

ISOPERIMETRIC INEQUALITIES IN MINKOWSKI SPACE M_2

Radu F. CONSTANTIN¹

In prima parte a acestei lucrări sunt prezentate două formule variaționale în spațiul M_2 , obținute de O. Biberstein în ([1]). Acestea conduc la problema izoperimetrică rezolvată de H. Busemann în ([2]), ([3]).

Autorul obține inegalitatea, $a^2 L_\Gamma^2 \geq 4A_\Gamma A_{\Gamma'}$, unde Γ este o curbă convexă, închisă de clasa C^1 în spațiul M_2 , cu lungimea L_Γ și aria A_Γ . Curba Γ' este un anti-cerc în spațiul M_2 , cu raza $a > 0$ și aria $A_{\Gamma'}$.

Dacă $a = 1$ și $\Gamma' = T$, unde T este izoperimetrica spațiului M_2 , se obține inegalitatea izoperimetrică, $L^2 \geq 4A_\Gamma A_T$, unde A_T este aria izoperimetrică.
În partea a doua a lucrării, această inegalitate este generalizată pentru curbe închise din spațiul M_2 , care nu sunt convexe.

In the first part of this paper are presented two variational formulas in the space M_2 , obtained by O. Biberstein in ([1]). These lead to the isoperimetric problem solved by H. Busemann in ([2]), ([3]).

The author obtain the inequality, $a^2 L_\Gamma^2 \geq 4A_\Gamma A_{\Gamma'}$, where Γ is a convex, closed curve of class C^1 in M_2 space, with the length L_Γ and the area A_Γ . The curve Γ' is a anti-cercle in M_2 space, with the radius $a > 0$ and area $A_{\Gamma'}$.

If $a = 1$ and $\Gamma' = T$, where T is the isoperimetric in M_2 space, we obtain the isoperimetric inequality, $L^2 \geq 4A_\Gamma A_T$, where A_T is the area of isoperimetric T .

In the second part of the paper, this inequality is generalized for closed curves in M_2 , which are not convex.

1. Introduction

Let \mathbf{V}_n be a differentiable manifold of class C^1 and let \mathbf{F} be a family of submanifolds of dimension $p < n$, which depend on r real parameters.

¹ Reader, Dept. of Mathematics II, University "Politehnica" of Bucharest, ROMANIA

An arbitrary submanifold $S_p \in \mathbf{F}$ is given by a submersion which is represented with respect to two local maps $(H_1; x^1, \dots, x^n)$ on \mathbf{V}_n and $(H_2; u^1, \dots, u^p)$ on S_p as follows:

$$x^i = x^i(u^1, \dots, u^p, \alpha^1, \dots, \alpha^r) \quad i = \overline{1, n} \quad (1)$$

where the functions x^i are of class C^1 relative to $u^j, \alpha^k, j = \overline{1, p}, k = \overline{1, r}$.

Let ω be a differentiable p -form of class C^1 on \mathbf{V}_n and $\omega \bullet \mathbf{v}$ the inner product of the vector field \mathbf{v} defined on \mathbf{V}_n with the differentiable form ω .

For each $S_p \in \mathbf{F}$ we consider functional

$$I = \int_{S_p} \omega. \quad (2)$$

Throughout this paper, the manifold \mathbf{V}_n will be replaced with Minkowski space \mathbf{M}_2 , and instead of relation (1) we shall use the vectorial notation,

$$\bar{\mathbf{M}} = \bar{\mathbf{M}}(u^1, \dots, u^p, \alpha^1, \dots, \alpha^r). \quad (3)$$

We denote

$$\delta I = \sum_{k=1}^r \frac{\partial I}{\partial \alpha^k} \delta \alpha^k, \quad \delta \bar{\mathbf{M}} = \sum_{k=1}^r \frac{\partial \bar{\mathbf{M}}}{\partial \alpha^k} \delta \alpha^k.$$

The variation of the functional (2) will be:

$$\delta I = \int_{S_p} d\omega \bullet \delta \bar{\mathbf{M}} + \int_{\partial S_p} \omega \bullet \delta \bar{\mathbf{M}}, \quad (4)$$

where ∂S_p is the boundary of the manifold S_p and $d\omega$ is the exterior differential of the form ω .

It is known ([1], [5]) that fixing in space \mathbf{R}^2 a closed, convex curve \mathbf{U} of class C^3 , without stationary points, with area π and central symmetric with respect to the origin \mathbf{O} , it can be defined minkowskian norm in \mathbf{M}_2 .

