U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 2, 2011 ISSN 1454-234x

CLOUD SAAS INFRASTRUCTURE

Bogdan CARSTOIU*

Lucrarea prezinta organizarea unei infrastructuri scalabile pentru livrarea
SaasS, organizata pe niveluri §i usor de administrat. Dupd analiza cerintelor SaaS
am propus o infrastructurd organizatd pe trei niveluri: prezentare, productie si
stocare. Nivelul de prezentare este cel care primeste cererile de la clienti pe care le
distribuie nivelului de productie cu ajutorul algoritmilor de nivel OSI 4/7 astfel incdt
Incdrcarea sa fie echilibrata. Sofiware-ul de pe nivelul de productie proceseaza
cererile primite, cereri ce pot impune accesul la nivelul de stocare. Pentru nivelul de
stocare s-a proiectat §i implementat baza de date Zatara, care prin organizarea
nodurilor de stocare in grupuri asigurd redundanta datelor. Performantele Zatara
scaleazd liniar cu numarul de calculatoare pe care ruleazd. Sunt prezentate o serie
de teste ale bazei de date Zatara.

This paper describes a distributed, scalable, manageable, layered organized
SaaS infrastructure. After reviewing SaaS requirements we designed an
infrastructure organized in 3 abstracted layers: Presentation, Production, and
Storage. The Presentation layer receives requests from customers and distributes
them to the Production layer using OSI 4/OSI 7 level load balancing algorithms. The
received requests are processed on the Production layer by the application software
logic. In order to store information, the software running on the computers on the
Production layer uses the Storage layer. On the Storage layer we introduce Zatara,
our distributed database implementation that guarantees data redundancy using
group replication. Zatara performance scales linearly with the number of computers
it runs on. Several benchmarks of Zatara are presented in the paper.

Keywords: SaaS infrastructure, cloud computing, clustering, software
provisioning, Zatara, load balancing

1. Introduction

To implement a Software as a Service (SaaS) infrastructure it is required
to use cluster and grid technologies. While these technologies provide a hardware
level implementation of the infrastructure, they only marginally cover the
software running on the hardware platform. SaaS customers do not buy the
infrastructure, but the software service that fits into their requirements, in most
cases they are not even interested in the physical infrastructure.

! Assist., Control and Computers Faculty, University POLITEHNICA of Bucharest, Romania,
e-mail: bcarstoiu@gmail.com

90 Bogdan Carstoiu

The main advantage of a cloud service is the fast resource scaling based on
demand. These applications process large amounts of data, but are quite different
to the software used in the cloud (e.g. Salesforce, Gmail). Modern cloud
applications usually involve a web based interface and are able to answer to
requests very fast, in several hundred milliseconds. The number of requests
received from customers is also high, can be tens of thousands per second. The
traditional enterprise software used by organizations of all sizes might require
significant computational resources, but in most cases it does not run distributed
on multiple computers.

Analysts predicted that cloud computing will bring major economical and
social changes. A report published by the European Network and Information
Security Agency (ENISA) highlighted the benefits and shortcomings of the cloud
technology, but also made recommendations for cloud providers on how to
minimize the risk of losing data. The report also evaluated the global financial
impact; the turnover of the cloud services reached US $17.4 billion and will
increase to US $44.2 billion in 2013 [1]. Cloud computing is a method to easily
recover the financial investment and to reduce risk. It enables organizations to
focus their attention and resources on the business instead of managing the vast
technological resources. [2].

The Financial Services Club Autumn report entitled “The Impact of Cloud
Computing on Financial Services," sponsored by Cisco and contributed by more
than 230 finance specialists outlined the following facts [3]:

e Increasing use of cloud in financial institutions;

e Increased level of operational efficiency due to the cloud;

e Organizations have valid concerns regarding the security of the data
stored by third parties;

e Cloud needs investments in SaaS and security;

e A market analysis suggested that over the next 3-5 years, the investment
in security will be on the second place after SaaS investments;

e 56.9% of the IT service providers are turning to cloud computing.

