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TECHNIQUES FOR PREDICTION IN CHAOS – A 
COMPARATIVE STUDY ON FINANCIAL DATA 

Laurenţiu BUCUR1, Adina FLOREA2 

Tehnicile de predicţie a seriilor de timp utilizând reţele neuronale sau 
elemente de geometrie analitică reprezintă două clase specializate de metode 
aplicabile semnalelor caracterizate de haos determinist. În paralel cu dezvoltarea 
acestor metode, progresele în domeniul învaţării statistice au impus metodele kernel 
de regresie neliniară ca metode de ultimă generaţie. În acest articol sunt comparate 
performanţele de predicţie ale celor mai reprezentativi algoritmi din cele trei clase 
de metode, cu accent pe maşinile kernel rare. Sunt efectuate experimente de 
predicţie pentru: Volatility Index (VIX), Put-to-Call ratio şi preţul zilnic de 
închidere al unor perechi valutare. 

Time series prediction techniques using neural networks or elements of 
analytic geometry represent two specialized classes of methods applicable for 
signals which exhibit deterministic chaos. In parralel with the development of these 
methods, progress in statistical learning theory imposed kernel methods for 
nonlinear regression as the state of the art. In this paper the prediction performance 
of the most representative algorithms from the three classes are analysed, with focus 
on sparse kernel machines. The following time series are analysed:The Volatility 
Index (VIX), Put-to-Call ratio the daily closing price series of a basket of 
currencies. 

Keywords: time series prediction, chaos, nearest neighbours, nearest trajectory, 
kernel methods, sparse kernel machines, VIX, put-to-call ratio, foreign exchange 

1. Introduction 

Time series prediction techniques using elements of deterministic chaos 
and analytic geometry constitute a special class of algorithms which base their 
predictions on local linear estimates of the vector field in the phase space of an 
unknown generating signal source. A second class of algorithms use the same 
elements of chaos theory for data pre-processing and artificial neural networks for 
nonlinear prediction of the same unknown evolution function in chaos. The third 
class of methods in statistical learning theory is constituted by kernel methods, as 
described in [5], [6] and [8]. This paper aims at comparing the predictive 
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performance of each of the three classes of methods, by using the most 
representative algorithms in each category, on a large financial dataset. The 
contribution of the paper results from a lack of comparative study in the literature 
of the methods used herein and a lack of analysis on the predictability of the time 
series under investigation using a significant body of prediction methods. The 
main task set forth in this study is to examine the accuracy of each prediction 
method for time series with a strong stochastic component (noise), understood as 
variability not explained by the lagged values of the time series as endogenous 
variables. 

From the first category of algorithms which use methods of deterministic 
chaos for pre-processing and analytic geometry for prediction, we used the 
Nearest Neighbours approach of Hannias and Karras [3] (herein reffered to as 
Nearest -Neighbours) with linear estimates and the nearest trajectory algorithm of 
McNames [4] with an exponential weighted Mallahobis metric (herein reffered to 
as Nearest-Trajectory). 

From the second category of algorithms which use deterministic chaos and 
neural networks, we used the Multiple Backpropagation Feedforward Neural 
Networks for global modelling in conjunction with the approach of Mori and 
Urano ([1]) (herein reffered to as MBP-Global) and with the nearest neighbour 
algorithm of Hannias and Karras ([3]) (herein reffered to as MBP-Local). 

From the class of kernel methods for nonlinear time series prediction we 
applied kernel ridge regression [5] (herein reffered to as Kernel-Ridge), Sparse 
Kernel Machines using attractors as described in [6] (herein reffered to as SKM-
Attractors) and the Support Vector Machine for Regression as described in [8] 
(herein reffered to as ε-SVR). All experiments were performed on the minimum 
delay embedding phase space of each time series. 
 The following time series were analysed: 
 - the Volatility Index (VIX) [10] (Feb.1st 2004 – December 21st 2010) and 
the put-to-call ratio [11] (October 17th 2003 – December 21st 2010). Both indexes 
indicate volatility and the ratio between put and call options traded on the Chicago 
Board of Options Exchange (CBOE). 

