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A TOPOLOGICAL DEGREE OF SET-VALUED MAPS OF 
TYPE (S) 

Silvia FULINA1 

La studiul existenţei soluţilor inegalităţilor variaţionale au fost folosite 
câteva definiţii ale gradului topologic. In cazul operatorilor univalenţi tari 
monotoni este binecunoscută, de exemplu, metoda lui Szulkin [12]. Deoarece 
inegalităţiile variationale pot fi rescrise ca incluziuni operatoriale, dupa cum vom 
arăta mai jos, o abordare mai completă necesită definirea gradelor topologice 
pentru aplicaţii multivalente. Vom dezvolta o teorie a gradului topologic pentru 
aplicaţii multivalente de tip (S).  

 
Within the study of the solutions of variational inequalities, some definitions 

of the topological degree are used. So, Szulkin’s method [12] is well-known in the 
case of strongly monotone  operators. Since variational inequalities can be 
converted into operator inclusions, as we reveal below, a more thorough approach 
is to define an appropiate degree for set-valued maps. We deal with a theory of the 
topological degree for mappings of type (S). 
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1. Introduction 

 
Roughly speaking, all procedures for solving the operator equations on 

finite-dimensional spaces are based on Brouwer’s degree. One can distinguish 
between two main directions in the construction of topological degrees on 
infinite-dimensional spaces. The first method defines a degree as the limit of 
Brouwer’s degrees, in the sense of assuring the strong convergence of the 
solutions of the restrictited equations to the finite-dimensional subspaces. This 
Galerkin approach has been used by Browder [3] in the case of type (S) operators 
and, more general, by Skrypnik [10] for operators of type ( )α , on Banach spaces. 
The second Hilbertean approach, employing an elliptic super-regularization, takes 
as starting-point the Leray-Schauder degree in order to define a topological degree 
for type (S) operators on Banach spaces. In this paper, we will pursue the Melnik 
method [7], which represents a similar construction like that used by Browder-
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Petryshyn for the set-valued degree of  A-proper maps.  With respect to the 
second approach with applications to problems involving discontinuous 
nonlinearities, we refer to the Berkovits-Tienari  work [2]. 

Let X be a real reflexive Banach space, ∗X  its topological dual and 
, : X X∗⋅ ⋅ × ›──→R  the pairing of elements from ∗X  and  X.  We denote by 

2X ∗

 the totality of all nonempty subset of ∗X  and consider multivalued or set-
valued mapping : ( )A D A ›──→ 2X ∗

 with its effective domain 

( ) ( ){ }D A y X A y= ∈ ≠ ∅ . 

First, we remind the following equivalence [1].  For a convex, closed subset  
K  of  X  and element  *g X∈ , a variational inequality means finding an element 
u K∈  such that 

             ,   0Au g x u< − − > ≥     for all  .x K∈                               (1.1) 

The variational inclusion (1.1) is equivalent to the inclusion 

          u K∈ ,        ( )  ( ),Kg A u N u∈ +                                   (1.2)    

where 
y K

( ) { *  supKN x p X
∈

= ∈ ,   0}p x y< − > ≥  is the normal cone to  K  in 

.x K∈  

 We notice that KN  is the subdifferential of the indicator function KI . 

More general, given a subdifferentiable function : XΨ ›──→ }{+∞∪R , the 
problem of finding a solution u∈dom Ψ of the (complete) variational inequality: 

            ,  + ( ) ( )  0Au g x u x u< − − > Ψ − Ψ ≥ ,    x∀ ∈dom ,Ψ               
(1.3) 
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which is equivalent to the inclusion  

           ,u dom∈ Ψ        ( ) + ( ).g A u u∈ ∂Ψ                                (1.4) 

2. Galerkin’s set-valued approximants 

 Let  D  be an bounded open subset of ( )D A , with the boundary ,D∂  and 
F ( )X  the class of finite-dimensional subspaces of X so that .D F∩ ≠∅  We 
choose a base 1 2{ , ,..., }ne e e of every subspace F ∈F ( )X  and define Galerkin’s 

approximante :FA F ›──→ 2F  of : ( )A D A ›──→ 2X ∗

  relative to  F  by 
         *( ),  = < ( ),  F F F X XA x y A x y× ×< > > ,  ,  .x D F y F∀ ∈ ∩ ∈  
Here the duality on  F F×  coincides with the inner product on  .F  In other 
words, the set-valued Galerkin restriction FA  of  A  relative to  F  have the 
following structure: 

        
1( )