Even during the financial crisis the cloud market was growing and created
new opportunities such as cost reductions, lower investments in IT infrastructures
and cut on unnecessary resources [4]. By using commercial and open source
solutions organizations can build and manage a computing cloud, even if its
scalability is lower than the ones developed by vendors like Amazon [5]. For most
companies such a cloud satisfies all present and future demands.

2. Related Work

There are no major technical issues in building cloud architectures with
tens or evens thousands of nodes, software packages like Eucalyptus can be

Cloud SaasS infrastructure 91

successfully used. NASA, one of the leading users of Eucalyptus, announced an
alliance with Rackspace, Dell, AMD, Citrix and other vendors to build a software
framework that enables companies to deploy cloud infrastructures quickly and
with minimal costs [6]. NASA’s initiative is based on Eucalyptus’ current lack of
flexibility. Eucalyptus cannot scale to millions of nodes and its architecture cannot
be changed as it is not entirely open source.

By analyzing many successful web applications, we noticed the high
scalability provided by these applications. The scalability was achieved after a
relatively long time and with many efforts, because developers had to discover
and learn new concepts [7]. Usually, scalability is an attribute of the application
and it is difficult to build a generic framework for scalable infrastructures without
knowing important facts such as: usage scenario, used technologies, interaction
with third party applications, communication protocols, etc. A company that
heavily uses the cloud is Twitter. Its user base grown faster than expected and the
service went through difficult times during peak hours. If we investigate the way
how Twitter works, we discover that it is basically a message exchange that could
have used a standard protocol like AMQP. Obviously, the scalability level would
have been limited to the one offered by a distributed AMQP server. Twitter chose
to implement a proprietary messaging protocol from scratch, with its server and
the necessary libraries.

Another company that heavily invested in its own software tools is
Google; beside its search algorithms, Google implemented a distributed database
that stored information gathered from the web. Compared with Twitter, that can
start some debates on the opportunity of designing and implementing a
proprietary messaging protocol, it is crystal that Google’s success is based on its
technology.

Twitter and Google are specialized applications, with a limited number of
usage scenarios. Facebook is a multipurpose application that can also be extended
by third party developers. Facebook development started using the MySQL
database and PHP scripting language. The most important technical issue that had
to be solved when the number of users grown was that the database could not
scale. It was very difficult to replace the database, so they decided to introduce a
caching layer to keep available the information most frequently requested from
the database, in a similar way how the CPU’s cache works. For this purpose
Facebook chose Memcache, an open source program that keeps data in memory,
responds to requests faster than MySQL and can be distributed on multiple nodes.
Memcache cannot store complex data structures, only simple structures like key-
value pairs. Regardless of how information is retrieved from the SQL database, it
is added by the program logic in Memcache to be available there for the next
requests[8] and the number of requests to the SQL database was reduced by

92 Bogdan Carstoiu

almost 90%, allowing the infrastructure to scale at a lower cost [9]. Memcached is
distributed by design, so it is easy to add new servers to the cloud.

Gartner estimated global profits generated by using cloud services at US
$63.3 billion in 2010 and US $150 billion in 2014, while spending for SaaS, PaaS
and laaS during the next five years is forecasted at US $112 billion.

3. The Requirements of SaaS Service Delivery Infrastructures

Scientific applications process large amounts of information, require a lot
of computing power and high storage capacity for input, output, intermediate or
final data. These applications do not provide an immediate response, in most
scenarios it is acceptable to deliver the result after several hours/days or more
[10].

SaaS web applications must be able to deliver results immediately
following an interrogation. A SaasS service delivery infrastructure differentiates by
a number of characteristics and requirements that are structured according to the
role played by the observer (user, administrator, etc) [11].

e User perspective: quick access to information, resource availability, access to
latest software features, stored information security, transaction security [12],
[13].

e Administrator perspective: easy scalable by adding new machines, rapid
detection of infrastructure failures, fast replacement of damaged machines,
monitoring capabilities, automatic reorganization of the infrastructure on
failure, upgrade software without service interruptions, ability to statistically
determine when and how the infrastructure can fail or lose data [7], [5].

e Developer perspective: separation of the application code from the
infrastructure code, availability of structured and unstructured storage
services, availability of communication services in the infrastructure,
infrastructure complexity not exposed to the application. [11].