- a basket of commonly traded currency pairs [12] on the foreign exchange  
interbank market (FOREX). 
 The peformance of the algorithms was measured in terms of directional 
predictive accuracy and root mean squared error (RMSE). 

2. Experimental setup 

For each time series, the following data sets were generated in the pre-
processing stage: 
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Iteration 1: no detrending, application of the prediction methods on the 
raw delay-embedded time series. 

Iteration 2: stochastic detrending (1) of order 1, application of the False 
Nearest Neighbours algorithm and delay embedding on the difference time series. 

Iteration 1 was used for testing the hypothesis that the generating signal 
source is stationary and its dynamics (vector field) can be approximated using 
nonlinear tools.  

Iteration 2 was used to reduce possible Auto-Regressive AR(1) 
components and to eliminate the effects of possible non-stationaruty and spurious 
regression in the original samples, as suggested in [13]. 

Table 1 summarizes the datasets and their stochastic detrended variants 
used in this comparative study.  

Table 1 
Datasets 

Data set 
no. 

Original 
series 

(symbol and 
time frame) 

Order of 
stochastic 
detrending 

Minimum 
Embedding 
Dimension 

Training / 
Testing 
samples 

1 VIX Daily 0 5 871/872 
2 1 6 870 / 871 
3 Put-To-Call 

ratio Daily 
0 6 897 / 898 

4 1 5 897 / 898 
5 EUR/USD 

4h 
0 6 6728 / 6728 

6 1 8 6726 / 6727 
7 GBP/USD 

daily 
0 6 2600 / 2601 

8 1 6 2600 / 2600 
9 GBP/USD 

4h 
0 7 6954 / 6954 

10 1 8 6953 / 6953 
11 USD/CAD 

Daily 
0 5 1596 / 1597 

12 1 6 1595 / 1596 
13 USD/CAD 

4h 
0 7 8251 / 8252 

14 1 8 8250 / 8251 
15 AUD/USD 

Daily 
0 6 2729 / 2729 

16 1 6 2728 / 2729 
17 GBP/CHF 

Daily 
0 4 2057 / 2057 

18 1 7 2055 / 2055 
19 GBP/CHF 

4h 
0 6 8115 / 8115 

20 1 8 8113 / 8114 
 

For each data set: 
• the minimum delay embedding was calculated with the False Nearest 

Neighbours method in [9] for reconstructing the attractor of the 
deterministic component. 
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•  the samples were delay embedded with the minimum embedding 
dimension using (2) and each delay embedding sample was assigned the 
desired output (3). This approach is used for integrated prediction, as 
suggested by McNames in [4]. 

• the resulting data set was split in 50% training data and 50% test data.  
• the full set of time series prediction methods described in section 1 was 

used. The performance of each method was measured in terms of RMSE 
and directional sign prediction of each sample label (3). 

 In determining the minimum embedding dimension, the last value m for 
which the fraction of false nearest neighbours in the m-dimensional delay 
embedding space was greater than 0 was chosen, as suggested in [9].  

Stochastic detrending (1) of a non-stationary time series is a method 
proposed in [13] to eliminate the effect of spurious regression. In [14] we use it to 
eliminate possible non-stationarity and increase the statistical support of patterns 
in the phase space of the difference time series by using stochastic detrending of 
order 1 (τ=1). In general, for continuous time systems: 

∑
=

−−=
τ

τ
τ 1

)(1)()(
j

txtxtz                                              (1) 

where τ is the order of stochastic detrending.  
This paper uses (1) by taking the finite sampling of x(t) as x[n]=x(nθ) as in 

(2) to obtain z[n]. An m-dimensional delay embedding of a continuous time signal 
x(t) is the m-dimensional vector: 

(2)                      } ) 1)-(m-.x(t…), 3- x(t), 2- x(t), - x(t x(t),{)( θθθθ=tY  

where θ is the sampling period. In this study, θ corresponds to a daily or a four 
hour period for the financial instruments in Table 1. For each time series x(t) 
(Table 1- column 1) and each m-dimensional (Table 1- column 6) delay 
embedding sample (2), its corresponding desired output was assigned to 

