U.P.B. Sci. Bull., Series C, Vol. 85, Iss. 4, 2023 ISSN 2286-3540

ADDRESSING CHALLENGES IN MODELING REAL-TIME
APPLICATIONS FOR COMPLEX DISTRIBUTED SYSTEMS

Liliana DOBRICA!

The paper explores the current challenges in software modeling of real-time
applications for complex distributed systems taking benefits of the current
abstracted mechanisms and graphical elements supported by UML and its MARTE
profile. The main concerns are focused on modeling the structure and behavior of a
set of various types of tasks that are executed concurrently, modeling asynchronous
events including a more detailed representation of the hardware interrupts
mechanism, modeling timing constraints in structural diagrams, scheduling policies,
concurrency on shared resources and intertask communication mechanisms. A
model-driven development approach based on open-source tools integrated in
Eclipse platform is used to address the modeling challenges.

Keywords: real-time software design, model-driven development, UML,
MARTE, modeling tools, open-source.

1. Introduction

As new software applications have emerged over the last decade, the real-
time notion has evolved for the complex distributed systems (CDS) represented in
the various forms including Internet of Things (10T) or Cyber-Physical Systems
(CPS). Essentially, the time is not only an issue of an application performance,
but a critical concern for a correct functional execution that should be engineered
properly in a coherent and correct manner. Many of the system development cycle
challenges are addressed during the design and analysis stages using appropriate
modeling technologies. Appropriate modelling approaches need to bridge
solutions of the key problems of the general-purpose computing with the
concurrency, heterogeneity, and sensitivity to timing of specific real-time
requirements for such applications.

Real-time software modeling for a CDS having functionalities to monitor
and control specific elements of the operation environment is not a trivial activity
[1]. Among the key challenges is the selection of proper methodologies and
software tools for modeling the real-time software of complex, coordinated and
time sensitive distributed systems that meet the demands of the certification
standards [2]. When a complex behavior is characterized by concurrency control,
synchronization mechanisms, distributed processing, and nondeterministic

! Professor, Dept. of Automation and Applied Informatics, UNST POLITEHNICA of Bucharest,
Romania, email: liliana.dobrica@upb.ro

182 Liliana Dobrica

timings, the use of formal modeling languages increases the confidence in the
quality of the expected results and the degree of rigor since early stages of the
development cycle.

Recently many research efforts have been focused on integrating Unified
Modeling Language (UML) specifications in the software development cycle in
industrial context [1]. UML has been defined with the ability to be customized
through its profiling mechanisms to directly support specific concepts of an
individual application domain including real-time constraints [3,4]. Nowadays,
the industry uses UML models for understanding, refinement and improvement of
the system design models. A plethora of methodologies provide guidelines to
specification, modeling and design of real-time CDS [5,6]. These propose
different and complementary architectural viewpoints to be considered in the
system functionality and quality definition at architectural level and allow a
proper management of the system complexity. Decomposition into smaller
elements and their refinement reduces and manages complexity. MARTE is the
UML profile for modeling and analysis of real-time and embedded systems that
provides a wide support for specification, design, verification and validation of
complex systems. [7,8,9]. The modeling concepts provided by MARTE profile
can be used in the software development life-cycle from requirements
specification to detailed design, contributing in this way to a better
communication between stakeholders, standardization and interoperability
between platform tools developers. The presence of MARTE profile annotations
in the architectural design model can contribute considerably to the correctness,
effectiveness and suitability of the model towards addressing stakeholders needs
and expectations.

The purpose of this paper is to address several challenges of modeling
real-time applications for CDS taking the benefits of the current abstracted
mechanisms and graphical elements supported by UML and its MARTE profile.
The exploration starts with a discussion about the current model-based and model-
driven software development approaches, then it continues with the presentation
of challenges in using open-source modeling tools. The next sections present the
main concerns of the real-time applications modeling for the current CDS and
provide specific solutions addressing the key challenges. These research
objectives are to provide models of the structure and behavior of a set of various
types of tasks that are executed concurrently, identify asynchronous events
including a more detailed representation of the hardware interrupts mechanism,
describe how to formalize the timing constraints in the structural diagrams,
scheduling policies, concurrency on shared resources and inter-task
communication mechanisms. A model-driven development approach based on
open-source tools integrated in Eclipse platform is considered to address the
modelling objectives.