There are also economical and business requirements such as: provider’s
independence from the hardware vendor, customer independence from the cloud
provider, proprietary software independence, resistance to disasters, and
predictable operating cost [14].

Developers have major issues with cloud infrastructures because they have
to accommodate the existing software to the new infrastructures or to write new
scalable software without any previous experience in distributed applications [7].

4, SaaS Cloud Architecture

The cloud is built using virtualization because it provides the necessary
methods to divide resources and to adjust them in real-time. In most cloud
implementations nodes are virtual machines, abstracted through the virtualization

Cloud SaasS infrastructure 93

technology. Virtual servers also provide resource control features, which is very
important especially when powerful hardware machines with many processing
units are used. This logical structure of the infrastructure allows a good
scalability, reduces maintenance costs, and enables the application’s integration in
the hardware [16], [5]. The infrastructure is divided in three different layers,
which will be detailed below:

e Presentation layer — on this layer we have the nodes that take the requests
of the clients and distribute them to the Production layer. There are
utilization scenarios that allow the presentation nodes to answer to
requests directly instead of forwarding them to the Production Layer.

¢ Production layer — nodes on this layer implement the application logic.
This logic is responsible for handling the requests received from the
Presentation layer. This layer can auto-scale to handle the load during peak
times. The application know-how can be found on this layer.

e Storage layer- is responsible for data storage. It acts as a service for the
Production layer. It is a vital component of the infrastructure because only
at this level information can be lost or tampered.

To meet these requirements we implemented a framework responsible
with the automation, management and monitoring of the infrastructure. It also
implements a semi-structured, distributed storage layer.Fig. 1 illustrates how a
request from the client reaches the Presentation layer, and then it is distributed to
the Production layer where it is processed by the software.

Cliert 1 d o o Client p

Fl
1

3 ¥
Fresertation Load balancing 1 ooao Load balancing rm
Layer

A ;
-
I o e s *\
-
: - = 4 4
- -
| ‘“',.-"d . g e \‘

bl

P roduction Application Application Application
Lay er node 1 node 2 - = node n
H TR f
- 1
: ,f"’ o\ 1
i - . ly
Storage
Storage node 1 o o0 0
Layer o Starage node k
— Request ———w» Reply

Fig. 1. SaaS Cloud Architecture
The answer to the request is then served to the customer.

94 Bogdan Carstoiu

4.1. Presentation Layer

Nodes on this level are able to process a large number of requests because
all operations are very fast as they do not require important computing resources.
A single node is able to distribute requests to tens or even hundreds of node on the
Production layer. To dimension the Presentation layer it is necessary to know the
number of requests received by the infrastructure and the capacity of the nodes on
this layer. Scaling can be performed while infrastructure is operating and without
service interruptions. There are several technigues used by the nodes on this layer
to perform request distribution and load balancing. While there are many
differences between them, most result from the OSI layer they operate on:

e Layer 4 (transport) — this is considered the least sophisticated technique,
but it also consumes less resources. The Presentation layer node distributes
the requests received on a specific port and protocol to the Production
layer nodes. For some higher level protocols, problems can occur with this
type of distribution because the requests need to preserve session
information. This type of distribution can be implemented in hardware
devices that use specialized processors designed for this purpose (there are
devices capable of distributing up to 10 Gbs).

e Layer 7 (application) — the logic used to implement this technique is
more complex. For example, in order to distribute HTTP requests we
might use a specialized server for load balancing, a reverse proxy, a
redirect server etc. Implementation is done using session cookies, browser
applications recognize them and assigns them to a session. By using this
method requests from the same client will get distributed to the same node
on the production layer. For the SIP protocol the distribution is performed
by a proxy server that can hide the complexity of the Production layer
[17]. This type of distribution requires specialized software logic for each
protocol. Their performance is moderate because there is a lot of
processing involved in order to perform the distribution.