(3)                                    }  x(t)- ) x(t{)( θ+=tputDesiredOut  

which corresponds to the one-step ahead differential in the original time series. 
For each time series xi[n], n=0..Ni (Table 1-column 1), the set 

PredictionSet(i)={(Y[n],DesiredOutput[n])}n=1..N was created, where: 

(4)                                                           )(][ θnYnY =  

(5)                                             )(][ θnputDesiredOutnputDesiredOut =  

The complete data sets used in this study are published at [15]. 
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Supervised training was performed on the first 50% samples of the set and 
performance was measured against the remaining half of the data. 

3. Class 1 algorithms performance  

In the first experiment we tested the Nearest-Neighbours and the Nearest-
Trajectory algorithms for time series prediction. They perform a weighted 
approximation (8) of the evolution of the current state in phase space using the 
biweight function (9). For the Nearest-Neighbours method, the number of nearest 
neighbours k was optimized over the training data. Trial values for k were 
between 2 and 10. The same optimization was performed for the Local-Trajectory 
algorithm together with the λ parameter (values between 0.1 and 0.9 in 0.1 
increments) . The λ parameter (0<λ<1) defines an exponential weighted 
Mallahobis metric ([4]): 

(6)                                             ),()(),( tt
T

tttt XQXQXQd Λ−=Λ  
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Both methods use iterated prediction in the form: 
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di – the distance between the current observation in the minimum delay 
embedding phase space and its i-th nearest neighbour using (6) 

dmax – the maximum distance to any of the k nearest neighbours of the 
current observation in the minimum delay embedding phase space. 

Table 2 contains the out-of-sample prediction performance for Nearest-
Neighbours and Nearest-Trajectory. Column 3 contains the optimal value for k 
determined over the training set in terms of minimization of the RMSE. Column 4 
contains the optimal value of λ for the Nearest-Trajectory algorithm. Columns 
5,6,7 and 8 contain the prediction performance of the algorithms over the test sets. 
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Table 2 
Class 1 prediction algorithms performance: Nearest-Neighbours and Nearest-

Trajectory 

Data set 
no. 

Original 
time series 

Optimal 
k 

Optimal 
λ 

Nearest-Neigbours Nearest-Trajectory 

RMSE 
Directional 
accuracy 

(%) 
RMSE 

Directional 
accuracy 

(%) 
1 VIX 6 0.6 8.46 46.31 7.29 46.94 
2 4 0.7 3.44 46.97 3.23 50.2 
3 Put-to-call 

ratio 
4 0.9 0.65 48.36 0.60 46.97 

4 3 0.8 0.78 52.26 0.69 47.61 
5 EUR 4h 9 0.9 0.004 49.57 0.004 50.22 
6 5 0.5 0.0043 50.45 0.0043 50.03 
7 GBP/USD 

Daily 
7 0.8 0.0104 49.4 0.0101 51.55 

8 5 0.5 0.0123 50.79 0.0114 51.16 
9 GBP/USD 

4h 
10 0.9 0.0055 50.6 0.0054 49.4 

10 5 0.1 0.0058 49.11 0.0060 50.8 
11 USD/CAD 

Daily 
6 0.2 0.0062 51.54 0.0068 48.98 

12 4 0.6 0.0091 49.37 0.0086 51.01 
13 USD/CAD 

4h 
10 0.9 0.0037 49.93 0.0036 49.38 

14 5 0.5 0.0039 50.25 0.0040 49.49 
15 AUD/USD 

Daily 
7 0.8 0.0046 50.78 0.0045 49.81 

16 5 0.1 0.0074 52.37 0.0071 51.75 
17 GBP/CHF 

Daily 
6 0.7 0.0115 49.33 0.0112 51.08 

18 4 0.5 0.0120 51.40 0.0121 50 
19 GBP/CHF 

4h 
9 0.9 0.0045 49.05 0.0041 50.52 

20 5 0.8 0.0060 48.74 0.0061 49.52 
 
Both the Nearest-Neighbours and Nearest-Trajectory algorithms fail to 

provide a statistically significant effect size for the prediction of directional 
change (columns 5 and 7). However, the Nearest-Trajectory algorithm is superior 
to the Nearest-Neighbours approach in terms of RMSE in 15 out of 20 trials while 
in terms of accuracy in only outperforms the Nearest-Neighbours algorithm in 10 
out of 20 trials. 