Addressing challenges in modeling real-time applications for complex distributed systems 183

2. Background
2.1. Development approaches

Model-based systems engineering (MBSE) is an approach that implements
a part or the whole engineering process of a system starting from requirements by
using appropriate modeling languages. The product is an integrated model that
consists of a structural model, a behavior model of the functionalities, a
performance model and other analysis models.

When MBSE is compared with the traditional V-model of the software
development lifecycle [2], among the main benefits to be mentioned are a better
communication, reduced development risks, quality improvements, increase of
productivity and better knowledge transfer. Communication offers a better
understanding among the development teams by providing interoperability and
the ability to integrate many viewpoints representing various stakeholders’
concerns. Continuous validation and verification of the requirements and a precise
estimation of the development costs reduce the development risks. Better quality
is obtained from having completeness and no ambiguity of the requirements that
can be easily verified with test cases and can be traced during the following
development stages including design and analysis. Increase of productivity is
based on shorter analysis of the requirements changes, reusing of existent models,
reducing errors and integration time. A standard format of the design description
can be easily accessed improving the knowledge transfer.

The modeling effort depends on the purpose which varies depending on
the life stage of the system that can be under development or in operation. When a
new system is created the modeling effort is on the specification, analysis and
design. An existent system can be modeled aiming to provide a characterization of
its components and behavior for training its users about operation or maintenance.
The modification of an existent system involves a modeling effort, too. The
breadth, depth and fidelity of a model are considered to define or match the scope
of the model, its completeness or its understanding. A model has five key
characteristics: abstraction, understandability, accuracy, predictiveness and
inexpensiveness [5]. Moreover, a model should conform to the rules of a
modeling language to ensure its consistency. The modeling tool should enforce
these rules and provide a report of violations.

Model-driven engineering (MDE) is a software engineering community
initiative suggesting that one should first develop a model of the system under
study, which is then transformed into an executable software entity. It is a field of
MBSE in which the process is relying on the production and use of models in a
disciplined and rationalized manner. The system model can target different
execution platforms with different operating systems and hardware resources. It
includes model-to-model transformations and model-to-text-transformations,

184 Liliana Dobrica

platform independent models and platform specific models [10,11,12]. The
abstraction, interoperability and reusability capabilities of MDE are very relevant
to model complex services built on distributed, heterogenous devices.

Current modeling methodologies are continuously improved. From a
model it is possible to analyze, explore different solutions and optimize a system
towards satisfying all its requirements [13,8]. Executable UML is the current
research trend that started with the introduction of UML2.0. A formal
specification with the executable semantics for a subset of UML2, via the
Foundational Subset For Executable UML Models (fFUML) have been defined
[14]. A compact and complete specification of complex behaviors including
algorithmic parts combines fUML and a textual action language ALF (Action
Language for Foundational UML) [15] such that the models based on these can be
validated and executed.

2.2. Modeling UML projects with open-source tools

The use of an open-source tool support for the design and analysis of
software for CDS is currently a preferred practice in industry or academic context,
due to the many benefits provided by this approach [16]. One of the most
important benefit is the gain of independence from the proprietary tool vendors,
that can change the conditions under which a tool is commercialized and
maintained and many times these changes can impact a lot on the customers.
Companies or universities involved in software systems modeling, for teaching or
research activities, have experienced many challenges. Such challenges include
vendor lock-in, lack of tools maintenance, tool and service acquisition by another
company or changes in the academic program of the tool vendor. Among
solutions to overrun these challenges is to contribute to research and development
of open-source software (OSS) projects that are designed to be extensible.
Universities’ teams with interest in research and technology join this partnership
in an ecosystem and work together towards the development of a base, common
OSS platform [17,16]. Companies can later build on this OSS platform to develop
their own customized solutions or to provide added value features and services.
Many large companies are supporting this vision of OSS tools for systems
engineering, too.

