U.P.B. Sci. Bull., Series A, Vol. 76, Iss. 2, 2014 ISSN 1223-7027

ON OBSTINATE IDEALS IN MV-ALGEBRAS

F. Forouzesh', E. Eslami?, A. Borumand Saeid?

MSC2010: 03B50, 03G25, 06D35

Keywords: MV-algebra, (obstinate, implicative, primary, prime, Boolean) ideal,
molecule element, Boolean algebra, prefect M V-algebra

In this paper we introduce obstinate ideals of an MV -algebra and we state
some examples and theorems. We prove that quotient algebras that constructed
via obstinate ideals are Boolean algebras. Also we investigate some relationships
between the obstinate ideals and the other ideals of an MV -algebra.

1. Introduction and preliminaries

MYV -algebras are introduced by C. C. Chang in 1958 [4] to give an algebraic
counterpart of the multiple-valued Lukasiewicz propositional logic. Then this class
of algebras has been intensively studied by many researcher. In particular, emphasis
has been put an the ideal theory of MV -algebras [7,9,10]. Hoo, Iseki and Tanaka
[10,11] introduced the notion of implicative and quasi-implicative ideals of MV-
algebras. In 1987, S. K. Goel and A. K. Arora [8] first introduced the concept of
obstinate ideals in BC K-algebras which are logical algebras introduced by Iseki in
1966 [13]. MV-algebras as well as BCK-algebras are important logical algebras.
This motivates us to study the notion of obstinate ideals in MV-algebras and in-
vestigate the relations between the other ideals previously introduced. In this paper
also we consider the quotient algebras induced by obstinate ideals and prove some
related theorems.

Definition 1.1. [5,14,15] An MV -algebra is a structure (M, &, *, 0) where & is a
binary operation, *, is a unary operation, and 0 is a constant such that the following
axioms are satisfied for any a,b € M :

(MV'1) (M, &, 0) is an abelian monoid,

(MV2) (a*)* = a,

(MV3) 0*®a = 0%,

(MV4) (a*®b)*Db=(b"®a) & a.

Note that 1 = 0" and the auxiliary operation ® as follow:
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We say that the element x € M has order n and we write ord(x) = n, if n
is the smallest natural number such that nx = 1. We say that the element x has
a finite order, and write ord(x) < oco. An MV-algebra M is locally finite if every
non-zero element of M has finite order. We recall that the natural order determines
a bounded distributive lattice structure such that

rVy=z® @ 0y)=yd(x0y*) and zAy=20 @ " ®y) =yo (¥ ®).
Lemma 1.1. [5,15] In each MV -algebra, the following relations hold for all x,y, z €

A:

(1) x <y if and only if y* < x*,

(2) Ifr<y,thenz®z<yd®zandr®z<yoOz,
B)x<yifand onlyifx* ®y=1if and if x ©y* =0,
4) z,y<zdyandzr Oy < x,y,
B)zdaz*=1andzOz* =0,

(6) If v € B(A), thenx ANy =x ©y, for any y € A.

Where B(A) is the set of all complemented elements of L(A) such that L(A) is
distributive lattice with 0 and 1 on A.

Also for any two elements z,y € A, x < y if and only if z and y satisfy the
condition (3) in the above lemma.

Definition 1.2. [5,15] An ideal of an MV -algebra A is a nonempty subset I of A
satisfying the following conditions:

(I11)Ifxel,ycAandy <x theny€ I,

(12) If v,y € I, thenx ®y € 1.

We denote by Id(A) the set of ideals of an MV -algebra A.

Definition 1.3. [5,15] Let I be an ideal of an MV -algebra A. Then I is a proper
if I # A. Proper ideal P is a prime if and only if for all x,;y € A, x O y* € P or
yoa*eP.

e [3] An ideal I of an MV -algebra A is called a Boolean ideal if x N z* € I, for all
x e A.

e [3] P is a primary ideal of an MV -algebra A if it is a proper ideal such that
for every a,b € A such that a © b € P, there exists an integer n > 0 such that
a® € P orb™eP.

e [3,6] An ideal I is called a prefect ideal if for each x € A, there exists an in-
teger n > 1 such that ™ € I if and only if (z*)"™ ¢ I for all integers m.

e [10,11,12] An ideal I of an MV -algebra A is called an implicative if for any
x,y,z € A such that z® (y* ©2*) € I and y© z* € I, then z ® z* € I.

e [10,11,12] An ideal I is a quasi-implicative if for any x € A such that ™ € I
for somen > 1, then x € I.