4. Class 2 algorithms performance  

In [1], Mori and Urano use a different approach for time series forecasting. 
In the preprocessing phase the minimum embedding dimension is chosen the 
value d for which the largest Lyapunov value of the d-dimensional delay 
embedding reaches a maximum. They use delay embedding and Multi-Layer 
Perceptrons without stochastic detrending for predicting the short-term load 
forecasting in power systems. In [3] Hannias and Karras assume a more general 
form of (8): 
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)',,(utputPredictedO kjii putDesiredOutqputDesiredOutqf=       (10) 
where:  

• qi, i=1..k are the normalized weighted distances (9) to the k nearest 
neighbours and DesiredOutputi are their attached labels 
• qj, j=1..k’ are the normalized weighted distances (9) to the k furthest 
neighbours and DesiredOutputj are their attached labels 
• f is an unknown deterministic map as function of the distances to the k 
nearest and k’ furthest neighbours and their attached labels. 
In [3] Hannias and Karras contribute by taking into account the distances  

to the k’ furthest neighbours, eliminating non-related trajectories from selection 
and using a Multiple Layer Perceptron (MLP) for learning the unknown function 
(10) instead of the linear form (8) which uses only the k nearest neighbours. They 
use the MLP approach for multi-step nonlinear prediction of voltage in a diode 
resonator circuit. 

The approach of Mori and Urano does not assume the form (10) of the  
unknown map of the deterministic system and use the neural networks directly in 
the delay embedding phase space of the raw time series. The use of MLPs in [1] 
in the present study is herein reffered to as MBP-Global. 
 The approach of Hannias and Karras assumes the specific form (10) using 
local phase space information. The approach in [3] is herein reffered to as MBP-
Local. 
 In applying the MBP-Global and MBP-Local prediction algorithms in the 
present study, we used the Multiple-Layer Backpropagation Neural Network 
model [16] (MBP) with selective activation.  
 We trained each model on the first 50% of the samples and tested their 
performance on the second half of the delay embedding samples, identically to the 
experiments on the first class of algorithms. 
 The topology of each neural network used was chosen as follows: 

• one input layer with m inputs, m being the minimum embedding 
dimension of the time series 

• one hidden layer with 2m + 1 units 
• one hidden layer with 4m+3 units 
• one output layer with one unit 

 where m is the minimum embedding dimension of the time series. 
 The topology was chosen based on a theorem introduced by Pinkus [17] 
and used by Pavdilis and Tassoulis in [9] for prediction of foreign exchange using 
k-windows clustering and artificial neural networks. The theorem is included here 
for completeness. 
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Theorem (Pinkus): On the unit cube in Rn any continuous function can be 
uniformly approximated, to within any error by using a two hidden layer neural 
network having 2n+1 units in the first layer and 4n+3 units in the second layer. 
 Without loss of generality, the initial formulation of the theorem reffers to 
the unit cube only for convenience. In [18], Pinkus and Maiorov state the results 
hold for any compact subset in Rn. 
 In assessing the performance of MBP-Global and MBP-Local algorithms 
we used the datasets in table 1, their minimum embedding dimension m together 
with the MBP neural network model and the topology given by the Pinkus 
theorem, as mentioned above. For the MBP-Local approach we used k’=0 and k 
as specified in Table 2 – column 3.  

• Inputs for the neural network using MBP-Global are the delay embedding 
samples of the time series, identical to the class 1 algorithms.  