Eclipse Papyrus is an OSS tool that provides an environment to be used in
MBSE or MDE approaches. Similar to many other OSS modeling tools for
systems or software development, it is based on open standards as a reference for
modeling notation. Eclipse Papyrus has been used in many industrial projects
including design and evaluation of CPS or other CDS with real time constraints.
For several years this tool has become a valid choice in our academic context for
both teaching students and research purposes. Recently, it has been released the
version 6.3.0. of this modeling environment [18]. Papyrus integrates technologies
for a graphical editor that implements all the diagrams of the UML 2.5 standard

Addressing challenges in modeling real-time applications for complex distributed systems 185

specification as defined by OMG [4]. This modeling environment provides also
support with specific tabular and graphical editors required by SysML notation to
enable MBSE approach. The latest version, SysML 1.6, is available on the
Eclipse Market Place [17].

Papyrus Moka for Eclipse is another modeling tool that can be integrated
in this environment. It is used to provide execution, debugging and animation of a
modeled system [18]. These three capabilities distinguish by the following
characteristics:

e In execution, when an UML model behavior is represented by composite
structure, activity or state machines diagrams can be executed to assess if the
system will behave as expected.

e In debugging, when the modeled system does not behave well, the Moka
debug framework enables the user to control the execution of the model. It can
suspend the current model execution and then the user can observe if the
associated values of defined variables are appropriate.

e In animation, the execution flow of an application model can be visually
followed by the user of the tool by activating the animation capability. Thus,
the user can see how the model elements on diagrams can change their visual
representation when executed.

There exist other technologies that use Papyrus, extend it or complement it
for specialized aspects. Among these it can be mentioned Papyrus-RT for Real-
time Systems Modeling, Papyrus for Robotics or other Eclipse UML profiles in
Repository. Eclipse UML profiles Repository includes technologies under an
Eclipse MDT sub-project, most of them in the incubation phase, where various
standards including standardized UML profiles have been developed. Here there
is no centralized repository and sometimes there are incompatibilities between
different tools. The implementation of the MARTE profile is in this category in
the incubation phase.

2.3. Real time applications modeling for the current CDS

The main concerns in real-time applications modeling are related to
scheduling of tasks and latency requirements. A real-time CDS has to support
arbitrary release times for their tasks and deadlines, scheduling under various
resource constraints, preemption or minimization of jitter, predictability of the
consequences of every scheduling decision, reliability in the face of failures and
partitions, robustness in the face of overload conditions, tasks with different levels
of criticality, approximation of computation to meet hard deadlines. Many real-
time CDS have low latency requirements because a small increase in system
latency may significantly cost the business using the CDS [19,20].

186 Liliana Dobrica

The main challenges in modeling real-time CDS include the realization in
a consistent manner of the entire model and the management of concurrency in
structural modeling, behavior modeling, state-machine models or component
diagrams. Quality assurance is represented by the analysis of the CDS model
based on specific methods and tools [10,2]. The purpose of the structural
modeling is dependent on the decomposition hierarchy describing the problem
scope, interfaces between hardware and software components and defining the
software system scope and components. Behavior modeling considers the
interaction sequences among software model elements. State-machine models
provide a perspective on the reactions to external input events of the model
elements. Concurrency management refers to modeling activities that are
performed in parallel in a specific manner to manage multiple input sequences or
unpredictable processing loads. A distributed processing environment needs to
model a deployment view describing how is the allocation of the software
components to various processing nodes. Model analysis before stepping into the
next development stage indicates whether the entity of interest will be able to
fulfill the intended purpose or is suitable towards addressing the stakeholders
needs and expectations [21].

Working with a solution defined by a platform-based modeling concept
gives good results. This is represented in Fig. 1 and a detailed description is
provided in [7] where the platform is “the full complement of hardware and
software that underlies and supports an application”.

