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LINEAR MODELS AND CALCULATION OF AEROELASTIC
FLUTTER

Virgil STANCIU', Gabriela STROE?, Irina Carmen ANDREI?

In aceastd lucrare se propune un model aerodinamic imbundtdtit destinat
analizei fenomenului complex de flutter aeroelastic. Modelarea cdt mai apropiata
de fenomenul real este esentiald, intrucdt determinarea conditiilor de unda (viteza §i
frecventa de propagare a undei) depind in mod semnificativ de modelul aerodinamic
adoptat. In lucrare se prezintd un studiu comparativ, elaborat in termeni de
aerodinamicd, pentru care s-au considerat modelul fortelor aerodinamice cvasi-
Stationare §i respectiv modelul periodic nestationar. Pe baza rezultatelor obtinute,
se aratd cd se pot folosi modele relativ mai simple, cu o bund precizie, precum §i
Sfaptul ca sistemul oscilatorului armonic propus de Theodorsen aproximeazd mai
bine realitatea decdt modelul cvasi-stationar.

In this paper the authors present an improved aerodynamic model
dedicated to analyzing the intricate phenomenon of aeroelastic flutter. The
appropriate modelling of the real phenomenon is crucial, since the determination of
the wave conditions (i.e. the wave velocity and frequency) is significantly dependent
on the aerodynamic model. The paper presents a comparative study, expressed in
terms of aerodynamics, based on the quasi-steady aerodynamic forces model and
the unsteady periodic model. According to the results obtained by the authors, it is
shown that simpler models are proven accurate and the fact that the harmonic
oscillator system approximates the real phenomenon better than the quasi-steady
model.

Keywords: Linear models, typical section, flutter analysis.
1. Introduction

The aeroelastic flutter is an intricate phenomenon and for its analysis is
used the V-g method, while for the determination of the unsteady aerodynamic
forces the Theodorsen model and the quasi-steady model are used [1]. The
mathematical models are based on the concept of linear aeroelastic typical section
with two and three degrees of freedom.

Since the aerodynamic forces are those which introduce energy into the
system and their value depends on the speed for a given configuration
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(characteristic mass, elastic and geometric structure) it is possible to calculate the
critical flutter speed, speed which if exceeded, the system becomes unstable
dynamically and virtually destroyed. Consequently, the critical wave speed is
defined as the speed at which the motion is harmonic structure and oscillation
damping (structural and aerodynamic) is zero. Determination of wave conditions
(wave speed and frequency associated) is significantly dependent on the wind
model adopted, a harmonic oscillator system (proposed by Theodorsen)
approximating reality better than a quasi-stationary. In the following, in terms of
aerodynamics will be waving this study both for simplified cases based on the
study of the quasi-stationary aerodynamic forces as well as periodic non-
stationary[1]. Aeroelastic problems of light weight structures of modern aerospace
vehicles are the result of interactions between aerodynamics, structural and
inertial forces.

The mathematical model of the aeroelastic problem is based on the
Lagrange equations of motion for the structural dynamics and on a quasi-steady
approach of the generalized unsteady incompressible aerodynamic forces [1], [2],
[3]. Aeroelastic phenomena of aircraft structures appear as a result of interactions
between deformations of the elastic structure and the aerodynamic forces induced
by the structure deformations. They have a strong influence on the structural
dynamics and dynamic flight stability and also on the overall performance and
controllability of the aircraft. Undoubtedly, the most important aeroelastic
phenomenon is flutter, i.e. a self-excited oscillation of the elastic structure under
the action of the aerodynamic loads. Flutter instabilities often exhibit an explosive
behavior that causes a sudden change in stability despite only a small change in
flight condition. Further, the aeroelastic vibrations that occur at all flight regimes
have a strong impact on the fatigue life of the structure. In this paper we will refer
only to aeroelastic phenomena which can be avoided or kept under control by
some active measures [3].The concept active flutter suppression appears as part of
a rather new technology in aviation, and it means controlling by some active
devices - typically through activated controls - the natural instabilities of the
aeroelastic system, in order to make this flutter-free beyond its "nominal" flutter
boundary. However, currently there is no vehicle in production that uses active
flutter suppression and much remains to be done before one can consider the
routine incorporation of such systems in production aircraft. Further, the concept
of active flutter suppression is strongly related to the much more realistic problem
of controlling the conventional aeroelastic structural vibrations. Consequently, the
active structural control is basically investigated and designed both for flutter
prevention and structural load alleviation [3].
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2. Flutter Equation of the Typical Section Model