• Inputs for the neural network using MBP-Local are the weights qi, i=1..k 
as specified in (10) and the attached labels DesiredOutputi. 
In all cases, the desired output from the neural network is (3). 

 Table 3 summarizes the performance of MBP-Global and MBP-Local in 
terms of RMSE and directional predictive accuracy over the test sets. 

Table 3 
Class 2 prediction algorithms performance: MBP-Global and MBP-Local 

Data set 
no. 

Original 
time series 

MBP-Global MBP-Local 

RMSE 
Directional 
accuracy 

(%) 
RMSE 

Directional 
accuracy 

(%) 
1 VIX 3.299 56.12 2.763 52.31 
2 2.535 54.12 2.779 44.80 
3 Put-to-call 

ratio 
0.302 63.80 0.383 48.72 

4 0.269 68.81 0.385 48.25 
5 EUR 4h 0.0037 48.65 0.0051 50.94 
6 0.0036 50.36 0.0047 48.63 
7 GBP/USD 

Daily 
0.0098 49.75 0.0102 48.53 

8 0.0097 51.51 0.0109 51.14 
9 GBP/USD 

4h 
0.0049 50.72 0.0060 48.56 

10 0.0049 50.97 0.0051 48.28 
11 USD/CAD 

Daily 
0.0074 50.97 0.0075 49.11 

12 0.0073 52.75 0.0077 49.21 
13 USD/CAD 

4h 
0.0034 48.88 0.0037 48.10 

14 0.0034 49.02 0.0036 48.05 
15 AUD/USD 

Daily 
0.0060 47.43 0.0085 46.06 

16 0.0060 47.12 0.0062 46.60 
17 GBP/CHF 

Daily 
0.0114 50.53 0.0130 48.63 

18 0.0115 49.80 0.0121 50.32 
19 GBP/CHF 

4h 
0.0051 48.86 0.0105 49.60 

20 0.0051 50.35 0.0061 48.99 
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Table 3 shows superior performance of MBP-Global in comparison to 
MBP-Local in terms of RMSE and directional accuracy. MBP-Global - the 
approach of Mori and Urano ([1]) proves superior to MBP-Local - the approach 
suggested by Hannias and Karras ([3]) because the latter loses phase space 
location information. In the former case, the location in phase space is used to 
estimate the geometry of the vector field, while in the latter only normalized 
distances from a point in phase space in relation to its k nearest neighbours are 
provided as inputs to the neural network, while the actual position in phase space 
is lost. MBP-Global outperforms MBP-Local in 19 out of 20 trials in terms of 
RMSE and in 18 out of 20 trials in terms of directional accuracy. MBP-Global 
detects weak directional predictability in phase space for the VIX data series and 
strong directional predictability for the put-to-call ratio while all previous methods 
fail. For the currency time series 5…20 both MBP-Global and MBP-Local fail to 
provide a statistically significant directional predictive advantage. However, the 
consistent superior performance of MBP-Global over MBP-Local implies that 
price motion is not random and has a deterministic component, otherwise in the 
random walk hypothesis a consistent superior performance of one method over 
another would not have been possible. 

5. Class 3 algorithms performance 

From the third class of algorithms for prediction - kernel methods, the 
following algorithms were evaluated: 

• Kernel ridge regression [5] (Kernel-Ridge) 
• Sparse kernel machines using attractors  [6] (SKM-Attractors) 
• The Support Vector Machine for Regression using the ε-insensitive 

Loss Function [8] (ε-SVR). 
Kernel-Ridge 
  

Given a labeled training set S ={ (x1,y1), (x2, y2),… (xN,yN)} Kernel Ridge 
Regression uses pattern functions of the form:  

(11)                                    ),()(
1
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where: 
• K is a kernel function.  In this study we used the isotropic Gaussian kernel: 
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• σ > 0 – the kernel parameter 
• N – the number of training samples  
• αi, i=1..N – the dual weights of the pattern function 
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Given a positive real constant λ called the regularization constant, the weight 
vector α = (α1,α2,…. αN)T is calculated using: 

(13)                                  )( -1
NIKern λα +=  

where Kern is the N x N kernel matrix calculated using the set S: 

(14)                                  ),(, jiji xxKKern =   

In calculating the weight vector α, the right hand side of (13) is a positive definite 
matrix. In this study we calculated the inverse using the Conjugate-Gradient 
algorithm.  

