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TECHNIQUES FOR PREDICTION IN CHAQOS - A
COMPARATIVE STUDY ON FINANCIAL DATA

Laurentiu BUCUR', Adina FLOREA®

Tehnicile de predictie a seriilor de timp utilizand retele neuronale sau
elemente de geometrie analitica reprezinta doud clase specializate de metode
aplicabile semnalelor caracterizate de haos determinist. In paralel cu dezvoltarea
acestor metode, progresele in domeniul invafarii statistice au impus metodele kernel
de regresie neliniard ca metode de ultimd generatie. In acest articol sunt comparate
performantele de predictie ale celor mai reprezentativi algoritmi din cele trei clase
de metode, cu accent pe maginile kernel rare. Sunt efectuate experimente de
predictie pentru: Volatility Index (VIX), Put-to-Call ratio §i pretul zilnic de
inchidere al unor perechi valutare.

Time series prediction techniques using neural networks or elements of
analytic geometry represent two specialized classes of methods applicable for
signals which exhibit deterministic chaos. In parralel with the development of these
methods, progress in statistical learning theory imposed kernel methods for
nonlinear regression as the state of the art. In this paper the prediction performance
of the most representative algorithms from the three classes are analysed, with focus
on sparse kernel machines. The following time series are analysed:The Volatility
Index (VIX), Put-to-Call ratio the daily closing price series of a basket of

currencies.

Keywords: time series prediction, chaos, nearest neighbours, nearest trajectory,
kernel methods, sparse kernel machines, VIX, put-to-call ratio, foreign exchange

1. Introduction

Time series prediction techniques using elements of deterministic chaos
and analytic geometry constitute a special class of algorithms which base their
predictions on local linear estimates of the vector field in the phase space of an
unknown generating signal source. A second class of algorithms use the same
elements of chaos theory for data pre-processing and artificial neural networks for
nonlinear prediction of the same unknown evolution function in chaos. The third
class of methods in statistical learning theory is constituted by kernel methods, as
described in [5], [6] and [8]. This paper aims at comparing the predictive
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performance of each of the three classes of methods, by using the most
representative algorithms in each category, on a large financial dataset. The
contribution of the paper results from a lack of comparative study in the literature
of the methods used herein and a lack of analysis on the predictability of the time
series under investigation using a significant body of prediction methods. The
main task set forth in this study is to examine the accuracy of each prediction
method for time series with a strong stochastic component (noise), understood as
variability not explained by the lagged values of the time series as endogenous
variables.

From the first category of algorithms which use methods of deterministic
chaos for pre-processing and analytic geometry for prediction, we used the
Nearest Neighbours approach of Hannias and Karras [3] (herein reffered to as
Nearest -Neighbours) with linear estimates and the nearest trajectory algorithm of
McNames [4] with an exponential weighted Mallahobis metric (herein reffered to
as Nearest-Trajectory).

From the second category of algorithms which use deterministic chaos and
neural networks, we used the Multiple Backpropagation Feedforward Neural
Networks for global modelling in conjunction with the approach of Mori and
Urano ([1]) (herein reffered to as MBP-Global) and with the nearest neighbour
algorithm of Hannias and Karras ([3]) (herein reffered to as MBP-Local).

From the class of kernel methods for nonlinear time series prediction we
applied kernel ridge regression [5] (herein reffered to as Kernel-Ridge), Sparse
Kernel Machines using attractors as described in [6] (herein reffered to as SKM-
Attractors) and the Support Vector Machine for Regression as described in [8]
(herein reffered to as e-SVR). All experiments were performed on the minimum
delay embedding phase space of each time series.

The following time series were analysed:

- the Volatility Index (VIX) [10] (Feb.1* 2004 — December 21* 2010) and
the put-to-call ratio [11] (October 17" 2003 — December 21% 2010). Both indexes
indicate volatility and the ratio between put and call options traded on the Chicago
Board of Options Exchange (CBOE).

- a basket of commonly traded currency pairs [12] on the foreign exchange
interbank market (FOREX).

The peformance of the algorithms was measured in terms of directional
predictive accuracy and root mean squared error (RMSE).

2. Experimental setup

For each time series, the following data sets were generated in the pre-
processing stage:
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Iteration 1: no detrending, application of the prediction methods on the
raw delay-embedded time series.

Iteration 2: stochastic detrending (1) of order 1, application of the False
Nearest Neighbours algorithm and delay embedding on the difference time series.

