
U.P.B. Sci. Bull., Series A, Vol. 70, No. 2, 2008                                                     ISSN 1223-7027 

ISOPERIMETRIC INEQUALITIES IN MINKOWSKI 
SPACE M2 

Radu F. CONSTANTIN1 

In prima parte a acestei lucrări sunt prezentate două formule variaţionale 
în spaţiul M2, obţinute de O. Biberstein în ([1]). Acestea conduc la problema 
izoperimetrică rezolvată de H. Busemann în ([2]), ([3]). 

 Autorul obţine inegalitatea, '422
ΓΓ≥Γ AALa  , unde Γ  este o curbă convexă, 

închisă de clasa C1 în spaţiul M2, cu lungimea ΓL  şi aria ΓA . Curba 'Γ  este un 

anti-cerc în spaţiul M2, cu raza 0>a  şi aria 'ΓA . 
 Dacă 1=a  şi 'Γ = T, unde T este izoperimetrica spaţiului M2, se obţine 

inegalitatea izoperimetrică, TAAL Γ≥ 42 , unde TA  este aria izoperimetricei. 
În partea a doua a lucrării, această inegalitate este generalizată pentru curbe 
închise din spaţiul M2, care nu sunt convexe. 
 

In the first part of this paper are presented two variational formulas in the 
space M2, obtained by O. Biberstein in ([1]). These lead to the isoperimetric 
problem solved by H. Busemann in ([2]), ([3]). 

 The author obtain the inequality, '422
ΓΓ≥Γ AALa , where Γ  is a convex, closed 

curve of class C1 in M2 space, with the length ΓL  and the area ΓA . The curve 'Γ  

is a anti-cercle in M2 space, with the radius 0>a and area 'ΓA . 
If 1=a  and 'Γ = T, where T is  the isoperimetric in M2 space, we obtain the 

isoperimetric inequality, TAAL Γ≥ 42 , where TA  is the area of isoperimetric T. 
 In the second part of the paper, this inequality is generalized for closed curves in 
M2, which are not convex. 

1. Introduction 

 Let nV  be a differentiable manifold of class C1 and let F be a family of 
submanifolds of dimension np < , which depend on r  real parameters. 
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 An arbitrary submanifold F∈pS  is given by a submersion which is 

represented with respect to two local maps ( )nxxH ,...,; 1
1  on nV  and 

( )puuH ,...,; 1
2  on pS  as follows: 

  ( ) niuuxx rpii ,1,,...,,,..., 11 =αα=    (1) 

where the functions ix  ar of class C1 relative to rkpju kj ,1,,1,, ==α . 
 Let ω  be a differentiable p  - form of class C1 on nV  an v•ω  the inner 
product of the vector field v defined on nV  with the differentiable form ω . 
 For each F∈pS  we consider functional 

  I = ∫ ω
pS

.       (2) 

 Throughout this paper, the manifold nV  will be replaced with Minkowski 
space M2, and instead of relation (1) we shall use the vectorial notation, 

  ( )rpuu αα= ,...,,,..., 11MM .     (3) 
We denote 

  ∑∑
==

δα
α∂

∂
=δδα

α∂

∂
=δ

r

k

k
k

r

k

k
k

II
11

, MM . 

 The variation of the functional (2) will be: 
  MM δδδ •+•= ∫∫

∂ pp SS

ωωdI ,     (4) 

where pS∂  is the boundary of the manifold pS  and ωd  is the exterior 

differential of the form ω.  
 It is known ([1], [5]) that fixing in space 2R  a closed, convexe curve U of 
class C3, without stationary points, with area π  and central simmetric with respect 
to the origin O, it can be defined minkowskian norm in M2. 
 The curve U named indicatrix has the parametric equation: 
  ( ) , 0 2 ,t t= ϕ ≤ ϕ ≤ π  

where ϕ  represents the double of the area of the sector ( ), ,0O t t , named the 
amplitude of t. 
 The vector 0t  corresponds to a fixed point on U. 
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 The curve T, ( )x n= − ϕ , where ( ) d
d

tn ϕ =
ϕ

 is named the isoperimetric of 

the space M2 ([3]). 
 Minskowian frames will be those affine frames with respect to whom the 
area of the indicatrix U is π . 
 The geometrical interpretation of the parameter ϕ  leads to the relation: 
  [ ], 1,t n =  

where by [ ],x y  we denote the determinant constructed on the vectors ,x y∈M2, 
relative to a minkowskian basis. 
 Minkowskian curvature of the curve T will be denoted by ( )λ ϕ  and 
satisfies the relation: 