E2 SoftwareApplicationModel |

deployment

deployment : /’/ /| Framework
E2 OperatingSystem (09) | \i,.‘ i r,fr- platform
d -
¢ -
deployment P

- -
=1 Hardware \i,u‘ ‘_,"’/’ os kS

‘_,_--—-'"'_— platform

T
! _| Application
: .-~ | platform
E= Applications Flamework| \i,u‘ F,-"} .
4

s
s

Fig 1. The platform concept of MARTE [17]

Addressing challenges in modeling real-time applications for complex distributed systems 187

3. Addressing challenges in modeling a real-time CDS

Problems that can arise in modeling a real-time application for CDS are
defined by the concurrency, heterogeneity and timing constraints. The real-time
CDS model consists of a set of concurrent and interacting tasks that can be
described graphically in a UML class diagram. The model of a task is to release
jobs in a recurrent manner with periodic, sporadic or jittering policies depending
on whether the release time is deterministic, bounded by a minimum but not
maximum value, or constrained between a minimum and a maximum value,
respectively. A job is a sequence of computational blocks, each characterized by
a nondeterministic execution time constrained between a minimum and a
maximum value. Computational blocks are associated with an entry-point for the
attachment of a function method to the corresponding low-level implemented
component. Computational blocks belonging to jobs of different tasks may have
semaphore synchronization and message passing communication. Also they may
require computing resources, in which case they are associated with a priority
level and run under static priority preemptive scheduling.

3.1. Addressing challenges in structural modeling

Structural modeling of CDS with timing constraints uses UML class
diagrams with MARTE profile. From an application designer perspective, the
main concerns are to identify the elements that represent concurrent tasks and to
specify application meaningful information concerning their concurrency
properties such as priority and deadline. MARTE stereotype used to represent
concurrent tasks is «SWSchedulableResource» that is applied to UML active
classes.

In Fig. 2 Task is an active class and a «SwSchedulableResource». The type
of the «SwSchedulableResource» is ArrivalPattern, that is provided by MARTE
being used to specify real-time characteristics of a task for analysis. Also, the
Task class is a shared superclass taking the benefit of the UML generalization-
specialization mechanism to avoid duplication of definitions, while still
maintaining separation between three alternatives. The CDS is modeled in an
event-driven manner having both external events arriving to the system and
internal events generated by each task at its competition. The task system has
three types of tasks based on the different kinds of external events arriving at the
system: periodic, sporadic and singular. A PeriodicTask has an execution period
and is activated by a stream of events that are generated periodically. A
SingularTask is activated by an event that is generated only once. A SporadicTask
Is activated by a stream of events that have a minimum and maximum interarrival
times, which are the minimum time and, respectively, maximum time between the
generation of two events. Event classes are represented in MARTE by the
different arrival patterns as described in Fig. 2 in the ArrivalPattern.

188 Liliana Dobrica

Many important properties of the application model element are provided
by the «SwSchedulableResource». The list of properties includes: entryPoints,
priorityElements, stackSizeElements, heapSizeElements, activateServices,
resumeServices, suspendServices, terminateServices, deadlineElements. Some of
these are specified in the application model being relevant for the required service
to the platform that offers a quality level of its service.

A platform view, particularly of the operating system designer, has
relevant concerns for a behavior including activateService, suspendService,
resumeService and terminateService that are defined in the state machine model of
a task.

=SwScheduBbleResource- i en
isPreemptable=true 7] Mutex S
type=AnivalPattern =SwbutualExclusionResources ~SebutualclusonResources concPolicy=guarded
y tion| o B p mechani M «Shared DataComPesouice-
Schedulers Z’::L"Sfe'zl“e‘;‘“::;@l] concurrentAccessProtocol=PCP (]
] SystemScheduler Ts=| waitingQueuePolicy=FIFO writeServices=|update]
~Schediukr- eaomeServices 7||"m] 1 & oAcquires +pl) el R —
resumeServices=[resume] - 3 ’
B E e roe : - & eReleases +v) scheduler=SystemScheduler mechanism=BooleanSemaphore
terminateServices=[end] 3 '
S heapSizeElements=[] ~ N P |
1 1 deadlinelements=|deadline] Ry \ [@ wAcquires + get) |
~o * . 4§ «Releases + rel() !
«SwSchedulableResource, RiUnito !