Both distribution techniques can be combined and used together,
depending on the application. In the last years the presentation level
implementation has not undergone dramatic improvements. Load balancing
appeared with the first successful websites in the '90s. Initially, distribution was
done mainly using dedicated network equipment, because regular servers were not
powerful enough to handle the traffic. The dedicated load balancing devices are
complex and expose programmable APIs, so they can be controlled by third party
applications [18]. Unfortunately these solutions are not very flexible in
configuration. For example, there is no problem to implement a cloud with one
node on the Presentation layer and several nodes on the Production layer, but
adding new nodes and removing existing nodes is a difficult and non-automated

Cloud SaasS infrastructure 95

process, especially on large implementations with thousands of nodes. Also, many
implementations consider that a single node on the Presentation layer to handle all
the traffic is enough, which is not correct for all deployments. When we deal with
multiple nodes on the Presentation layer, the distribution of requests between
them is usually performed using the DNS service. The DNS does not know
anything about the availability of the Presentation layer nodes, and even if
notified, it would be unfeasible to change DNS records due to client record
caching. A more effective solution is for a note on the same layer to take over the
IP from the failed machine and to distribute requests on its behalf. The operation
is implemented using gratuitous ARP.

Choosing the most appropriate solution for the Presentation layer depends
on the project, that’s why the framework is opened for any distribution solution.
Also it is possible to incorporate in the framework the services that can be used to
identify the load on each Production layer node, in order to help the balancing
algorithms perform a fair distribution.

4.2. Production Layer

Production layer does not involve special complications in terms of
infrastructure. On this layer there are nodes that reply to customer requests and
implement all the logic necessary to answer to these requests. This layer is the
least affected by the infrastructure organization because it receives the requests
forwarded by the Presentation layer and uses the services made available by the
Storage layer. However, there are a number of particularities and differences
compared to traditional architectures: more nodes answer to requests in parallel,
the communication between the nodes on the Production layer should be avoided,
access to storage structures is unified, the layer is isolated from the outside, it can
use partitioning, can be management by a third party, etc.

4.3. Storage Layer

In cloud computing this layer brings the most important challenges. The
huge amount of information accessible in real-time, the security constraints and
the high availability are important issues that have to be addressed by the industry.

Traditional web applications use the structured storage offered by SQL
relational databases. Unfortunately these databases are not capable to scale
linearly on multiple servers. Due to the new wave of online applications that
demanded more performance than SQL databases can offer, major changes on
how structured information is stored and accessed are underway. The most
important weakness of relational databases is their inability to scale horizontally.
There are several expensive to license and implement databases which are able to
scale vertically, but only up to a point given by the hardware platform it runs on.

96 Bogdan Carstoiu

Modern applications started to avoid using SQL structured databases, but there is
still a huge demand on relational databases. This is satisfied by SQL as a service
cloud offers, although such offers are limited to a maximum number of
transactions per unit time [7]. The SQL provided as a service on the Storage layer
might be highly available, but it cannot scale. Such services are usually
implemented on virtual machines, in a very similar way to traditional hosting
(examples: Amazon RDS MySQL, PostgreSQL, Heroku).

In order to deliver truly scalable services, providers consider other
solutions. There are alternate systems that provide important advantages in terms
of availability, speed and scalability, but with the price of sacrificing consistency.
Google BigTable [19] is a non-relational, distributed database that was used as
inspiration source for some open source solutions. Although cloud databases
differ from each other, they share common characteristics: they expose a low
number of operations, they do not have JOIN operations, the storage format is not
column oriented, the information is distributed on multiple nodes and localized by
the client application, etc.

Many cloud software applications use local storage, but the cloud storage
layer should provide support for both local and remote storage via the Internet.
Therefore, it is expected that a cloud storage service to be very attractive for many
applications. Cloud storage platforms implement different techniques and answer
to different needs. For example, Amazon's Simple Storage Service (S3) provides
an unstructured storage facility accessible using the Internet. The model given to
developers is simple: it allows storing objects as binary content in configurable
containers. Software applications can create, read and delete objects and
containers. Objects can also be updated, but in reality they are completely
replaced. This simple, but limited storage service is more easily scalable than
those that provide advanced functionality. Application developers have access to
cheap storage space in the cloud, but they must work harder to use it.