Iteration 1 was used for testing the hypothesis that the generating signal
source is stationary and its dynamics (vector field) can be approximated using
nonlinear tools.

Iteration 2 was used to reduce possible Auto-Regressive AR(1)
components and to eliminate the effects of possible non-stationaruty and spurious
regression in the original samples, as suggested in [13].

Table 1 summarizes the datasets and their stochastic detrended variants
used in this comparative study.

Table 1
Datasets
Data st Ozlegrlig:l Order o_f Minimum Train%ng /
o, (symbol and stochas.tlc Erpbedd}ng Testing
. detrending | Dimension samples
time frame)
1 . 0 5 871/872
2 VIX Daily 1 6 870 /871
3 Put-To-Call 0 6 897/ 898
4 ratio Daily 1 5 897/ 898
5 EUR/USD 0 6 6728/ 6728
6 4h 1 8 6726/ 6727
7 GBP/USD 0 6 2600 /2601
8 daily 1 6 2600 /2600
9 GBP/USD 0 7 6954 / 6954
10 4h 1 8 6953 /6953
11 USD/CAD 0 5 1596 / 1597
12 Daily 1 6 1595/ 1596
13 USD/CAD 0 7 8251 /8252
14 4h 1 8 8250/ 8251
15 AUD/USD 0 6 2729 /2729
16 Daily 1 6 2728 /2729
17 GBP/CHF 0 4 2057 /2057
18 Daily 1 7 2055 /2055
19 GBP/CHF 0 6 8115/8115
20 4h 1 8 8113 /8114

For each data set:
e the minimum delay embedding was calculated with the False Nearest
Neighbours method in [9] for reconstructing the attractor of the
deterministic component.
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o the samples were delay embedded with the minimum embedding
dimension using (2) and each delay embedding sample was assigned the
desired output (3). This approach is used for integrated prediction, as
suggested by McNames in [4].

e the resulting data set was split in 50% training data and 50% test data.

o the full set of time series prediction methods described in section 1 was
used. The performance of each method was measured in terms of RMSE
and directional sign prediction of each sample label (3).

In determining the minimum embedding dimension, the last value m for
which the fraction of false nearest neighbours in the m-dimensional delay
embedding space was greater than 0 was chosen, as suggested in [9].

Stochastic detrending (1) of a non-stationary time series is a method
proposed in [13] to eliminate the effect of spurious regression. In [14] we use it to
eliminate possible non-stationarity and increase the statistical support of patterns
in the phase space of the difference time series by using stochastic detrending of
order 1 (t=1). In general, for continuous time systems:

T

z(r)=x(r)—§zx(t—r) (1)

J=1

where 1 is the order of stochastic detrending.

This paper uses (1) by taking the finite sampling of x(t) as x[n]=x(n0) as in
(2) to obtain z[n]. An m-dimensional delay embedding of a continuous time signal
x(t) is the m-dimensional vector:

Y () = {x(t), x(t- 0), x(t-20), x(t-30),...x(t-(m-1)0) } ©)

where 0 is the sampling period. In this study, 6 corresponds to a daily or a four
hour period for the financial instruments in Table 1. For each time series x(t)
(Table 1- column 1) and each m-dimensional (Table 1- column 6) delay
embedding sample (2), its corresponding desired output was assigned to
DesiredOutput(t) = { x(t + 8) - x(t) } 3)

which corresponds to the one-step ahead differential in the original time series.
For each time series x;n], n=0..N; (Table 1l-column 1), the set
PredictionSet(i)={(Y[n],DesiredOutput[n]) },-;.n Was created, where:

Y[n]=Y(n0) “4)
DesiredOutput[n] = DesiredOutput(n ) &)
The complete data sets used in this study are published at [15].
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Supervised training was performed on the first 50% samples of the set and
performance was measured against the remaining half of the data.