Lemma 1.2. [3] Every prime ideal of an MV -algebra is a primary ideal of MV -
algebra.



On obstinate ideals in MV -algebras 55

Lemma 1.3. [10,11,12] Let I be an implicative ideal. Then I is a quasi-implicative
ideal.

Definition 1.4. [3,6] An MV -algebra A is called a prefect if every nonzero element
x € A, ord(x) = oo if and only if ord(z*) < oco.

Also A is a prefect MV-algebra if and only if any proper ideal of A is a prefect.

Definition 1.5. [2] Let X be a nonempty subset of an MV -algebra A and X+ be
the annihilator of X defined by X+ ={a € A:anxz =0 forany z¢€ X}.

Lemma 1.4. [5,15] M is a maximal ideal of an MV -algebra A if and only if for
any v ¢ M, (nx)* € M, for some integer n > 1.

Definition 1.6. [1,9] A nonzero element m of a poset P with 0 is a molecule if
whenever 0 < x,y < m, then {x,y} has a nonzero lower bound. Thus m € A is
a molecule if and only if whenever z,y € A satisfy 0 < z,y < m, then x Ny > 0.
Mol(A) denote the set of all molecules of A.

In an MV-algebra M, the distance function is

d: MxM-— M, d(z,y) = (z O y*) ® (y © z*).

Suppose that [ is an ideal of an MV-algebra A. Define z ~; y if and only if
d(z,y) € I'ifand only if t ©@y* € I and y©x* € I. Then ~j is a congruence relation
on A. The set of all congruence classes is denoted by A/I then A/I = {[z]: x € A},
where [x] = {y € A : x ~; y}. We can easily to see that x € I if and only if
x/I = 0/1. The MV-algebra operations on A/I given by z/I & y/I = (z ®y)/I
and (z/I)* = 2*/I, are well defined. Hence (A/I,®,*,[0]) becomes an MV -algebra
[5,15].

Definition 1.7. [5,15] An MV -algebra A is simple, if A is nontrivial and {0} is
its only proper ideal.

2. Obstinate ideals in M V-algebras

Form now on (A, ®,*,0,1) or simply A is an MV -algebra.

Definition 2.1. A proper ideal of A is called an obstinate ideal of A if x,y ¢ I
mmply x Oy* €l and y©x* € 1, for all x,y € A.

Example 2.1. Let Q = {1,2} and A = P(Q) = {{1},{2}, {1,2},0}, which is an
MV -algebra with operations @ =U, @ =-=Nand A*=Q — A, forany A€ A. It
is clear that Iy = {0,{1}} and Iy = {0} are ideals of A. I is an obstinate ideal of
A {1,202 ={121n{1}={1} e L and {2} o {1,2}*={2}n0=0€e . It
follows that I is an obstinate ideal of A. But Iy = {0} is not an obstinate ideal of
A. In fact {1} o {2} = {1} n{1} = {1} ¢ L1 and {2} 0 {1}* = {2}n{2} = {2} ¢ I5,
where {1}, {2} ¢ I .

Example 2.2. Let A = {0,a,b,1}, where 0 < a,b < 1. Define ®, @ and * as
follows:
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©®]0 a b 1 10 a b 1
00 0 0 0 00 a b 1

*‘0 a b
a | 0 a 0 a a | a a 1 1 ‘1b
b 10 0 b b b b 1 b 1 a
110 a b 1 111 1 1 1

Then (A, ®,®,*,0,1) is an MV -algebra, it is clear that Iy = {0,a} and Iy = {0,b}
are obstinate ideals of A.