( ) { , } ( ( ),
n

F i i F F
if A x

A x f e e J A J x∗

=∈
= < > =∑∪    for every   ,Fx D D F∈ = ∩  

where  :FJ F ›──→ X  is the imedding map and : *FJ X∗ ›──→F  its adjunct. 
The above structure does not necessarily depend on the base chosen in  F. 
 The main elements of the Brouwer and Leray-Schauder degree theory for 
set-valued maps are presented in the chapter VI of Lloyd’s monography [6]. 
 With a view to simplification,  let ( *)C X  be the family of the non-empty, 

convex, closed subsets of X ∗ , and we consider the following definition: 
          The map :A D ›──→ ( *)C X  is said to be of type ( )S D , if any sequence 

ny D∈  with ny → y  in X  and ( )n nf A y∈   with  nf → f  in ∗X , such that 
                      limsup < ( ),  0n n

n
A y y y

→∞
− > ≤                                      (2.1)  

implies the strong convergence yyn →  în  X. 
        The condition (2.1) can be re-written as limsup < ( ),   < ,n n

n
A y y f y

→∞
> ≤ >  

and maps of type ( )S D  coincide with those of type ( )α . 

3.Topological degree for set-valued maps of type S. 

 With a view of a general definition to the (S) degree, let us consider that 
the following hypotheses hold: 
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             (i)  :A D ›──→ ( *)C X  
(ii)  ( )A S D∈ ; 

          (iii)  ( )0 A y∉  for every y D∈∂ . 
           Like in the univalent case (Skrypnik [10], p.39), we can establish the 
existence of a finite-dimensional  space oF ∈F ( )X  with  the following  features: 
          (A)  0 ( )FA y∉  for every y D∈∂  and 
          (B)   deg ( , ,0)FA D  =  deg ( , ,0)

oFA D , for any space  F ∈F ( )X  with 

.oF F⊆   
The word  deg refers here to the Brouwer degree. 
            Under the hypotheses (i)-(iii).  we take by definition 
                   ( , ,0)Sd A D   =  deg ( , ,0)

oFA D , 

as the degree (S) of the set-valued map :A D ›──→ ( *)C X   on the D subset with 

respect to   0 .X ∗∈  Moreover, due to the invariance of Brouwer’s degree under 
translations, for any \ ( )f X A D∗∈ ∂ ,  we have 
               ( , , )Sd A D f =  deg ( , ,0)A f D− . 
          The above-defined degree verifies all the axioms of the classic topological 
degree (Pascali [9]). We say that  [ ]: 0,1tA D× ›──→ ( *)C X  is a homotopy of 

type ( )S D  if  every sequence { }ny D⊂  with ny → 0y  in X,  { } [ ]0,1nt ⊂  with 

nt t→  and ( ),n n nf A t y∈  with nf → f  în X ∗   and the condition  
                limsup < ( ),   < ,

nt n n
n

A y y f y
→∞

> ≤ >  

is in fact the strongly convergent 0ny y→   în  X  and  ( )
nt nA y → ( )tA y results in  

*.X  
 Maps 0 1, :A A D X⊂ ›──→ ( *)C X  belonging to the class ( )S D  and 
satisfying condition ( )0 iA y∉ , for i =1,2, for each y D∈∂ , are called homotopic 

on D  if there is a bounded map [ ]: 0,1A D× ›──→ 2X ∗

 satisfying the following 
conditions: 

(i)    ( ) ( )0 10, , 1,A A A A⋅ = ⋅ = ; 

(ii)   A satisfies condition ( )S D ; 

(iii)  ( )0 ,A t y∉  for any [ ]0,1t∈  and any y D∈∂ ; 
(iv)  A is demiclosed; i.e., if 0nt t→  and 0ny y→  strongly in X, and  

nd → 0d  in X ∗ , for any ( ),n n nd A t y∈ ,  then  ( )0 0 0,d A t y∈ . 
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If  0A  and 1A  are homotopic on D , then  

             ( ) ( )0 1deg , ,0 deg , ,0A D A D= . 

If :A D X⊂ ›──→2X ∗

is a map of class ( )S D  and ( )0 A y∉  for any 

y D∈ , then ( )deg , ,0 0A D = . 

Let :A D X⊂ ›──→ 2X ∗

 be a map of class ( )S D  and *f X∈  satisfying 
condition ( )f A y∉   for any y D∈∂ . In order that the inclusion  ( )A y f∋  to have 

a solution in D, it is sufficient that  ( )deg , , 0A D f ≠ . 

Moreover, let :A D X⊂ ›──→ ( )C X ∗  is a map of class ( )S D  coercive 

with respect to *f X∈ , i.e., ( ) , 0A y f y− ≥ , for any y D∈∂ . In this case, we 

have ( )deg , , 0A D f ≠   and so the inclusion ( )A y f∋  has solutions in  D.  

Furthermore, the next result of the theory of the topological degree can be 
generalised. Suppose that D is a symmetric bounded neighborhood of zero, 

:A D X⊂ ›──→ ( )C X ∗  is a map of class ( )S D  and  ( )0 A D∉ ∂ . Suppose, in 

addition, that 

( ) ( )A y A yλ∩ − =∅    for  y D∈∂  and  [ ]0,1λ∈ , 

then ( )deg , ,0A D  is an odd number. 