3. Class 1 algorithms performance

In the first experiment we tested the Nearest-Neighbours and the Nearest-
Trajectory algorithms for time series prediction. They perform a weighted
approximation (8) of the evolution of the current state in phase space using the
biweight function (9). For the Nearest-Neighbours method, the number of nearest
neighbours k was optimized over the training data. Trial values for k were
between 2 and 10. The same optimization was performed for the Local-Trajectory
algorithm together with the A parameter (values between 0.1 and 0.9 in 0.1
increments) . The A parameter (0<A<l) defines an exponential weighted
Mallahobis metric ([4]):

d/\(QtaXt):(Qt_Xz)TA(Qz,Xz) (6)
where:
A=
A, _{ ) )

Both methods use iterated prediction in the form:

k
ZqiDesiredOutputi
PredictedOutput = = - (3)

where:
d’
q;,=( —Z)Z )

d; — the distance between the current observation in the minimum delay
embedding phase space and its i-th nearest neighbour using (6)

dmax — the maximum distance to any of the k nearest neighbours of the
current observation in the minimum delay embedding phase space.

Table 2 contains the out-of-sample prediction performance for Nearest-
Neighbours and Nearest-Trajectory. Column 3 contains the optimal value for k
determined over the training set in terms of minimization of the RMSE. Column 4
contains the optimal value of A for the Nearest-Trajectory algorithm. Columns

5,6,7 and 8 contain the prediction performance of the algorithms over the test sets.
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Table 2
Class 1 prediction algorithms performance: Nearest-Neighbours and Nearest-
Trajectory
Nearest-Neigbours Nearest-Trajectory
Dataset | Original Optimal | Optimal
no. time series k by Directional Directional
RMSE accuracy | RMSE accuracy
(%) (%)
1 VIX 6 0.6 8.46 46.31 7.29 46.94
2 4 0.7 3.44 46.97 3.23 50.2
3 Put-to-call 4 0.9 0.65 48.36 0.60 46.97
4 ratio 3 0.8 0.78 52.26 0.69 47.61
5 9 0.9 0.004 49.57 0.004 50.22
6 EUR 4h 5 0.5 0.0043 50.45 0.0043 50.03
7 GBP/USD 7 0.8 0.0104 49.4 0.0101 51.55
8 Daily 5 0.5 0.0123 50.79 0.0114 51.16
9 GBP/USD 10 0.9 0.0055 50.6 0.0054 49.4
10 4h 5 0.1 0.0058 49.11 0.0060 50.8
11 USD/CAD 6 0.2 0.0062 51.54 0.0068 48.98
12 Daily 4 0.6 0.0091 49.37 0.0086 51.01
13 USD/CAD 10 0.9 0.0037 49.93 0.0036 49.38
14 4h 5 0.5 0.0039 50.25 0.0040 49.49
15 AUD/USD 7 0.8 0.0046 50.78 0.0045 49.81
16 Daily 5 0.1 0.0074 52.37 0.0071 51.75
17 GBP/CHF 6 0.7 0.0115 49.33 0.0112 51.08
18 Daily 4 0.5 0.0120 51.40 0.0121 50
19 GBP/CHF 9 0.9 0.0045 49.05 0.0041 50.52
20 4h 5 0.8 0.0060 48.74 0.0061 49.52

Both the Nearest-Neighbours and Nearest-Trajectory algorithms fail to
provide a statistically significant effect size for the prediction of directional
change (columns 5 and 7). However, the Nearest-Trajectory algorithm is superior
to the Nearest-Neighbours approach in terms of RMSE in 15 out of 20 trials while
in terms of accuracy in only outperforms the Nearest-Neighbours algorithm in 10
out of 20 trials.

4. Class 2 algorithms performance

In [1], Mori and Urano use a different approach for time series forecasting.
In the preprocessing phase the minimum embedding dimension is chosen the
value d for which the largest Lyapunov value of the d-dimensional delay
embedding reaches a maximum. They use delay embedding and Multi-Layer
Perceptrons without stochastic detrending for predicting the short-term load
forecasting in power systems. In [3] Hannias and Karras assume a more general
form of (8):
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PredictedOutput = f(q,, DesiredOutput,,q' ; DesiredOutput, ) ~ (10)

where:
e gi, i=1..k are the normalized weighted distances (9) to the k nearest
neighbours and DesiredOutput; are their attached labels
e g;, j=1..k’ are the normalized weighted distances (9) to the k furthest
neighbours and DesiredOutput; are their attached labels
e f is an unknown deterministic map as function of the distances to the k
nearest and k’ furthest neighbours and their attached labels.

In [3] Hannias and Karras contribute by taking into account the distances
to the k’ furthest neighbours, eliminating non-related trajectories from selection
and using a Multiple Layer Perceptron (MLP) for learning the unknown function
(10) instead of the linear form (8) which uses only the k nearest neighbours. They
use the MLP approach for multi-step nonlinear prediction of voltage in a diode
resonator circuit.