The curve \mathbf{U} named indicatrix has the parametric equation:

$$t = t(\varphi), \quad 0 \leq \varphi \leq 2\pi,$$

where φ represents the double of the area of the sector $(\mathbf{O}, \mathbf{t}_0, t)$, named the amplitude of t .

The vector \mathbf{t}_0 corresponds to a fixed point on \mathbf{U} .

The curve \mathbf{T} , $x = -n(\varphi)$, where $n(\varphi) = \frac{dt}{d\varphi}$ is named the isoperimetric of the space M_2 ([3]).

Minkowian frames will be those affine frames with respect to whom the area of the indicatrix \mathbf{U} is π .

The geometrical interpretation of the parameter φ leads to the relation:

$$[t, n] = 1,$$

where by $[x, y]$ we denote the determinant constructed on the vectors $x, y \in M_2$, relative to a minkowskian basis.

Minkowskian curvature of the curve \mathbf{T} will be denoted by $\lambda(\varphi)$ and satisfies the relation:

$$\frac{d n}{d \varphi} = -\lambda^{-1}(\varphi) t, \quad (5)$$

where $\lambda(\varphi) > 0$.

Let $\{M, e_1, e_2\}$ be a minkowskian frame. Then the motion equations are ([1]):

$$d\bar{\mathbf{M}} = \sigma_1 e_1 + \sigma_2 e_2; \quad d e_1 = e_2 d\varphi, \quad d e_2 = -\lambda^{-1}(\varphi) e_1 d\varphi,$$

where φ is the amplitude of the vector e_1 on the indicatrix \mathbf{U} .

Structure equations will be:

$$d\sigma_1 = \lambda^{-1}(\varphi) \sigma_2 \wedge d\varphi, \quad d\sigma_2 = \sigma_1 \wedge d\varphi.$$

2. Isoperimetric problem in the space M_2

Let Γ_α be a family of closed curves in the space M_2 , depending on the differentiable parameter $\alpha \in \mathbf{R}^2$, given by the vectorial equation:

$$\bar{\mathbf{M}} = \bar{\mathbf{M}}(s, \alpha),$$

where $\bar{\mathbf{M}}$ is a function of class C^1 relative to minkowskian arc s .

We consider the functionals:

$$L(\alpha) = \int_{\Gamma_\alpha} \omega_1,$$

that represent the length of a curve from the family Γ_α , where $\omega_1 = \sigma_1 = ds$ and

$$A(\alpha) = \int_{\Gamma_\alpha} \omega_2,$$

that represent the area of a curve from the family Γ_α ,

$$\omega_2 = \frac{1}{2} [\bar{\mathbf{M}}, d\bar{\mathbf{M}}].$$

Using relation (4) for closed curves we obtain

$$\frac{dL}{d\alpha} = \int_{\Gamma_\alpha} d\omega_1 \bullet \frac{\partial \bar{\mathbf{M}}}{\partial \alpha}, \quad \frac{dA}{d\alpha} = - \int_{\Gamma_\alpha} d\omega_2 \bullet \frac{\partial \bar{\mathbf{M}}}{\partial \alpha},$$

because both integrals in (4) extended to $\partial\Gamma_\alpha$ will be zero.

Along the curve Γ_α we have,

$$\frac{\partial \bar{\mathbf{M}}}{\partial \alpha} = a_1(s)e_1 + a_2(s)e_2,$$

where $\{\mathbf{M}, e_1, e_2\}$ is Frenet frame associated to the curve Γ_α in the point $\bar{\mathbf{M}}(s, \alpha)$.

We obtain,

$$\begin{aligned} d\sigma_1 \bullet \frac{\partial \bar{\mathbf{M}}}{\partial \alpha} &= \lambda^{-1}(\varphi)(\sigma_2 \wedge d\varphi) \bullet \frac{\partial \bar{\mathbf{M}}}{\partial \alpha} = -\lambda^{-1}(\varphi) \left(\sigma_2 \bullet \frac{\partial \bar{\mathbf{M}}}{\partial \alpha} \right) d\varphi + \\ &+ \lambda^{-1}(\varphi) \left(d\varphi \bullet \frac{\partial \bar{\mathbf{M}}}{\partial \alpha} \right) \sigma_2. \end{aligned}$$