            The above-mentioned approach is also valid in the case of variational 
inequalities of  Solonoukha type [11]  if we consider the next definition: 
 The :A D ›──→ ( )C X ∗  is a map of type ( )S D− , if for any sequence 

{ }ny  in D onverging weakly to some y X∈  and for any sequence ( )n nf A y∈  

converging weakly to some f X ∗∈  such that 
                              ( )

_
limsup , 0n n

n
A y y y

→∞
⎡ ⎤− ≤⎣ ⎦  

it follows that yyn → in X.  

4. Degree for pseudomonotone maps. 

           We will now take the line traced by the definition presented at the end of 
the previous chapter and we define  
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 A mapping A from D  into ( )C X ∗  is weakly pseudomonotone or 

( )PM D−  if for any sequence { }ny  in D  converging weakly to some y X∈  and 

for any sequence ( )n nf A y∈  converging weakly to some f X ∗∈  such that 

                                        ( )
_

limsup , 0n n
n

A y y y
→∞

⎡ ⎤− ≤⎣ ⎦  

it follows that ( )f A y∈  and ,   , .n nf y f y< > → < >  
 We remark that if A is weakly pseudomonotone, then 
                                     limsup ,   0.n n

n
Ay Ay y y

→∞
< − − > =  

         We extend a basic relation due to B Calvert and J.R.L. Webb (see [9}) 
between the pseudomonotones operators and those of type S.  
 

Theorem 4.1. Let D X⊂  be a open, bounded subset and 

0 :A D X⊂ ›──→ ( )C X ∗  satisfies condition ( )S D− . Then demicontinuous 

operator :A D X⊂ ›──→ ( )C X ∗  is pseudomonoton and ( )0 A D∉ ∂   if and only 

if 0 :A A A D Xε ε= + ⊂ ›──→ ( )C X ∗  satisfies condition ( )S D− ,  for each 
0.ε >  

Proof.  The “if” part. Let A be a weakly pseudomonotone operator and 
assume that  

( ) ( )0 0 _
limsup , 0n n

n
A A x A A x x xε ε

→∞
+ − + − ≤⎡ ⎤⎣ ⎦  

whenever nx → x  in X. Since ( )A PM D−∈ , we have 

[ ]0 0 _
limsup , 0n n

n
A x A x x x

→∞
− − ≤ , we infer that nx x→  in X, that is, 0A Aε +  is of 

type ( )S D− . 

 The „only if” part. Assume that 0A Aε +  is of type ( )S D−  for each 0.ε >  

If  A  is not pseudomonotone, then there exists a sequence { }nx  such that nx → x  

and  [ ]_
limsup ,n n

n
Ax Ax x x δ

→∞
− − = −   with 0δ > . Then, since A is 

demicontinuous { }nx can not be strongly convergent to x. On the other side, 
because { }nx  is bounded, there is an  0M >  such that nx M≤ and 

[ ] 2
0 0 _

, 4n nA x A x x x Mε ε− − < . Take 28M
δε < and have  

( ) ( )0 0 _

1limsup , 0
2n n

n
A A x A A x x xε ε δ

→∞
+ − + − ≤ − <⎡ ⎤⎣ ⎦  
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and { }nx  doesn’t converge strongly to x, which contradict our  initial assumption 
that 0A Aε +  is of type ( )S D− . ⁭ 
 
 Moreover, ( )0 A yε∉  for any y D∈∂ . Thus, ( )deg , ,0A Dε  is defined if  

1
00 Mε δ −< < . Let us show that the degree defined in this way does not depend 

on ε . Suppose that 1
00 i Mε δ −< <  for  1,2i =  and consider the 

corresponding
i

Aε . Put  ( ) ( )( ) ( ) ( )2 1 0, 1 .A t y y t A y A yε ε= + − +  We have 

( ) ( )
1

0,A y A yε= , ( ) ( )
2

1,A y A yε= , and ( )0 ,A t y∉  for any [ ]0,1t∈   and any 
y D∈∂ . Consequently,    

( ) ( )1 2
deg , ,0 deg , ,0A D A Dε ε= . 

 Hence, the limit ( )lim deg , ,0A Dε
ε→∞

 exists,  we call it the degree of the 

pseudo-monotone map A on the domain D  with respect to 0 X ∗∈  and denote it 
by ( )deg , ,0A D . 

We notice that in the above construction the limit does not depend on map 
0A  and therefore the degree of the weak pseudomonotones maps is well-defined. 

A similar degree theory of the ( )S D  mappings was elaborated in the book 
of D. O’Regan, Y. J. Cho, Y.-Q. Chen [8] in 2006. Applications of the ( )S -degree 
for perturbations of maximal monotone operators in the theory of variational 
inequalities have been tackled in [8] as well.  
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