In determining the optimal values of  λ and σ we used the following partition of 
the data sets: 

• 25% of the samples – the training set - are used to define (11) 

• 25% of the samples – the cross-validation set –  used to optimize λ  

• 50% of the samples are used as the test set, identical to the test sets in the 
class 1 and class 2 experiments.  

Using the cross-validation set the isotropic kernel parameter σ was optimized 
from 0.0001 to 0.1 using 20 increments on a log-linear scale. The optimal values 
in terms of number of correct directional predictions over the test and cross-
validation sets combined were used in testing the kernel machine (11) out-of-
sample (Table 4 - columns 3,4 and 5).  

Support Vector Machines for Regression(ε-SVR) 

The Support Vector Machine for Regression [8] is a function of the form (11) 
with the additional property of sparseness. The weights are represented in the dual 
form: 

   (15)                                     a-                                 iii a=α  
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The optimum satisfies the following constraints: 

NCan /0 ≤≤                                                           (17) 

NCan /0 ≤≤                                                           (18) 
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where C is a weight bounding constant chosen by the user and ν∈[0,1] is a 
fraction of samples allowed to lie outside the ε-tube. In [8] the Support Vector 
Machines for Regression are shown to possess the sparsity property. The property 
of sparsity is ensured by the ε-insensitive loss: 

⎩
⎨
⎧

−−
<−

=−
ε
ε

|)(|
|)(|,0

))((
ii

ii
ii yxf

yxfif
yxfL                                     (21) 

All points xi which are in the ε-tube |)(| ii yxf − <ε have zero dual weights, while 
the remaining set are support vectors of (11). 
In training the Support Vector Machine for Regression using the ε-insensitive loss 
we used the LIBSVM [20] package by training and testing the model on the same 
datasets as the class 1 and class 2 algorithms. The performance of the Support  
Vector Machine for Regression is shown in Table 4 - columns 9 and 10. 

Sparse Kernel Machines using attractors  
 
From the third class of algorithms we used the Sparse Kernel Machine model of 
Lee, Jung and Lee [6]. Training starts with the fully featured kernel machine (11) 
trained with the Ridge Regression algorithm. The aim is to obtain a simplified 
version: 

∑
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where: 
- c,  a compact set, X ⊆ Rn, M<<N and zi∈X, i=1..m 
- {zi}i=1,M is the Reduced Set (RS) of g(x) 
The Reduced Set is the set of M attractors of the dynamical system: 
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where f (11) is specified and previously trained with Kernel Ridge Regression. 
The sparse kernel machine (22) weights are: 

αβ zxzz KK 1)( −=     (25) 
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where: 
• T

N ),...,,( 21 αααα = - the weight of (11) except the bias term 
• Kzz is an M x M matrix, (Kzz)ij = K(zi,zj) 
• Kzx is an M x N  matrix , (Kzx)ij = K(zi,xj) 
• S={(xi,yi)}i=1..N ⊆ X is the training set and {xi}i=1..N are the training 

points of f in (11) 
 

In [6] the authors do not provide an objective method for identifying 
attractors. They also do not provide any error bounds after the kernel machine 
simplification relative to the error bounds of the original kernel machine f (11). 
In this study we used the following procedure: 
 

• Kernel ridge regression was performed using the test and cross-validation 
sets using the kernel parameter σ in Table 4- column 5. 

• Each kernel was descent toward its basin of attraction 
• Kernel ridge regression was performed again using the same sets. 
• ε-insensitive kernel elimination was performed for kernels clustered 

around attractors: 
o For each kernel k: 

 if the desired output at the center of k was predicted by the 
kernel machine within ε-tolerance then it was marked for 
deletion since it did not represent a support vector for 
regression. 

  after the loop all kernels marked for deletion are removed to reduce the 
Rademacher complexity [5] of the kernel machine. 