Cloud information can be stored in structured or unstructured format.
Structured information is strictly formatted and it is stored in such a way that
various operations can be performed on it (eg: XML / XHTML, SQL databases).
Structured information is organized to identify and separate content from context
information [18]. Unstructured information is not organized in a way to allow any
type separation. From unstructured information it is not possible to automatically
extract properties and relationships. Unstructured information is the generated
content such as audio, video, graphics and documents. Each type of content,
structured or unstructured has different particularities when it comes to how
storage and search operations are performed.

Our framework uses the distributed database Zatara, which was designed
to scale horizontally with the number of nodes it is running on. Nodes are
organized into groups and each node has assigned a NodelD and a GrouplD. The

Cloud SaasS infrastructure 97

NodelD is represented by a 32-bit unique string, while the GrouplD is represented
by a 16-bit unique string. (Fig. 2). When working with a fixed number of
hardware resources, it is important to organize nodes in groups to achieve
maximum performance and data reliability. The database can store both persistent
and caching only data, depending on the way how the customer wants to save an
object. Caching mode does not guarantee data persistency, but it is useful for
many applications that have to store information only for a limited time and they
do not care when the information is lost. The persistent information stored on a
node is replicated within the group to ensure redundancy. It is not recommended
to group more than 4 nodes in a group.

To test and integrate Zatara we wrote a C client library that exposes an
API available to software developers [20].

Group 1) Cryoug (1)
Mode Mode Mode MNode
| 8] 1D 1D s
Metwork
Mede | | Mode Mode | | Mode
1D 8] 8] D
Group (K Grroup ()

Fig. 2. Nodes organized in groups

Although the framework design is modularized and allows using any
database system, Zatara offers important advantages [21], [22]. In designing
Zatara, the biggest challenge was finding solutions to various compromises
generally accepted by the designers of distributed databases, but hardly tolerated
by application developers. An analysis of the existing distributed database
implementations revealed that each implementation has particular strengths, but
also notable weaknesses. A common weakness of most distributed databases is
that many were designed with a specific software application in mind [23], thus
affecting the database capabilities to fit into a more generic ecosystem. It has been
already proved that a consistent, fault tolerant and scalable database cannot exist,
but we consider that a single software application would want to store objects
with different particularities. The developer should be able to choose how the
object must be stored in the database [24]. The database speed is also a very
important factor, even if the database is distributed a single node should be able to
answer to many thousands of requests per second.

98 Bogdan Carstoiu

5. Zatara Performance

Evaluating the performance of the storage layer is difficult because it is
necessary to send enough requests to the database server in order to saturate its
input. While this is possible on the same machine, it might be difficult over a
shared network. In order to evaluate the performance, we used two Amazon EC2
Small Instance with 1.7Gb of memory and one EC2 processing unit. An instance
has installed the test program, which is using the Zatara client library and the
other instance is running the Zatara server. In the testing session we ran 20
consecutive tests in the same conditions, the worst 15% results were eliminated
and we computed the average of the remaining 85% results. All operations
performed on the database level have O(1) complexity. Should be noted that the
software interaction with the database is usually blocking, this means that the
software issues a request and waits for the answer to come from the database
server. That’s why the speed of the database directly affects the application
response time. Testing was performed on caching type objects in order to avoid
group replication. The performance is almost identical when storing persistent
objects because information is committed to the disk asynchronously. Zatara
always keeps caching type objects in the server RAM.

5.1. Storing Simple Objects

Using this test we can quickly evaluate the store operation speed. The
names of the objects were generated by the client using a determinist algorithm,
these are unique, 12 characters long. We evaluated the performance of the
operation in two test sessions, in one storing 20 byte values (Fig. 3) and in the
second one 64 byte values (Fig. 4). The results are not significant different, the
network layer is also playing an important role on this test.