The approach of Mori and Urano does not assume the form (10) of the
unknown map of the deterministic system and use the neural networks directly in
the delay embedding phase space of the raw time series. The use of MLPs in [1]
in the present study is herein reffered to as MBP-Global.

The approach of Hannias and Karras assumes the specific form (10) using
local phase space information. The approach in [3] is herein reffered to as MBP-
Local.

In applying the MBP-Global and MBP-Local prediction algorithms in the
present study, we used the Multiple-Layer Backpropagation Neural Network
model [16] (MBP) with selective activation.

We trained each model on the first 50% of the samples and tested their
performance on the second half of the delay embedding samples, identically to the
experiments on the first class of algorithms.

The topology of each neural network used was chosen as follows:

e one input layer with m inputs, m being the minimum embedding
dimension of the time series

e one hidden layer with 2m + 1 units

e one hidden layer with 4m+3 units

e one output layer with one unit

where m is the minimum embedding dimension of the time series.

The topology was chosen based on a theorem introduced by Pinkus [17]
and used by Pavdilis and Tassoulis in [9] for prediction of foreign exchange using
k-windows clustering and artificial neural networks. The theorem is included here
for completeness.
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Theorem (Pinkus): On the unit cube in R" any continuous function can be
uniformly approximated, to within any error by using a two hidden layer neural
network having 2n+1 units in the first layer and 4n+3 units in the second layer.

Without loss of generality, the initial formulation of the theorem reffers to
the unit cube only for convenience. In [18], Pinkus and Maiorov state the results
hold for any compact subset in R".

In assessing the performance of MBP-Global and MBP-Local algorithms
we used the datasets in table 1, their minimum embedding dimension m together
with the MBP neural network model and the topology given by the Pinkus
theorem, as mentioned above. For the MBP-Local approach we used k’=0 and k
as specified in Table 2 — column 3.

e Inputs for the neural network using MBP-Global are the delay embedding
samples of the time series, identical to the class 1 algorithms.
e Inputs for the neural network using MBP-Local are the weights q;, i=1..k
as specified in (10) and the attached labels DesiredOutput,.
In all cases, the desired output from the neural network is (3).

Table 3 summarizes the performance of MBP-Global and MBP-Local in

terms of RMSE and directional predictive accuracy over the test sets.

Table 3
Class 2 prediction algorithms performance: MBP-Global and MBP-Local
MBP-Global MBP-Local
Dataset | Original
no. time series Directional Directional
RMSE accuracy | RMSE accuracy
(%) (%)
1 VIX 3.299 56.12 2.763 52.31
2 2.535 54.12 2.779 44.80
3 Put-to-call 0.302 63.80 0.383 48.72
4 ratio 0.269 68.81 0.385 48.25
5 0.0037 48.65 0.0051 50.94
6 EUR 4h 0.0036 50.36 0.0047 48.63
7 GBP/USD 0.0098 49.75 0.0102 48.53
8 Daily 0.0097 51.51 0.0109 51.14
9 GBP/USD 0.0049 50.72 0.0060 48.56
10 4h 0.0049 50.97 0.0051 48.28
11 USD/CAD 0.0074 50.97 0.0075 49.11
12 Daily 0.0073 52.75 0.0077 49.21
13 USD/CAD 0.0034 48.88 0.0037 48.10
14 4h 0.0034 49.02 0.0036 48.05
15 AUD/USD 0.0060 47.43 0.0085 46.06
16 Daily 0.0060 47.12 0.0062 46.60
17 GBP/CHF 0.0114 50.53 0.0130 48.63
18 Daily 0.0115 49.80 0.0121 50.32
19 GBP/CHF 0.0051 48.86 0.0105 49.60
20 4h 0.0051 50.35 0.0061 48.99
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Table 3 shows superior performance of MBP-Global in comparison to
MBP-Local in terms of RMSE and directional accuracy. MBP-Global - the
approach of Mori and Urano ([1]) proves superior to MBP-Local - the approach
suggested by Hannias and Karras ([3]) because the latter loses phase space
location information. In the former case, the location in phase space is used to
estimate the geometry of the vector field, while in the latter only normalized
distances from a point in phase space in relation to its k nearest neighbours are
provided as inputs to the neural network, while the actual position in phase space
is lost. MBP-Global outperforms MBP-Local in 19 out of 20 trials in terms of
RMSE and in 18 out of 20 trials in terms of directional accuracy. MBP-Global
detects weak directional predictability in phase space for the VIX data series and
strong directional predictability for the put-to-call ratio while all previous methods
fail. For the currency time series 5...20 both MBP-Global and MBP-Local fail to
provide a statistically significant directional predictive advantage. However, the
consistent superior performance of MBP-Global over MBP-Local implies that
price motion is not random and has a deterministic component, otherwise in the
random walk hypothesis a consistent superior performance of one method over
another would not have been possible.

