout event by an accurate

explicit timing mechanism with the TemperatureSensorReader task that creates a

PeriodicTimer object that sends back to its creator an asynchronous timer message

every 90 miliseconds. The «TimerResource» stereotype indicates a cyclical

behavior with specified periods.

Timing information needs to be specified when invoking services in a

behavior view described with a sequence diagram or activity diagram. In the

sequence diagram «RtFeature» and «RtSpecification» stereotypes are used

together for an operation call as illustrated in Fig. 4 for the start operation that

should be completed within 15 microsecs. It specifies relDI, of 15 microsecs,

which is the relative deadline starting from the instant the invocation is initiated.

Fig. 5. Capturing common characteristics of an interrupt pattern

Fig. 5 describes the use of «InterruptResource» and «InterruptHandler»

interface stereotype that captures common characteristics of interrupt system and

handlers for an interrupt signal generated by detecting an anomalous situation in

the monitored environment, (VO - Voltage overload). High urgency events are

handled in a timely fashion based on the interrupt pattern. These events

represented by hardware signals are handled even when the system is busy doing

other processing.

The watchdog timer is modeled with two stereotypes, «Alarm» and

«TimerResource» as illustrated in Fig. 6. The Alarm stereotype is a source of a

Addressing challenges in modeling real-time applications for complex distributed systems 191

hardware interrupt, and it could be used to detect and prevent livelocks and

deadlocks in real-time operating systems [17] by generating and dispatching

signals asynchronously to targeted concurrent tasks.

Fig 6. Modeling a WatchDogTimer

4. Conclusions

The paper has described the main results of the current research in open-

source modeling technologies to be used when considering the evolution of the

real-time constraints of the software applications for existing CDS. When

heterogeneity, concurrency and timing constraints are the key properties of the

existing CDS, modeling software applications for such systems poses many

challenges that have been explored. Specific modeling solutions addressing the

key challenges have been advanced including models of the structure and the

behavior of a set of various types of tasks that are executed concurrently. UML

with MARTE profile is a promising solution of a formal representation for timing

constraints in the structural and behavior diagrams, scheduling policies,

concurrency on shared resources and inter-task communication mechanisms The

open-source Eclipse Papyrus tool is very useful and a suitable tool to realize an

application software model project in UML. The tool provides a modeling

perspective that can be configured to explore the UML model elements. Valuable

results have been obtained in specifying the application model elements and

applying MARTE profile after importing it. The tool has been used to generate

code in JAVA after creating the specific model by annotating model elements

with JAVA stereotypes. The model can be validated and executed when the

behavior of an active class is specified by an activity diagram.

192 Liliana Dobrica

R E F E R E N C E S

[1] I. Bicchierai, G. Bucci, L. Carnevali and E. Vicario, “Combining UML-MARTE and

Preemptive Time Petri Nets: An Industrial Case Study”, IEEE Trans on Ind. Inf, 9(4), 2013.

[2] L.Carnevali, L. Ridi and E. Vicario, “Putting Preemptive Time Petri Nets to Work in a V-

model SW Life Cycle”, IEEE Transactions on Software Engineering, vol. 37, no. 6, 2011.

[3] D. Du, P. Huang, K. Jiang and F. Mallet, “pCSSL: A stochastic extension to MARTE/CCSL

for modeling uncertainty in Cyber Physical Systems”, Science of Computer Programming,

vol. 166, pp. 71-88, 2018.

[4] *** UML, http://www.uml.org (accessed on May 2023)

[5] G. Harbour, G. Garcia, P. Gutierrez and D. Moyrano, “MAST: Modeling and Analysis Suite

for Real Time Applications”, Euromicro Conference on Real-time Systems, pg. 125- 134,

2001.

[6] E. Villar, J. Merino, H. Posadas, R. Henia and L. Rioux, “Mega Modeling of Complex

Distributed, Heterogenous CPS Systems”, Microprocessors and Microsystems, vol. 78

(2020).

[7] B. Selic and S. Gerard, Modeling and Analysis of Real-Time and Embedded Systems with

UML and MARTE, Ed. Elsevier, 2014

[8] F. Cicozzi, I. Malavolta and B. Selic, “Execution of UML models: a systematic review of

research and practice”, Software and Systems Modeling, vol. 18, 2313-2360, 2018

[9] F.G. Ribeiro, A. Retberg, C. Pereira, C. Steimetz and M. Soares, SPES Methodology and

MARTE Constraints in Architectural Design, IEEE Symp. on Comp and Comm., 2018

[10] L. Dobrica, “Exploring Approaches of Integration Software Architecture Modeling with

Quality Analysis Models”, 9th Working IEEE/IFIP Conference on Software Architecture

(WICSA), 2011.

[11] R. Mzid and M. Abid, “UML-Based Reconfigurable Middleware for Design-Level Timing

Verification in Model-Based Approach”, 11th International Design and Test Symposium,

pp. 181-186, 2016.

[12] A.Bennett and A.J. Field, “Performance Engineering with the UML Profile for Schedulability,

Performance and Time: a Case Study”, Procs of MASCOTS, 2004.

[13] L. Dobrica, “Quality of Transformations providing Interoperability in Software Architecture

Model-Driven Development”, 6th International Conference on Software and Database

Technologies (ICSOFT), pp. 305-308, 2011

[14] *** fUML, http://www.omg.org/spec/fuml (accessed on May 2023)

[15] *** alf, http://www.omg.org/spec/ALF (accessed on May 2023)

[16] J.S. Vara, A. Ruiz and G. Blondelle, “Assurance and certification of physical systems: The

AMASS open source ecosystem”, Journal of Systems and Software, vol. 171 (2021).

[17] *** Eclipse, https://www.eclipse.org/projects/ (accessed on May 2023)

[18] *** Papyrus, https://www.eclipse.org/papyrus/ (accessed on May 2023)

[19] A. Kejariwal and F. Orsini, “On the definition of real-time”, 2016 IEEE TrustCom-

BigDataSE-ISPA, pp. 2213- 2220, 2016

[20] E. Ovaska, L. Dobrica, A. Purhonen and M. Jaakola, “Exploration of Tehnologies for

Autonomic Dependable Service Platforms”, 6th Int. Conf on Software and Database

Technologies (ICSOFT), pp. 115-124, 2011

[21] I. Traore, I. Woungang, A. Ahmed and M. Obaidat, “UML-Based Performance Modeling of

Distributed Software Systems”, Procs of 2010 Int. Symp. of Performance Evaluation of

Computer and Telecommunication Systems, pp. 119-126, 2010.

http://www.uml.org/
http://www.omg.org/spec/fuml
http://www.omg.org/spec/ALF
https://www.eclipse.org/projects/
https://www.eclipse.org/papyrus/