The phenomenon of flutter (flutter) is the phenomenon of dynamic
instability, at a certain speed (called the wave speed) which partially elastic
structure in turbulent plane passes. Flutter occurs in the interaction between elastic
forces, aerodynamics and mass, so that ultimately results in increasing
exponentially with time of the periodic motion amplitude [1],[2].To explain this
phenomenon one considers an elastic bearing surface fixed in a stream of air
flowing speed. Suppose that the bearing surface of the elastic links enables two
types of movements, namely: a shift in the direction perpendicular to the airflow
and a rotation that changes to the original scope. Movement in the air stream
bearing surface takes place without external interference, but it is necessary for
the structure to receive an initial external perturbation whose nature does not
matter. Initially, the two movements are supposed synchronous on bearing
surface, respectively, both moving and start turning the zero position, reach a
maximum after returning to their original position zero [3].The energy introduced
into the system by the aerodynamic forces on the first quarter period is removed
from the system the second quarter period. The same happens in the second half
of the period. Since the whole energy cycle introduced in the system is zero, the
initial amplitude cannot increase. If, however, between the displacement and
rotation there is a lag of one quarter of the period, the entire motion cycle work
will be done by aerodynamic forces and bring positive energy into the system
which leads obviously to increase the amplitude of the initial data.

The phenomenon occurs for any gap between the rotation and
displacement provided that the gap is less than half a rotation period and with that
precedes the phase shift difference. If rotation is delayed behind the movement, a
phase difference of no more than half of the period, the phenomenon that occurs is
a continued consumption of energy by buoyancy, a continuous removal of energy
from the system and therefore, rapidly damping motion [1], [2], [3].

Fig.1 The typical section of an airplane wing
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For the typical section shown in Fig. 1, one can provide details about the
model, such as: the model has a translational spring with the stiffness K, and a
torsion spring, characterized by the stiffness K. These springs are attached to the
airfoil at the shear center. The distance % is measured at the shear center (which is
crossed by the elastic axis). Therefore, there is two degrees of freedom (h,a).
The downward displacement of any other point on the airfoil is:

z=h+xa (D)
Where x is a distance measured from the shear center [1].
The strain energy and the kinetic energy are respectively given by

U= %KTaz +%Khh2 )

Tzl.[pz'zdx :l(}'lzj.pdx+2hd_'.pxdx+d2.|.px2dx)=lm/,2+mx ha +ll a’
2 2 2 2
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where p is the mass per unit length of the airfoil.
The virtual work due to the unsteady aerodynamic forces is

oW, = [ Apdzdx = [ Ap{Sh+xda}dx = 0,060+ 0,5 (4)
Lagrange's equations provide the equations of motion of the airfoil [1].
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Likewise,
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Then, the equation of motion can be rewritten as
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3. V-g method for flutter analysis

(24

Let’s express the above flutter equation in the following matrix form

[11,[2].
hlb 1 hilb
[KH }zQ{—A+A4{ } (19)
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where [K ] is the stiffness matrix, M mass matrix, and A4 is the aerodynamic

matrix. Note that the aecrodynamic matrix is a function of the reduced frequency,
k.

V-g method assumes first the artifial structural damping, g.
[K]=(1+ig)[K] (20)

For a given reduced frequency,k :a)?, a complex eigenvalue problem

appears [4].

ot e

The eigenvalue is

1+ig
A== (22)
From this eigenvalue we have
o’ 1
et S 23
w, Re(2) &)
g= Im(4) (24)
Re(4)

The complex eigenvalue problem is solved beginning with large values of
k and then decreasing k& until a flutter velocity is found. If there is no actual
damping in the system, when the artificial damping, g, first becomes positive,
flutter will occur.