  ( )1d ,
d

n t−= −λ ϕ
ϕ

      (5) 

where ( ) 0λ ϕ > . 

      Let { }1 2M, ,e e  be a minkowskian frame. Then the motion equations are ([1]): 

  ( )1
1 1 2 2 1 2 2 1d ; d d , d de e e e e e−= σ + σ = ϕ = −λ ϕ ϕM , 

where ϕ  is the amplitude of the vector 1e  on the indicatrix U. 
 Structure equations will be: 
  ( )1

1 2 2 1d d , d d−σ = λ ϕ σ ∧ ϕ σ = σ ∧ ϕ . 

2. Isoperimetric problem in the space M2 

 Let αΓ  be a family of closed curves in the space M2, depending on the 

differentiable parameter 2R∈α , given by the vectorial equation: 
  ( ),s= αM M , 

where M  is a function of class C1 relative to minkowskian arc s . 
 We consider the functionals: 
  ( ) ∫

αΓ

=α 1ωL , 

that represent the length of a curve from the family αΓ , where sd11 =σ=ω  and 

  ( ) ∫
α

=α
Γ

ω2A , 

that represent the area of a curve from the family αΓ , 
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  [ ]MM d,
2
1

2 =ω . 

Using relation (4) for closed curves we obtain 
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because both integrals in (4) extended to α∂Γ  will be zero. 
 Along the curve αΓ  we have, 

  ( ) ( ) 2211 esaesa +=
α∂

∂M , 

where { }21,M, ee  is Frenet frame associated to the curve αΓ  in the point 
( )αs,M . 

 We obtain, 
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 Along the curve αΓ , we have 02 =σ  and when we pass from a curve to 
another curve from the family αΓ , R∈α , the value of the form 2σ  is 

  ( )sa22 =
α∂

∂
•σ

M . 

 It results the variational formula: 

  ( ) ( ) ( )∫∫
αα

−=
ϕ

λ−=
α

−

ΓΓ

ssasks
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saL d~d
d
d

d
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where ( ) ( )k
s

k ϕλ=
ϕ

ϕλ= −− 11
d
d~ . 

 The curvature of the curve αΓ  in the point ( )α,sM  is 
s

k
d
dϕ

= , and k~  is 

its anti-curvature in the same point. 
 In the same way, we obtain the second variational formula, 

  ( )∫
α

−=
α

Γ

ssaA d
d
d

2 .      (7) 
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 Theorem 1. Let be a curve from the family αΓ  which varies such that 

0
d
d

=
α
A .  In order that such a curve satisfies the condition 0

d
d

=
α
L  it is 

necessary and sufficient that along this curve its anti-curvature k~  should be 
constant, i.e. αΓ  is anti-circle. 
 The anti-circle with the center in the origin of the space M2 and radius 1 is 
the isoperimetric T. 

 3. Isoperimetric inequality in the space M2 

 Let { }nt,,0  be minkowskian frame with respect to whom we consider the 
family of straight lines ( ) R∈ρρ+ϕ−=ϕΔ ,: tnHx . 
 The function ( )ϕH  is a positive, periodic function with the period π2 , of 
class C2 and is called the support function ([1], [2]) for the convex envelope Γ  of 
the family of straight lines. This will have the tangential equation Γ :  
  ( ) ( )tHnHx ϕ+ϕ−= )1( . 
The length and the area determined by the convex and closed curve Γ  will be, 