Querying simple objects 20 bytes

25 1
20 1
15 4

10 4

Answer fime

5

1] T T T T T T]
67329 89323 80123 103413 117823 123412 129034 1394835

Requests

Fig. 3. Evolution of the response time with the number of store requests (simple objects, 20 bytes)

Cloud SaasS infrastructure 99

Storing simple objects 64 bytes

23
20
13
10

Answer fime

5

o+ T T T T T T \
42012 53313 B9304 F2040 79332 54323 92303 95302

Requests

Fig. 4. Evolution of the response time with the number of store requests (simple objects, 64 bytes)
5.2. Query Simple Objects

On this test the objects stored in the previous test were retrieved from the
database. The test is once again performed for 20 byte (Fig. 5) values and 64 byte
values (Fig. 6).

Query simple objects 20 bytes

23
20

Answer fime

o+ T T T T T T 1
SE932 Ta3042 1904 95302 101283 110331 113043 1203594

Requests

Fig. 5. Evolution of the response time with the number of retrieve requests (simple objects, 20
bytes)

Query simple objects 64 bytes

25

20

Answer time

0+ T T T T T T 1
480352 B3549 ga042 FaE043 51020 83030 102394 111030

Requests

Fig. 6. Evolution of the response time with the number of retrieve requests (simple objects, 64
bytes)

100 Bogdan Carstoiu

5.3. Storing Complex Objects

On this test we evaluate the speed of the store operation on arrays. Arrays
contain 512 elements and have unique names of 20 bytes. For each operation of
storing information in the array the client sends a request to the database. Each
element in the array gets a value of 20 bytes length. The results of the test can be
found in Fig. 7.

Storing array 20 bytes elements

23 A
20 A

Answer time

0 T T T T T T \
G5393 T2030 51003 93049 102943 113020 118304 123040

Requests

Fig. 7. Evolution of the response time with the number of store requests (complex objects, 20
bytes)

5.4. Query Complex Objects

On this test the client randomly queries the elements of the arrays. The
names of the arrays are known; in each array the client will interrogate 128
elements. These are the elements previously stored, each one is 20 bytes. Results
can be found in Fig. 8.

Querying array 20 bytes elements

25 q

20

Answer time

o T T T T T T 1
49380 52094 61033 73283 51039 Ga049 92030 1013584

Requests

Fig. 8. Evolution of the response time with the number of query requests (complex objects, 20
bytes)

Cloud SaaS infrastructure 101

The previous tests revealed that there is no notable speed difference
between the operations performed on simple and complex objects, when they deal
with values of the same size.

6. Conclusions

From the infrastructure organization point of view, it does not matter what
operating system is used on the nodes or what hardware architecture is involved.
It is recommended to deal with virtual machines as nodes because they offer
obvious advantages such as easy migration, centralized management, and better
usage of physical resources. The logical organization of the infrastructure allows
achieving good scalability, low maintenance costs and simplified application
integration with the hardware infrastructure. The tiered organization with a
presentation, production and storage level offers an abstraction level useful for
infrastructure design and application developers.

The OSI layer 4 and 7 distribution methods allow requests to be
distributed by the Presentation layer to the Production layer. The framework is
flexible and does not impose any limitations on the methods used to balance the
requests to the software logic. From the developer point of view, they are dealing
only with the software implemented on the Production layer and they use the
services provided by the Storage layer. Zatara, the distributed database designed
to be used in the framework is flexible enough to be used by any software
application, guarantees data integrity and achieves high performance and
scalability. The storage classes implemented by the database and the online
replication are innovative approaches applied for the first time on a cloud
database.

The tests performed on Zatara using the Amazon cloud infrastructure
revealed a good performance. The database is able to answer to almost 100k
queries per second on a node with a basic hardware configuration. There are no
notable performance differences when complex or simple objects are used.