A comparison between the numerical results obtained by the authors by
using the harmonic oscillator model versus the quasi-steady model is shown in
Figs.2. - 5.

In Fig. 6 and Fig.7 there the variations of the functions g=g(V)
and@ = w(V) are shown. The damping of the flutter velocity will be acquired

when the function g will change its sign.

The calculation of flutter was performed with V-g method, for the study
case considered and experienced by the authors; the result, i.e. the variation of the
flutter velocity is shown in Figure 8.

Traditional methods of calculation (e.g. the Theodorsen and the panel
methods) lead to relatively good estimations in terms of dynamic response of the
system, with slight overestimation of the effects (i.e. the displacements of the
aeroelastic system).
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Fig. 2 The aerodynamic forces and moments
- red curves = the Theodorsen method
(unsteady case).
- Dblue curves = the variation of g=g(V) for

the quasi-steady case.
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Fig. 4 The critical wave speed versus the flight
altitude
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Fig. 6 The variation of g=g(V)
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Fig. 3 The frequencies
red curves = the Theodorsen method (i.e.
the unsteady case).
blue curves = the variation for the quasi-
steady case.
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Fig.8 Flutter speed determined with the /-g method
Table 1

The results of the numerical simulations
V flutter [m/sec] V flutter [m/sec] V flutter [m/sec]

Elastic axis position

20%

40%
60% 16
80% 23.5

The results of numerical simulations with the V-g method centralized in
Tablel, prove the achieving of the flutter speed in the range of interest for most
cases. Boxes shaded in green in the table correspond to configurations that
achieve a speed of flutter within the experimental capabilities. Flutter calculations
were performed for 15 different configurations (inertial characteristics, features
flexible, elastic axis position) and the results prove the achievement of flutter
speed in the range of interest for most cases. Although the structural analysis
carried out, is static, we provided some results on the behavior of wing-fastening
system. The obtained deformations have maximum values of 9.5 mm for
clamping to 0% and 11 mm for fixing 80% of chord. The results indicate a low
rigidity clamping system (considering that the requests were overstated by
imposing how to load and enhance the safety coefficient of 1.5).
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4. Conclusions

In order to make numerical comparisons, it was considered as the study

case, the typical section model, Fig. 1, with the following characteristics:
x,=0,2;7r,=05; u=20;a=-0,1; b=1; R=0,3. (25)
In Figure 2 are represented by red curves the corresponding cases where
the aerodynamic forces and moments have been calculated with the method
proposed by Theodorsen (i.e. the unsteady case). The blue curves represent the

g =g(V) quasi-steady case. The wave speed (in non-dimensional form) for the

two cases is the intersection curve (red respectively blue) axis g =0. There is an

important difference between the two determined values of critical wave speed.

If the difference between the two speeds is small, we conclude that the
phenomenon modeling in quasi-steady state is a conservative one. Since, this is
not the case, it is clear that a more realistic approximation of the phenomenon is
necessary to calculate aerodynamic forces and moments in harmonic oscillatory
regime. Further, in Fig. 4 is plotted the critical wave speed dependence on the
altitude of flight. The calculation was done at altitudes 0, 1000, 2000, 3000, 4000,
5000 meters.

In Figs. 3 and 4 the frequencies associated with each case were
represented. As in the previous case, the unsteady and quasi-steady cases have
been represented in red and blue contours. One can notice the increasing of the
critical flutter speed with the increasing altitude flight. Like the case presented
earlier, as obviously expected, the critical wave speed calculation taking into
account a quasi-steady model gives unsatisfactory results. The comparative study
carried on in this paper is based on the genuine experiment data (acquired through
experiments done by the authors).

The analysis methods were based on the quasi-steady aerodynamic forces
model and the unsteady periodic model. According to the results obtained by the
authors, it is shown that simpler models are proven accurate and the fact that the
harmonic oscillator system approximates the real phenomenon better than the
quasi-steady model.
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