Example 2.3. Let A ={0,a,b,c,d,1}, where 0 < a,b<c<land0<b<d<1.
Define @, ® and * as follows:

— Qo0 o O
[N ool ool f)
QO O O
T OO OOl
QO Qe O On
QU AU T T O O
— Q0 Q8 Ol
— Q0 o9 OOk
— Q0 o9 OO
=0 0 Q 9|9
— Q0 ofs
—_ == =0 00
— QL QL Q&
e i e e R e

*‘Oabcd 1
‘1 d ¢ b a O

Then (A, ®,®,*,0,1) is an MV -algebra and it is clear I = {0,a} is an ideal of A
but it is not an obstinate ideal of A. d,c¢ I andd®c* =dob=>b¢ I.

In the following proposition, we give a necessary and sufficient condition on a
proper ideal to be an obstinate ideal.

Proposition 2.1. A proper ideal I of A is an obstinate ideal if and only if for any
x € A ifx ¢ I then there exists n > 1 such that nx* € I.

Proof. Suppose that I is an obstinate proper ideal and x ¢ I. Since 1 ¢ I, then
O=xz0l1"celanda*=10a" € I. Sonz* €I, forn = 1.

Conversely, let z,y ¢ I. We show that t ©® y* € [ and y ©® 2* € I.

By hypothesis nx* € I and my* € I, for some n,m > 1. We know that z* < nz* and
y* < ny*. By ideal property * € I and y* € I. Since y © 2" < z* and =z © y* < y*,
thenx ©y* €l and y ® 2* € I. d

Theorem 2.1. Let I be an obstinate ideal of A. Then I is a maximal ideal of A.

Proof. Let I be an obstinate ideal which is not a maximal. So there exists a proper
ideal J such that I C J. Suppose that a € J — I. Then by Proposition 2.5, na™ € I
for some n > 1. We know that a* < na*. By the ideal property a* € I and also
a* € J. Sincea € J,a®a* =1 € J, which is a contradiction. O
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In the following example we show that the converse of the above theorem may
not hold.

Example 2.4. In Ezample 2.4, we can check that I = {0,a} is a maximal ideal.
But I is not an obstinate ideal.

Lemma 2.1. Let I be a proper ideal of A. Then I is an obstinate ideal if and only
ifeel orx*el, forallz € A.

Proof. Assume that I is an obstinate ideal and = ¢ I. By Proposition 2.5, we get
that nz* € I, for some n > 1. We know that z* < nz*, then x* € I and obtain the
result.

Conversely, let ¢ I. We need to show that nz* € I, for some n > 1. By hypothesis,
we get that 1z* € I. Hence I is an obstinate ideal of A. O

Theorem 2.2. Let I be an ideal of A. Then the following conditions are equivalent:
(1) I is a mazimal and Boolean ideal,

(7i) I is a prime and Boolean ideal,

(7i1) I is an obstinate ideal.

Proof. (i) — (i7) It is clear.

(1) — (7i7) Let I be a prime and Boolean ideal. Then we have x A z* € I, for any
x € A. Since P is prime, it follows that x € I or * € I. By Lemma 2.8, I is an
obstinate ideal.

(731) — (i) Let I be an obstinate ideal. By Theorem 2.6, I is a maximal ideal. On
the other hand, by Lemma 2.8, we deduce that x € I or z* € I. Also we know that
rAx* <z and z Az* <z* then x Az* € I. Hence I is a Boolean ideal. O

Theorem 2.3. Any simple MV -algebra A # {0,1} has no obstinate ideal.

Proof. Let A be simple MV -algebra. Then I = {0} is its only proper ideal, if I is an
obstinate ideal and z,y ¢ I such that = # y. Hence x ® y* € [ and y ® 2* € I. On
the other hand x ® y* = 0 and y ® * = 0, by Lemma 1.2, we have x < y and y < .
This results = y, which is a contradiction. Hence A has not obstinate ideal. [

Example 2.5. In Ezample 2.4, we have Iy = {0,a} and I = {0,b,d} are ideals
of A but I is not an obstinate ideal. Since d® c* =d®b=>b¢ I and I3 is an
obstinate ideal of A.