L\ = L7 s !
«SwSchedulableResources ic3 + deadline: NFP_Duration [1] “-a| «SharedDataComR e e, PpUnits
{entryPoints=|start, stop] } £ ComputationalBlock =) + releaseType: AmivalPattern [1] C> SensorDataRepository

O =)+ heap: NFP_DataSize [0]
= + Time: Integer [1] & +read()
=) + stack: NFP_DataSize [0]
8+ start() =+ maxExecutionTime: Integer [1] @+ update()
(= + priority: Elnt [0]
&+ stopl) < --
&+ function() @ +run) o SharedDataComR e
||@ +suspendp . 3
entryPoint ||+ resumel) - > MessageButfer
i

S5 heclul bieResource- +end() b 1y &+ messageBuffer: Array [1]
periodElements=|period]
«DataTypes @+ send()
. @+ receive()

AriivalPattern

g + I""'f“:‘“ ";"“‘":ﬂfslmlu-‘ly i «SwSchedulableResource, TimerResources «SwSchedulableResources
3 + aperiodic: AperiodicPattern [0.. PeriodicTask SporadicTask
% + burst: BurstPattern [0..1] L7 peinsicrad fulr [

5% + inregular: IregularPattern [0.1] =+ releaseType: PeriodicPattern [1] =+ releaseType: SporadicPattern [1 H SingularTask

3 + closed: ClosedPattern [0..1] 5] + period: NFP_Duration |1] (=) + mininterarrival: Integer [1] = + releaseType: AperiodicPattern [1
(= + sporadic: SporadicPattern [0..1] 5 + priority: NFP_Integer [1] (= + maxinterarrival: Integer [1] =+ activatingTask: Task [1]

5 + open: OpenPattern 0.1] =5 + ptDeadline: NFP_Duration [1]

Fig. 2. Structural view model of the application

Modeling an application includes design decisions about scheduling
policies, synchronization mechanisms and the resource-based model of mutual
exclusion. Scheduling policies are established by the SystemScheduler that is a
MARTE «Scheduler» stereotype. The attribute schedPolicy is for FixedPriority
scheduling algorithm This is a design choice from a list of SchedPolicyKind
which is an enumeration of the following: EarlistDeadlineFirst, FIFO,
FixedPriority, LeastLaxityFirst, RoundRobin, TimeTableDriven, etc. For instance,
using fixed priority algorithms different scheduling strategies are allowed,
including preempted and non-preempted scheduling or interrupt service routines,
sporadic server scheduling or periodic polling servers.

Concurrency conflicts to shared resources are specified with
«SwMutualExclusionResource» stereotype that support mutual exclusion
techniques. The application model includes a BinarySemaphore and MutEx. A

Addressing challenges in modeling real-time applications for complex distributed systems 189

mutex is similar to a binary semaphore, but the difference is that it can only be
released by the task that currently holds it. The concurrent access protocol for the
mutex is PCP, that is a priority ceiling protocol. By selecting this protocol, the
ceiling priority value has to be specified in the ceiling attribute. PCP regulates the
access to shared resources by raising the priority of any locking task to the highest
priority of any task that ever uses that lock. The BinarySemaphore class has the
p() and v() operations to access and, respectively, to release the semaphore. The
model uses stereotypes «Acquire» and «Release».

The complex mutex that uses a ceiling protocol and handles the incoming
acquire requests based on FIFO waiting policy is represented in the application
model. The binarySemaphore is used to access SensorDataRepository.
Additionally, the concept protected passive unit («PpUnit») is used in the
application model represented by the stereotype. The concPolicy attribute is a
guarded value because it involves mutual exclusion such that only a single
concurrent access is allowed while others are blocked until their turn comes. Two
basic communication techniques between tasks, shared data communication and
message-based communications are abstracted in MARTE and can be used in
modeling applications (see Fig. 2).

«SwSchedulableResources «SwSchedulableResources : Actuator
: TemperatureSensorReader : ActuatorController
| T

i

e | «RtFeatures
l
l

start()

create «TimerResources

s
——————————————— "= {duration=90 ms, isPeriodic=true) —
: PeriodicTimer «RtSpecification»

| {relDI=15 us }

i

|

T

[4

floep | | ______________________

L

, ! Fig. 4. Timing information in the sequence

Fig 3. PeriodicTimer creation and interaction diagram

Shared data repositories support the exchange of information between
tasks and «SharedDataComResource» stereotype represent these. Message-based
communication involves placing information generated by a source task into a
message buffer which is then delivered to the destination task. Conceptually the
last technique involves the movement of data from one location to another
through the network of a distributed system. In the application design it could be
used for interaction synchronous operation calls or asynchronous signals.