 The remaining kernels form the Reduced Set and represent support vectors 
for regression 

 The kernel machine is retrained using Kernel Ridge Regression 
  

 
The performance of the resulting sparse kernel machine was tested on the 

test set. In the above procedure, instead of setting or optimizing ε at each iteration 
we used ε = 10% of the best RMSE obtained by other methods as an objective 
error measure. The reduction rate in the number of kernels following this 
procedure is shown in Table 4 – column 8 and is rather low due to the presence of 
noise in data and the small neighbourhood size given by the kernel parameter σ. 
Columns 6 and 7 illustrate the performance of the resulting sparse kernel 
machines. 
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Table 4 
Class 3 prediction algorithms performance 

Data 
set 
no. 

Original 
time series 

Kernel-Ridge SKM-Attractors ε-SVR 

RMS
E 

Direction
al 

accuracy 
(%) 

Best 
σ RMSE 

Directiona
l accuracy 

(%) 

Reduction 
rate 
(%) RMSE 

Directiona
l accuracy 

(%) 

1 VIX 1.247 49.45 0.069 1.294 54.32 12.66 2.593 55.55 
2 1.625 53.11 0.1 1.625 51.66 21.51 2.569 55.04 
3 Put-to-call 

ratio 
0.334 62.54 0.1 0.336 50.62 10.05 0.273 67.26 

4 0.335 59.81 0.1 0.336 59.47 10.06 0.268 68.59 
5 EUR 4h 0.003 48.84 0.004 n/a n/a 15 0.0036 48.29 
6 0.003 50.56 0.005 0.0036 49.89 19 0.0036 48.29 
7 GBP/USD 

Daily 
0.012 50.13 0.011 0.0097 50.86 6.91 0.0149 48.75 

8 0.009 49.71 0.002 0.0097 48.20 9.34 0.0149 48.75 
9 GBP/USD 

4h 
0.007 50.58 0.003 0.0098 49.20 7.08 0.0060 50.29 

10 0.005 51.02 0.001 0.0096 51.09 4.75 0.0060 50.28 
11 USD/CA

D 
Daily 

n/a* n/a 0.008 0.0078 50.91 27.68 0.0081 48.65 
12 0.008 50.88 0.003 0.0073 51.32 27.88 0.0081 48.68 

13 USD/CA
D 
4h 

n/a* n/a 0.004 n/a n/a 19.73 0.0037 48.88
14 0.003 50.9 0.007 0.3676 49.52 0 0.0037 48.88 

15 AUD/US
D Daily 

0.007 49.19 0.004 0.0065 51.07 25.83 0.0060 46.48 
16 0.006 49.62 0.006 0.006 49.31 21.79 0.0060 46.46 
17 GBP/CHF 

Daily 
0.014 49.84 0.008 0.0125 48.13 13.22 0.0140 50.58 

18 0.017 50.41 0.011 0.0113 50.8 14.88 0.0140 50.63
19 GBP/CHF 

4h 
0.007 50.26 0.008 0.0038 50.09 13.58 0.0136 49.27 

20 0.005 50.77 0.001 0.005 50.02 1.65 0.0136 49.26 
* iteration statistically insignificant – 0 activations over the test set  (low global mixing, \ 
nonstationary series) 

6. Final performance comparison 

Table 5 summarizes the performance of the three classes of algorithms for 
which the performacne is outlined in tables 2, 3 and 4. In this section we identify 
the best algorithm and its performance for each data set in terms of RMSE 
(columns 3 and 4) and directional predictive accuracy (columns 5 and 6). 

Table 5 

Performance summary – best prediction algorithms 

Data 
set 
no. 