Corollary 2.1. (Extension property for obstinate ideal) Suppose that I and J are
two proper ideals such that I C J. If I is an obstinate ideal, then J is also an
obstinate ideal.

Proof. Let I be an obstinate ideal and I C J. Then by Theorem 2.6, I is a maximal
ideal. Since J is a proper ideal, we get that I = J. Hence J is an obstinate ideal. [J

Remark 2.1. Let I and J be ideals of A. We have
IVI=(IUJ]={acA:a<bdec, forsomebel andce J}.

It is an ideal of A, [5,15]. If I or J is an obstinate ideal, then by Corollary 2.12,
we get that IV J is an obstinate ideal.
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Lemma 2.2. {0} is an obstinate ideal of A if and only if every ideal I of A is an
obstinate ideal.

Proof. Suppose that I is an arbitrary ideal of A. Since {0} C I and {0} is an
obstinate, then by Corollary 2.12, I is an obstinate. Conversely, it is clear. U

Corollary 2.2. Let I be an obstinate ideal of A. Then A/I is a Boolean algebra.

Proof. Using Theorem 2.6, we obtain I is a maximal ideal of A. Also, [7, Theorem
4.9], we deduce that A/I is a Boolean algebra. O

Corollary 2.3. The following are equivalent:
(i) A is a Boolean algebra,

(13) Every ideal is obstinate ideal,

(zi1) {0} is an obstinate ideal.

We recall that if I is a maximal ideal of A, then A/I is a locally finite MV-
algebra [15].

Lemma 2.3. If {0} is an obstinate ideal of A, then A is a locally finite MV -algebra.

Proof. Suppose that {0} is an obstinate ideal of A. It follows that from Theorem
2.6, {0} is a maximal ideal of A. Hence A/{0} ~ A is a locally finite. O

In the following example, we show that the converse of the above lemma is
not true.

Example 2.6. Let A ={0,1,2}, where 0 <1< 2. Define ®, @ and * as follows:

®©]0 1 2 o]0 1 2
00 0 0 0l0 1 2 « [0 1 2
110 0 1 11 2 2 2 1 0
2 10 1 2 2 |2 2 2

Then (A, ®,%,0,2) is a locally finite MV -algebra but I = {0} is not an obstinate
ideal of A. Since201*=201=1¢1.

We recall that An MV -algebra A is said to be semisimple if and only if non-
trivial and Rad(A) = {0} [5].
Corollary 2.4. If {0} is an obstinate ideal of A, then A is a semisimple .

Proof. Since {0} is an obstinate ideal of A, it follows that from Theorem 2.6, {0} is a
maximal ideal of A. Hence Rad(A) = {0}. Thus A is a semisimple M V-algebra. [

In the following example, we show that the converse of the above corollary
may not hold.

Example 2.7. In Ezample 2.3, we have I; = {0,a} and Iy = {0,b} are ideals of A
such that Rad(A) = I1NIs = {0}. Hence A is a semisimple MV -algebra but I = {0}
is not an obstinate ideal of A. Since a®b* =aGa=a ¢ [ andb®a* =bOb=>b¢ I.

Theorem 2.4. Let I be an ideal of A. Then I is an obstinate ideal if and only if
every ideal of A/I is an obstinate ideal.
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Proof. Assume that [ is an obstinate ideal of A. Let x/I ¢ {[0]}, from Lemma 2.8,
it is suffices to show (x/I)* € {[0]}. Since z/I ¢ {[0]}, =/I # 0/I, hence d(z,0) ¢ I,
then = ¢ I. We apply the hypothesis and obtain z* € I, then z* = d(z*,0) € I. On
the other hand z*/I = 0/I or (z/I)* = «*/I € {[0]}. Hence {[0]} is an obstinate
ideal of A/I. By Theorem 2.6, we deduce that {[0]} is a maximal ideal of A/I.
Hence every ideal of A/I is an obstinate ideal.