REFERENCES

[1] *** Benefits, risks and recommendations for information security, raport ENISA.
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/,

[2] John Leese, The Financial Benefits of Cloud Computing, http://www.the-
financedirector.com/features/feature61743/

[3] ***http://thefinanser.co.uk/fsclub/2009/10/cloud-computing-needs-better-definition-
to-succeed.html

[4] Andrew R Hickey, Cloud Computing, SaaS Boom Fueled By Recession, 2010,
http://www.adaptiveplanning.com/docs/Cloud-Computing-SaaS-Boom-Fueled-By-
Recession CRN-Channel-Web.pdf)

102 Bogdan Carstoiu

[5] K. C. Li, C. H. Hsu, L. T. Yang, J. Dongarra, H. Zima, Handbook of Research on Scalable
Computing Technologies, 1SBN: 978-1-60566-661-7.

[6] *** Eucalyptus System http://www.eucalyptus.com/

[7]1 Cal Henderson, Building Scalable Web Sites: Building, Scaling, and Optimizing the Next
Generation of Web Applications, ISBN: 0596102356.

[8] Jure Petrovic, Using Memcached for Data Distribution in Industrial Environment,
Proceedings of the Third International Conference on Systems, Pages: 368-372, 2008,
ISBN:978-0-7695-3105-2.

[9] J. Sobel, Needle in a Haystack: Efficient Storage of Billions of Photos,
http://perspectives.mvdirona.com/2008/06/30/FacebookNeedleInAHaystackEfficientStorag
eOfBillionsOfPhotos.aspx

[10] Edward P. Holden, Jai W. Kang, Dianne P. Bills, Mukhtar Ilyassov, Databases in the cloud: a
work in progress, SIGITE '09: Proceedings of the 10th ACM conference on SIG-
information technology education, October 2009.

[11] Wil A.H. Thissen, Paulien M. Herder, Critical Infrastructures: State of the Art in Research and
Application (International Series in Operations Research & Management Science, ISBN:
1402076010.

[12] D. Amerheim, et all Cloud Computing Use Case White Paper, 20009.

[13]4. Weiss. Computing in the Clouds. netWorker, 11(4):16-25, Dec. 2007.

[14] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal, Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities,
Grid Computing and Distributed Systems (GRIDS) Laboratory, Department of Computer
Science and Software Engineering, The University of Melbourne, Australia.

[15] George Reese, Cloud Application Architectures: Building Applications and Infrastructure in
the Cloud, ISBN: 0596156367.

[16] Richard Chow, Philippe Golle, Markus Jakobsson, Elaine Shi, Jessica Staddon, Ryusuke
Masuoka, Jesus Molina, Controlling data in the cloud: outsourcing computation without
outsourcing control, Proceedings of the 2009 ACM workshop on Cloud computing security,
Chicago, Illinois, USA, Pages: 85-90, 2009, ISBN:978-1-60558-784-4.

[17] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley,
M., and E. Schooler, "SIP: Session Initiation Protocol", RFC 3261, June 2002.

[18]K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A. Huberman. Tycoon: An implementation
of a distributed, market-based resource allocation system. Multiagent and Grid Systems,
1(3):169-182, 2005.

[19]1G. DeCandia, D. Hastorun, et al, Dynamo: Amazon's highly available key-value store. In
Proceedings of the 21st ACM Symposium on Operating Systems Principles (Stevenson,
Washington, October 2007)

[20] *** Linux C and C++ Programmer's Guide
http://www.comptechdoc.org/os/linux/programming/c/linux_pgc.html.

[21]B. Carstoiu, D. Carstoiu, High Performance Eventually Consistent Distributed Database
Zatara, 6™ International Conference on Network Computing, May 2010 Koreea, IEEE PDF
files ISBN: 978-89-88678-19-0, IEEE Print version ISBN: 978-89-88678-20-6, pag 54-59.

[22] Bogdan Carstoiu, Dorin Carstoiu, Zatara, the Plug-in-able Eventually Consistent Distributed
Database, Advances in Information Sciences and Service Sciences ISSN 1976-3700.

[23]E. A. Brewer, “Towards robust distributed systems.” In Proceedings of the 19th Annual ACM
Symposium on Principles of Distributed Computing, July 2000.

[24] Bogdan Carstoiu, Dorin Carstoiu, \Web4Desktop, a Framework for Improving the Usability
of Web Applications, pag 455-464, , CENTERIS 2010, Springer, Heidelberg.