Original 
series 

(symbol 
and time 
frame) 

Best RMSE 
algorithm 

Best 
RMSE 

Best directional 
predictor 

Best 
directional 

accuracy (%) 
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1 
VIX Daily 

Kernel-Ridge 1.247 MBP-Global 56.12* 

2 Kernel-Ridge, 
SKM-Attractors 1.625 ε-SVR 55.04* 

3 Put-To-
Call ratio 

Daily 

ε-SVR 0.273 ε-SVR 67.26* 

4 ε-SVR 0.268 MBP-Global 68.81* 
5 EUR/USD 

4h 
Kernel-Ridge 0.003 MBP-Local 50.94 

6 Kernel-Ridge 0.003 Kernel-Ridge 50.56 
7 GBP/USD 

Daily 
SKM-Attractors 0.0097 SKM-Attractors 50.86 

8 Kernel-Ridge 0.009 MBP-Global 51.51** 
9 GBP/USD 

4h 
MBP-Global 0.0049 MBP-Global 50.78 

10 MBP-Global 0.0049 SKM-Attractors 51.09** 

11 
USD/CAD 

Daily 

Nearest-Neighbours 0.0062 Nearest-
Neighbours 51.548** 

12 SKM-Attractors, 
MBP-Global 0.0073 MBP-Global 52.75** 

13 USD/CAD 
4h 

MBP-Global 0.0034 Nearest-Neighbour 
 49.93 

14 ε-SVR, Kernel-
Ridge 0.003 ε-SVR 50.9 

15 
AUD/USD 

Daily 

ε-SVR 0.0045 SKM-Attractors 51.07 

16 
All class 3 

algorithms, MBP-
Global 

0.006 Nearest-
Neighbours 52.37** 

17 GBP/CHF 
Daily 

Nearest-Trajectory 0.0112 Nearest-Trajectory 51.08 

18 SKM-Attractors 0.0113 SKM-Attractors 50.8 

19 
GBP/CHF 

4h 

SKM-Attractors 
 0.0038 Nearest-Trajectory 50.52 

20 SKM-Attractors, 
Kernel Ridge 0.005 Kernel-Ridge 50.77 

* - strong predictability, greater or equal to 5% above chance 

** - weak predictability: statistically significant effect size greater or equal 
to 1.4% above random chance, less than 3% 

7. Conclusions 

In this study we analysed the performance of three classes of nonlinear 
time series prediction methods developed over the past 20 years, from neural 
networks  to kernel methods, with focus on sparse kernel machines (Lee, Jung, 
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Lee, 2009)[6]. The author provided his own implementation of:the Nearest-
Neighbours, Nearest-Trajectory, Kernel-Ridge and SKM-Attractors and compared 
their performance to the MBP neural networks [16] and Support Vector Machines 
for Regression [20]. 

For the first class of algorithms, the Nearest-Trajectory algorithm proves 
superior to the linear Nearest-Neighbours algorithm in terms of RMSE and 
matches it in terms of directional prediction accuracy.  

From the second class of algorithms, the approach of Mori and Urano [1] 
(MBP-Global) is consistently superior to the approach of Hannias and Karras [3] 
(MBP-Local) and provides a statistically significant predictive effect size for the 
VIX and put-to-call ratio time series. The consistent advantage obtained using 
MBP-Global over MBP-Local on a large body of data implies price motion has a 
deterministic and statistically stable component, otherwise both methods would 
have been comparable in performance. MBP-Global suggests location in phase 
space provides more predictive information than the normalized k nearest 
neighbour distances, as used by MBP-Local.  

From the third class of algorithms, Kernel Ridge Regression, ε-SVR and 
Sparse Kernel Machines using attractors are comparable in terms of performance. 

The best performance in column 6 of Table 5 illustrates a high degree of 
predictability of the directional change of the VIX and put-to-call ratio time 
series. For the rest of the time series, a very weak statistical effect size can be 
detected higher than 1.5% above chance only in some situations by sparse kernel 
machines using attractors,  MBP-Global and Nearest-Neighbours algorithms.  

For the strong deterministic components found in the VIX and put-to-call 
ratio time series, the ε-SVR sparse kernel model is comparable to the MBP neural 
network approach MBP-Global using the results of the Pinkus theorem. 
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