Conversely, assume that every ideal of the quotient algebra A/I is an obstinate ideal
and x € A such that « ¢ I.

We must show that z* € I. By hypothesis, we get that /I # 0/I, hence z/I ¢ {[0]}.
Since {[0]} is an ideal of A/I. By hypothesis, {[0]} is an obstinate ideal. Therefore
(x/I)* = «*/I € {[0]}, then z*/I = 0/I. So z* € I. Hence I is an obstinate
ideal. ([l

Remark 2.2. We describe the notion of A/{0}. Let [x] be an arbitrary element of
A/{0} = {[x] : x € A}. We have

[z] = {ye Az~ y}
= {yeA:d(z,y) € {0}}
= {yed:z0y" €{0} and y®z* € {0}},
= {yeAd:z<yandy <z}
= {yeA:z=y},
= {=z}.

Define f € Hom(A, A/{0}) such that f(z) = [z], for any x € A. Clearly
A/{0} = A.

The following example shows that the M V-homomorphic image of an obstinate
ideal is not even an ideal.

Example 2.8. In Example 2.3, consider MV -homomorphism f: A — A such that
f(0) =0, f(a) =1, f(b) =0 and f(1) = 1. It is clear I = {0,a} is an obstinate
ideal of A, while f(I)=1{0,1} is not an ideal of A.

In the following theorem, we study inverse image of an obstinate ideal under
a MV-homomorphism.

Theorem 2.5. Let f: A — B be a MV -homomorphism and I be an obstinate ideal
of B. Then inverse image of I is an obstinate ideal of A.

Proof. Let I be an obstinate ideal of B and x € A such that x ¢ f~'(I). Then
f(z) ¢ I, since I is an obstinate ideal of B, by Lemma 2.8, we deduce that [f(z)]* €
I. We deduce that f(z*) € I. Then we get that z* € f~1(I). Hence f~1(I) is an
obstinate ideal of A. g

3. The relations obstinate ideal and the other ideals

Theorem 3.1. If P is an obstinate ideal of A, then P is a primary ideal of A.
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Proof. Let a ® b € P such that for every n > 1, a™ ¢ P. Since P is an obstinate
ideal and we have a ¢ P and 1 ¢ P,so 1 ®a* € P and a ® 1* € P. Hence a* € P,
for every n > 1. From ideal property, we have a* @ (a ©® b) € P. On the other hand
b<a*Vbe P. Hence b' € P, for n = 1. Therefore P is a primary ideal of A. O

The following example shows that a primary ideal may not be an obstinate
ideal.

Example 3.1. Let A ={0,a,b,c,d,1}. where 0 < a,c<d<1land0<a<b<l1.
Define ®, ® and * as follows:

— Q0 o9 o®
[=NeNoNe ool Fo)
N O Ol
QL OO OO
— QU O Qe O
— Q. 0 o9 odbh
— Q0 o OO
—_= = O O
— =~ = QL
e e = ]

QOO OOl
O 0 0 OO0 o0
— = Qo9
— Q0 = QL 0l0

*‘Oabcd 1
‘1dcba0

Then (A, ®,®,*,0,1) is an MV -algebra. It is clear that I = {0,c} is a maz-
imal ideal, then I is a prime ideal, by Lemma 1.5, we deduce that I is a primary
ideal but I is not an obstinate ideal, if a,b ¢ I, we have b® a* =bOd=a ¢ I.

Theorem 3.2. Let I be a primary ideal and quasi-implicative ideal of A. Then I is
an obstinate ideal.

Proof. By Lemma 2.8, it is sufficient to show that x € I or 2* € I, for any x € A.
We have 0 = x ® x* € I, since [ is a primary ideal, so 2™ € I or («*)" € I, for some
integer n > 1. Since [ is a quasi-implicative ideal, then = € I or x* € I. Hence I is
an obstinate ideal. O

Corollary 3.1. Let M be a mazximal and quasi-implicative ideal of A. Then M is
an obstinate ideal of A.