  ( ) ( )∫
π

− ϕϕϕλ=
2

0

1 dHLΓ , 

          (8) 
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Using the notion of mixed area ([2]) for two closed, convex curves 1Γ  and 2Γ , of 
class C1, we obtain, 
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where iΓ  has the equation ( ) 2,1,)1( =+ϕ−= itHnHx iii , iH  being the support 
functions for the curves iΓ . 
 Because the indicatrix U has the area equal with π , Lebesgue measure on 

2R  coincides with minkowskian bidimensional measure on M2. 
 Therefore, by Brunn - Minkowski inequality ([3], [4]) we obtain, 

  ( ) 2121
2 , ΓΓΓΓ AAA ≥ ,     (9) 
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where 2,1, =iA iΓ  is the area determined by the curve iΓ . 

 For ΓΓ =1  and '
2 ΓΓ = , where 'Γ  are the equation anx −= , 0>a ,      

we have 
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 Replacing (10) in (9), we obtain the inequality, 
  '422

ΓΓ≥Γ AALa . 

 For 1=a  and T='Γ , we obtain following theorem: 

 Theorem 2. For every convex, closed curve 2M⊂Γ , of class C1, with 
area ΓA  and the length ΓL , the following isoperimetric inequality holds: 

  TAAL Γ42 ≥Γ ,       (11) 
where T is the isoperimetric of the space M2. 
 In (11) the equality holds only for T=Γ  or for every curve homothetic 
with T. 
 If the space M2 is the euclidian space, then π=TA  and from (11) we 

obtain classic inequality ΓΓ AL π≥ 42 . 

 4. The generalization of isoperimetric inequality in the space M2 

 Let 2MB ⊂  be a bounded and connected set and let *B  be the convex 
cover of B. 

 Theorem 3. The set of straight lines { }∅≠∩= BggX |  and 

{ }∅≠∩= *BggX |*  coincide. 
 The proof is mode by double inclusion. 

 Theorem 4. Let 2MB ⊂  be a convex and bounded set and ( )Bgξ  be 
minkowskian length of the linear set determined by the intersection B∩g . 
 Then, relativ to the elementary measure of the set of straight lines in the 
space M2, ( ) ϕ∧ϕλ= − ddd 1 Hg , we have ([5]): 
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  ( ) BTB AAgg
X

=ξ∫ d       (12) 

where TA  is the area of isoperimetric T and BA  is the area of the set B. 
 In space M2 holds Crofton's integral formula ([5]): 

  BLg
X

2d =ν∫ ,      (13) 

where ν  is the number of intersections of with the boundary B∂  of the set B and 
BL  is the length of the boundary B∂ , supposed of class C1. 

 If B is not a convex set, then in (12) 2≥ν  and we obtain, 
  ∫≥

X

gL dB .       (14) 

 When B is convex, ∫=
X

gL dB , because 2=ν . 

 The following theorem extend inequality (11). 

 Theorem 5. For every bounded an connected set 2MB ⊂  whose 
boundary B∂  is a closed curve of class C1, with the length BL , the inequality 
holds,  

  ( )∫ ξ≥
X

ggL d42
BB .      (15) 

 Proof. Let B* be the convex cover of the set B and let *B
L  be 

minkowskian length of its boundary. 
 Then, by (14) and theorem 3, we have, 
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By (11) and (12), for the convex set B* we have, 
  TBB

** AAL ≥2  and ( ) ** BTB
AAgg

X

=ξ∫
*

d , 

hence 
  ( )∫ ξ≥

*

d42

X
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.     (17) 

Because ∫=
*

d

X

gL *B
, by relations (16) and (17) we obtain, 
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  ( )∫∫∫ ξ≥=
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ggLggL ** BBB   (18) 

The inclusion *BB ⊂  implies that *BB ∩⊂∩ gg , for all g. Hence 
*BB ∩≤∩ gg , that is ( ) ( )gg BB

ξ≥ξ * . 

So relation (18) becomes (15), that is 
 ( ) ( )∫∫ ξ=ξ≥

XX

ggggL d4d4
*

2
BBB .    (19) 

In case that B is convex, from (15) and (12) it can be obtained relation (11). 
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