5. Class 3 algorithms performance

From the third class of algorithms for prediction - kernel methods, the
following algorithms were evaluated:
o Kernel ridge regression [5] (Kernel-Ridge)
e Sparse kernel machines using attractors [6] (SKM-Attractors)
e The Support Vector Machine for Regression using the g-insensitive
Loss Function [8] (e-SVR).

Kernel-Ridge

Given a labeled training set S ={ (x1,y1), (X2, ¥2),... (Xn,yn)} Kernel Ridge
Regression uses pattern functions of the form:

N
f(x)zzaiK(xi’x) (11
i=1
where:
e K is a kernel function. In this study we used the isotropic Gaussian kernel:
e
K(x,x)=e 2 (12)

e o >0 — the kernel parameter
e N — the number of training samples
e qj, i=1..N — the dual weights of the pattern function
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Given a positive real constant A called the regularization constant, the weight
vector o = (oL1,0 OLN)T is calculated using:

a=(Kern+2l,)" (13)

.....

where Kern is the N x N kernel matrix calculated using the set S:
Kern; , = K(x;,x;) (14)
In calculating the weight vector a, the right hand side of (13) is a positive definite

matrix. In this study we calculated the inverse using the Conjugate-Gradient
algorithm.

In determining the optimal values of A and ¢ we used the following partition of
the data sets:

e 25% of the samples — the training set - are used to define (11)
e 25% of the samples — the cross-validation set — used to optimize A

e 50% of the samples are used as the test set, identical to the test sets in the
class 1 and class 2 experiments.

Using the cross-validation set the isotropic kernel parameter ¢ was optimized
from 0.0001 to 0.1 using 20 increments on a log-linear scale. The optimal values
in terms of number of correct directional predictions over the test and cross-
validation sets combined were used in testing the kernel machine (11) out-of-
sample (Table 4 - columns 3,4 and 5).

Support Vector Machines for Regression(&-SVR)

The Support Vector Machine for Regression [8] is a function of the form (11)
with the additional property of sparseness. The weights are represented in the dual
form:

a =a. -a. (15)
Such as to maximize :
1 N N N
L(a,a)= —EZZ(G,, ~-a,)a, —a,)K(x,~x,)+> (a,~a,), (16)
=l i=1 i=1
The optimum satisfies the following constraints:

0<a <C/N (17)
0<a <C/N (18)
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a —a =0 (19)

N

> (a,+a,)<vC (20)

n=1
where C is a weight bounding constant chosen by the user and ve[0,1] is a
fraction of samples allowed to lie outside the e-tube. In [8] the Support Vector
Machines for Regression are shown to possess the sparsity property. The property
of sparsity is ensured by the g-insensitive loss:

O,if | f(xi)_yi |< &
L(f(xi)_yi):{ (21)
|f(xi)_yi |_5

All points x; which are in the e-tube | f(x;)— y, |<e have zero dual weights, while

the remaining set are support vectors of (11).

In training the Support Vector Machine for Regression using the g-insensitive loss
we used the LIBSVM [20] package by training and testing the model on the same
datasets as the class 1 and class 2 algorithms. The performance of the Support
Vector Machine for Regression is shown in Table 4 - columns 9 and 10.