Proof. Since M is a maximal ideal, then M is a prime ideal of A. By Lemma 1.5,
we deduce that M is a primary ideal. Also by Theorem 3.3, we implies that M is
an obstinate ideal of A. O

Proposition 3.1. Let A be a prefect MV -algebra and I be a quasi-implicative ideal
of A. Then I is an obstinate ideal of A.

Proof. Let I be a quasi-implicative ideal of A. Since A is a prefect MV -algebra, I
is a prefect ideal of A. By Lemma 2.8, it is sufficient to show that x € I or z* € I,
for any x € A. Suppose that x ¢ I, since I is a quasi-implicative ideal of A, then
(z™) ¢ I, for every n > 1. Since I is a prefect, (z*)™ € I, for some integer m > 1.
Hence since [ is a quasi-implicative ideal, z* € I. O

Theorem 3.3. Let A be a Boolean algebra and m € Mol(A). Then (m]* is an
obstinate ideal.
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Proof. Suppose that m € Mol(B(A)) and = ¢ (m]* and z* ¢ (m]* for any x €
B(A). Hence 0 < x Am and 0 < z* Am < m , hence 0 < (z A z*) A m which is a
contradiction because by Lemma 1.2, we have (x Az*) Am = (z©z*)Am=0. O

Theorem 3.4. If (m]* is an obstinate ideal, then m € Mol(A).

Proof. Suppose that (m]* is an obstinate ideal. By Theorem 2.6, we deduce that
(m]* is a maximal ideal, hence (m]* is a prime ideal. Let x,y € A satisfy 0 < z,y <
m. Then z = 2 Am # 0and y = y Am # 0, that is ¢ (m]* and y ¢ (m]*.
This means that = Ay ¢ (m]*, hence z Ay Am # 0. Thus z Ay # 0. Therefore
m € Mol(A). O

Theorem 3.5. Any obstinate ideal of A is an implicative ideal of A.

Proof. Let I be an obstinate ideal of A. Suppose that z ® (y* @ z*) € I and
y©a* €I, for any z,y,z € A but z® z* ¢ I, by contrary. Since I is an obstinate,
by Lemma 2.8, we deduce that z* @ x = (z ® *)* € I. Tt follows from Lemma
1.2 (4), z < z*®x € I, so x € I. By ideal properties and by hypothesis, we have
y<zVy=xd((yoz*) €I, soy € [. Also by hypothesis, we deduce that
2Oz < (202" )Vy =[(z02%) 0y ®y € I. Thus z ® 2* € I, which is a
contradiction. Therefore I is an implicative ideal of A. O

Corollary 3.2. If I is an implicative and maximal ideal, then I is an obstinate
ideal.

Proof. By [7, Theorem 5.1], we implies that M is a maximal and quasi-implicative
ideal. It follows that from Corollary 3.4, I is an obstinate ideal. O

The following example shows that an implicative ideal may not be an obstinate
ideal.

Example 3.2. In Example 2.2, consider I = {0}. It is clear that I is an implicative
ideal but is not obstinate ideal. Since {1} ® {2}* = {1} N {1} = {1} ¢ I and
{2} o {1} = {2} n{2} = {2} ¢ I, where {1},{2} ¢ I.

In the following diagram we show that the relationships between an obstinate
ideal and the other ideals in MV-algebra are described.

max
implicative —— obstinate max —— prime
Boolean ideal
quasi-implicative
primary

4. Conclusion and future research

MV -algebras were originally introduced by Chang in [4] in order to give an
algebraic counterpart of the Lukasiewics many valued logic.
In this paper, we introduced the notion of an obstinate ideal in MV -algebras.
We have also presented several characterizations and many important properties of
obstinate ideals in MV -algebras. We proved that obstinate ideals are Boolean ideals
and I is an obstinate ideal if and only if I is a maximal and Boolean ideal. Hence
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if

I is an obstinate ideal of A, then A/I is a Boolean algebra.

Also we studied relations between an obstinate ideal and the other ideals of an MV -
algebra.
In our future work, we will try to define other types of ideals in MV -algebras and

ot

A

her logical algebraic structures.
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