190 Liliana Dobrica

3.2. Addressing challenges with timing constraints and asynchronous

events

The application modeling with MARTE includes modeling timing
mechanisms such as clocks and timers for representation of timing constraints. A
clock interrupt may trigger a computational block and a periodic timer may be
used to awake periodic tasks. Also, time is associated with behavior by specifying
timing information that represents either timing requirements, such as deadlines,
or timing properties such as execution durations.

Fig. 3 illustrates the occurrence of a periodic timeout event by an accurate
explicit timing mechanism with the TemperatureSensorReader task that creates a
PeriodicTimer object that sends back to its creator an asynchronous timer message
every 90 miliseconds. The «TimerResource» stereotype indicates a cyclical
behavior with specified periods.

Timing information needs to be specified when invoking services in a
behavior view described with a sequence diagram or activity diagram. In the
sequence diagram «RtFeature» and «RtSpecification» stereotypes are used
together for an operation call as illustrated in Fig. 4 for the start operation that
should be completed within 15 microsecs. It specifies relDI, of 15 microsecs,
which is the relative deadline starting from the instant the invocation is initiated.

=Intenuptesouce=
activateServices=[attachHandler] «Signale
resumeServices=[unmaskiRQ] sAlarms
dServices= kIR
suspendServices=[maskIRQ] VODetected
«Interfaces
«InterruptResources fi\
h’E InterruptHandler : VLT
{isMaskable=false, kind=Hardwarelnterruption) «InterruptResources
ﬁ?;. + attachHandler in irgld: Elnt) VOHandler
&+ maskIRQQ K_LE
@ +unmaskIRQQ) <3 ---- & +handlelRQQ
&+ handlelRQ()

Fig. 5. Capturing common characteristics of an interrupt pattern

Fig. 5 describes the use of «InterruptResource» and «InterruptHandler»
interface stereotype that captures common characteristics of interrupt system and
handlers for an interrupt signal generated by detecting an anomalous situation in
the monitored environment, (VO - Voltage overload). High urgency events are
handled in a timely fashion based on the interrupt pattern. These events
represented by hardware signals are handled even when the system is busy doing
other processing.

The watchdog timer is modeled with two stereotypes, «Alarm» and
«TimerResource» as illustrated in Fig. 6. The Alarm stereotype is a source of a

Addressing challenges in modeling real-time applications for complex distributed systems 191

hardware interrupt, and it could be used to detect and prevent livelocks and
deadlocks in real-time operating systems [17] by generating and dispatching
signals asynchronously to targeted concurrent tasks.

«Alarm, TimerResources =ARim=
WatchDogTimer isWatchdog=true
| __ _| kind=Hardwarelnterruption
%+ resetWatchDog() =TimerResouces=

duration="100 ms
isPeriodic=true

= LSEn -\U-

«Signals
=Alarm=

watchdogTimer

Fig 6. Modeling a WatchDogTimer
4. Conclusions

The paper has described the main results of the current research in open-
source modeling technologies to be used when considering the evolution of the
real-time constraints of the software applications for existing CDS. When
heterogeneity, concurrency and timing constraints are the key properties of the
existing CDS, modeling software applications for such systems poses many
challenges that have been explored. Specific modeling solutions addressing the
key challenges have been advanced including models of the structure and the
behavior of a set of various types of tasks that are executed concurrently. UML
with MARTE profile is a promising solution of a formal representation for timing
constraints in the structural and behavior diagrams, scheduling policies,
concurrency on shared resources and inter-task communication mechanisms The
open-source Eclipse Papyrus tool is very useful and a suitable tool to realize an
application software model project in UML. The tool provides a modeling
perspective that can be configured to explore the UML model elements. Valuable
results have been obtained in specifying the application model elements and
applying MARTE profile after importing it. The tool has been used to generate
code in JAVA after creating the specific model by annotating model elements
with JAVA stereotypes. The model can be validated and executed when the
behavior of an active class is specified by an activity diagram.