Sparse Kernel Machines using attractors

From the third class of algorithms we used the Sparse Kernel Machine model of
Lee, Jung and Lee [6]. Training starts with the fully featured kernel machine (11)
trained with the Ridge Regression algorithm. The aim is to obtain a simplified
version:

g(0) =D K (zx)+c (22)

where:

- c,ﬁiﬂﬂ and z @ X a compact set, X = R", M<<N and zie X, i=1..m
- {zi}i=1.m 1s the Reduced Set (RS) of g(x)

The Reduced Set is the set of M attractors of the dynamical system:

px) = f(0) =) = 3 2 ey K (x,x,) + K x) =2 K (x,x)  (23)
dx
E =-Vo(x) (24)

where f (11) is specified and previously trained with Kernel Ridge Regression.
The sparse kernel machine (22) weights are:

ﬂ — (KZZ)—lexa (25)
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where:

e a=(a,a,,.,a,) -the weight of (11) except the bias term
e K”isan M x M matrix, (K*);j = K(zi,z)

e K”isan M x N matrix , (K™);j = K(z,xj)

o S={(Xy,yi)}i=1.n < X is the training set and {Xi}i-;.n are the training
points of fin (11)

In [6] the authors do not provide an objective method for identifying

attractors. They also do not provide any error bounds after the kernel machine
simplification relative to the error bounds of the original kernel machine f'(11).

In this

study we used the following procedure:

Kernel ridge regression was performed using the test and cross-validation
sets using the kernel parameter ¢ in Table 4- column 5.
Each kernel was descent toward its basin of attraction
Kernel ridge regression was performed again using the same sets.
e-insensitive kernel elimination was performed for kernels clustered
around attractors:
0 For each kernel k:
= if the desired output at the center of k was predicted by the
kernel machine within e-tolerance then it was marked for
deletion since it did not represent a support vector for
regression.
after the loop all kernels marked for deletion are removed to reduce the
Rademacher complexity [5] of the kernel machine.
The remaining kernels form the Reduced Set and represent support vectors
for regression
The kernel machine is retrained using Kernel Ridge Regression

The performance of the resulting sparse kernel machine was tested on the

test set. In the above procedure, instead of setting or optimizing € at each iteration
we used € = 10% of the best RMSE obtained by other methods as an objective
error measure. The reduction rate in the number of kernels following this
procedure is shown in Table 4 — column 8 and is rather low due to the presence of
noise in data and the small neighbourhood size given by the kernel parameter .
Columns 6 and 7 illustrate the performance of the resulting sparse kernel
machines.
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Table 4
Class 3 prediction algorithms performance
Kernel-Ridge SKM-Attractors e-SVR
Data . .
sot | Original Direction Directi Reduction Directi
o, time series | RMS al Best RMSE |1 irectiona wate irectiona
E acourac accuracy %) RMSE | laccuracy
Y1 ° (%) (%)
(%)
1 VIX 1.247 49.45 0.069 1.294 54.32 12.66 2.593 55.55
2 1.625 53.11 0.1 1.625 51.66 21.51 2.569 55.04
3 Put-to-call | 0.334 62.54 0.1 0.336 50.62 10.05 0.273 67.26
4 ratio 0.335 59.81 0.1 0.336 59.47 10.06 0.268 68.59
5 EUR 4h 0.003 48.84 0.004 n/a n/a 15 0.0036 48.29
6 0.003 50.56 0.005 | 0.0036 49.89 19 0.0036 48.29
7 GBP/USD | 0.012 50.13 0.011 | 0.0097 50.86 6.91 0.0149 48.75
8 Daily 0.009 49.71 0.002 | 0.0097 48.20 9.34 0.0149 48.75
9 GBP/USD | 0.007 50.58 0.003 | 0.0098 49.20 7.08 0.0060 50.29
10 4h 0.005 51.02 0.001 | 0.0096 51.09 4.75 0.0060 50.28
11 USD/CA n/a* n/a 0.008 | 0.0078 50.91 27.68 0.0081 48.65
12 D 0.008 50.88 0.003 | 0.0073 51.32 27.88 0.0081 48.68
Daily
13 USD/CA n/a* n/a 0.004 n/a n/a 19.73 0.0037 48.88
14 D 0.003 50.9 0.007 | 0.3676 49.52 0 0.0037 48.88
4h
15 AUD/US | 0.007 49.19 0.004 | 0.0065 51.07 25.83 0.0060 46.48
16 D Daily 0.006 49.62 0.006 | 0.006 49.31 21.79 0.0060 46.46
17 | GBP/CHF | 0.014 49.84 0.008 | 0.0125 48.13 13.22 0.0140 50.58
18 Daily 0.017 50.41 0.011 | 0.0113 50.8 14.88 0.0140 50.63
19 | GBP/CHF | 0.007 50.26 0.008 | 0.0038 50.09 13.58 0.0136 49.27
20 4h 0.005 50.77 0.001 0.005 50.02 1.65 0.0136 49.26

* iteration statistically insignificant — 0 activations over the test set (low global mixing, \
nonstationary series)

6. Final performance comparison

Table 5 summarizes the performance of the three classes of algorithms for
which the performacne is outlined in tables 2, 3 and 4. In this section we identify
the best algorithm and its performance for each data set in terms of RMSE
(columns 3 and 4) and directional predictive accuracy (columns 5 and 6).

Table 5
Performance summary — best prediction algorithms
Original
Data | series Best RMSE Best Best directional  Best
set (symbol algorithm RMSE redictor directional
no. and time & p accuracy (%)
frame)
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1 Kernel-Ridge 1.247 MBP-Global 56.12*
VIX Daily Kernel-Rid,
ge’ *
2 SKM-Attractors 1.625 e-SVR 55.04
3 Put-To- e-SVR 0.273 e-SVR 67.26*
Call ratio
4 Daily e-SVR 0.268 MBP-Global 68.81*
5 EUR/USD Kernel-Ridge 0.003 MBP-Local 50.94
6 4h Kernel-Ridge 0.003 Kernel-Ridge 50.56
7 GBP/USD SKM-Attractors 0.0097 SKM-Attractors 50.86
8 Daily Kernel-Ridge 0.009 MBP-Global 51.51%*
9 GBP/USD MBP-Global 0.0049 MBP-Global 50.78
10 4h MBP-Global 0.0049 SKM-Attractors 51.09**
11 Nearest-Neighbours 0.0062 Nearest- 51.548**
USD/CAD Neighbours
Daily SKM-Attractors, x
12 MBP-Global 0.0073 MBP-Global 52.75
Nearest-Neighbour
13 USD/CAD MBP-Global 0.0034 49.93
4h SVR, Kernel
14 ¥, hermel 0.003 g-SVR 50.9
Ridge
15 e-SVR 0.0045 SKM-Attractors 51.07
AU];)a/i?SD All class 3 Nearest-
16 Y algorithms, MBP- 0.006 - 52.37**
Neighbours
Global
17 GBP/CHF Nearest-Trajectory 0.0112 Nearest-Trajectory 51.08
18 Daily SKM-Attractors 0.0113 SKM-Attractors 50.8
19 SKM-Attractors 0.0038 Nearest-Trajectory 50.52
GBP/CHF
4h SKM-Attractors, .
20 Kernel Ridge 0.005 Kernel-Ridge 50.77

* - strong predictability, greater or equal to 5% above chance

** _ weak predictability: statistically significant effect size greater or equal
to 1.4% above random chance, less than 3%

7. Conclusions

In this study we analysed the performance of three classes of nonlinear

time series prediction methods developed over the past 20 years, from neural
networks to kernel methods, with focus on sparse kernel machines (Lee, Jung,
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Lee, 2009)[6]. The author provided his own implementation of:the Nearest-
Neighbours, Nearest-Trajectory, Kernel-Ridge and SKM-Attractors and compared
their performance to the MBP neural networks [16] and Support Vector Machines
for Regression [20].

For the first class of algorithms, the Nearest-Trajectory algorithm proves
superior to the linear Nearest-Neighbours algorithm in terms of RMSE and
matches it in terms of directional prediction accuracy.

From the second class of algorithms, the approach of Mori and Urano [1]
(MBP-Global) is consistently superior to the approach of Hannias and Karras [3]
(MBP-Local) and provides a statistically significant predictive effect size for the
VIX and put-to-call ratio time series. The consistent advantage obtained using
MBP-Global over MBP-Local on a large body of data implies price motion has a
deterministic and statistically stable component, otherwise both methods would
have been comparable in performance. MBP-Global suggests location in phase
space provides more predictive information than the normalized k nearest
neighbour distances, as used by MBP-Local.

From the third class of algorithms, Kernel Ridge Regression, e-SVR and
Sparse Kernel Machines using attractors are comparable in terms of performance.

The best performance in column 6 of Table 5 illustrates a high degree of
predictability of the directional change of the VIX and put-to-call ratio time
series. For the rest of the time series, a very weak statistical effect size can be
detected higher than 1.5% above chance only in some situations by sparse kernel
machines using attractors, MBP-Global and Nearest-Neighbours algorithms.

For the strong deterministic components found in the VIX and put-to-call
ratio time series, the e-SVR sparse kernel model is comparable to the MBP neural
network approach MBP-Global using the results of the Pinkus theorem.
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