192 Liliana Dobrica

REFERENCES

[1] I. Bicchierai, G. Bucci, L. Carnevali and E. Vicario, “Combining UML-MARTE and
Preemptive Time Petri Nets: An Industrial Case Study”, IEEE Trans on Ind. Inf, 9(4), 2013.

[2] L.Carnevali, L. Ridi and E. Vicario, “Putting Preemptive Time Petri Nets to Work in a V-
model SW Life Cycle”, IEEE Transactions on Software Engineering, vol. 37, no. 6, 2011.

[3] D. Du, P. Huang, K. Jiang and F. Mallet, “pCSSL: A stochastic extension to MARTE/CCSL
for modeling uncertainty in Cyber Physical Systems”, Science of Computer Programming,
vol. 166, pp. 71-88, 2018.

[4] *** UML, http://www.uml.org (accessed on May 2023)

[5] G. Harbour, G. Garcia, P. Gutierrez and D. Moyrano, “MAST: Modeling and Analysis Suite
for Real Time Applications”, Euromicro Conference on Real-time Systems, pg. 125- 134,
2001.

[6] E. Villar, J. Merino, H. Posadas, R. Henia and L. Rioux, “Mega Modeling of Complex
Distributed, Heterogenous CPS Systems”, Microprocessors and Microsystems, vol. 78
(2020).

[7] B. Selic and S. Gerard, Modeling and Analysis of Real-Time and Embedded Systems with
UML and MARTE, Ed. Elsevier, 2014

[8] F. Cicozzi, I. Malavolta and B. Selic, “Execution of UML models: a systematic review of
research and practice”, Software and Systems Modeling, vol. 18, 2313-2360, 2018

[9] F.G. Ribeiro, A. Retberg, C. Pereira, C. Steimetz and M. Soares, SPES Methodology and
MARTE Constraints in Architectural Design, IEEE Symp. on Comp and Comm., 2018

[10] L. Dobrica, “Exploring Approaches of Integration Software Architecture Modeling with
Quality Analysis Models”, 9" Working IEEE/IFIP Conference on Software Architecture
(WICSA), 2011.

[11] R. Mzid and M. Abid, “UML-Based Reconfigurable Middleware for Design-Level Timing
Verification in Model-Based Approach”, 11" International Design and Test Symposium,
pp. 181-186, 2016.

[12] A.Bennett and A.J. Field, “Performance Engineering with the UML Profile for Schedulability,
Performance and Time: a Case Study”, Procs of MASCOTS, 2004.

[13] L. Dobrica, “Quality of Transformations providing Interoperability in Software Architecture
Model-Driven Development”, 6" International Conference on Software and Database
Technologies (ICSOFT), pp. 305-308, 2011

[14] *** fUML, http://www.omg.org/spec/fuml (accessed on May 2023)

[15] *** alf, http://www.omg.org/spec/ALF (accessed on May 2023)

[16] J.S. Vara, A. Ruiz and G. Blondelle, “Assurance and certification of physical systems: The
AMASS open source ecosystem”, Journal of Systems and Software, vol. 171 (2021).

[17] *** Eclipse, https://www.eclipse.org/projects/ (accessed on May 2023)

[18] *** Papyrus, https://www.eclipse.org/papyrus/ (accessed on May 2023)

[19] A. Kejariwal and F. Orsini, “On the definition of real-time”, 2016 IEEE TrustCom-
BigDataSE-ISPA, pp. 2213- 2220, 2016

[20] E. Ovaska, L. Dobrica, A. Purhonen and M. Jaakola, “Exploration of Tehnologies for
Autonomic Dependable Service Platforms”, 6" Int. Conf on Software and Database
Technologies (ICSOFT), pp. 115-124, 2011

[21] I. Traore, I. Woungang, A. Ahmed and M. Obaidat, “UML-Based Performance Modeling of
Distributed Software Systems”, Procs of 2010 Int. Symp. of Performance Evaluation of
Computer and Telecommunication Systems, pp. 119-126, 2010.

http://www.uml.org/
http://www.omg.org/spec/fuml
http://www.omg.org/spec/ALF
https://www.eclipse.org/projects/
https://www.eclipse.org/papyrus/