Along the curve Γ_α , we have $\sigma_2 = 0$ and when we pass from a curve to another curve from the family Γ_α , $\alpha \in \mathbf{R}$, the value of the form σ_2 is

$$\sigma_2 \bullet \frac{\partial \bar{\mathbf{M}}}{\partial \alpha} = a_2(s).$$

It results the variational formula:

$$\frac{dL}{d\alpha} = - \int_{\Gamma_\alpha} \lambda^{-1} a_2(s) \frac{d\varphi}{ds} ds = - \int_{\Gamma_\alpha} \tilde{k}(s) a_2(s) ds, \quad (6)$$

where $\tilde{k} = \lambda^{-1}(\varphi) \frac{d\varphi}{ds} = \lambda^{-1}(\varphi) k$.

The curvature of the curve Γ_α in the point $\bar{\mathbf{M}}(s, \alpha)$ is $k = \frac{d\varphi}{ds}$, and \tilde{k} is

its anti-curvature in the same point.

In the same way, we obtain the second variational formula,

$$\frac{dA}{d\alpha} = - \int_{\Gamma_\alpha} a_2(s) ds. \quad (7)$$

Theorem 1. Let be a curve from the family Γ_α which varies such that $\frac{dA}{d\alpha} = 0$. In order that such a curve satisfies the condition $\frac{dL}{d\alpha} = 0$ it is necessary and sufficient that along this curve its anti-curvature \tilde{k} should be constant, i.e. Γ_α is anti-circle.

The anti-circle with the center in the origin of the space M_2 and radius 1 is the isoperimetric \mathbf{T} .

3. Isoperimetric inequality in the space M_2

Let $\{0, t, n\}$ be minkowskian frame with respect to whom we consider the family of straight lines $\Delta\varphi : x = -H(\varphi)n + \rho t$, $\rho \in \mathbf{R}$.

The function $H(\varphi)$ is a positive, periodic function with the period 2π , of class C^2 and is called the support function ([1], [2]) for the convex envelope Γ of the family of straight lines. This will have the tangential equation Γ :

$$x = -H(\varphi)n + H^{(1)}(\varphi)t.$$

The length and the area determined by the convex and closed curve Γ will be,

$$L_\Gamma = \int_0^{2\pi} \lambda^{-1}(\varphi) H(\varphi) d\varphi, \quad (8)$$

$$A_\Gamma = \frac{1}{2} \int_0^{2\pi} \left[x, \frac{dx}{d\varphi} \right] d\varphi = \frac{1}{2} \int_0^{2\pi} \left(\lambda^{-1}(\varphi) H^2(\varphi) - H^{(1)}(\varphi)^2 \right) d\varphi.$$

Using the notion of mixed area ([2]) for two closed, convex curves Γ_1 and Γ_2 , of class C^1 , we obtain,

$$A(\Gamma_1, \Gamma_2) = \frac{1}{2} \int_0^{2\pi} \left[x_1, \frac{dx_2}{d\varphi} \right] d\varphi,$$

where Γ_i has the equation $x_i = -H_i(\varphi)n + H_i^{(1)}t$, $i = 1, 2$, H_i being the support functions for the curves Γ_i .

Because the indicatrix \mathbf{U} has the area equal with π , Lebesgue measure on \mathbf{R}^2 coincides with minkowskian bidimensional measure on M_2 .

Therefore, by Brunn - Minkowski inequality ([3], [4]) we obtain,

$$A^2(\Gamma_1, \Gamma_2) \geq A_{\Gamma_1} A_{\Gamma_2}, \quad (9)$$

where A_{Γ_i} , $i = 1, 2$ is the area determined by the curve Γ_i .

For $\Gamma_1 = \Gamma$ and $\Gamma_2 = \Gamma'$, where Γ' are the equation $x = -an$, $a > 0$, we have

$$\begin{aligned} A(\Gamma, \Gamma') &= \frac{1}{2} \int_0^{2\pi} \left[-H(\varphi)n + H^{(1)}(\varphi)t, -a \frac{dn}{d\varphi} \right] d\varphi = \\ &= \frac{a}{2} \int_0^{2\pi} H(\varphi) \lambda^{-1}(\varphi) d\varphi = \frac{a}{2} L_\Gamma. \end{aligned} \quad (10)$$

Replacing (10) in (9), we obtain the inequality,

$$a^2 L_\Gamma^2 \geq 4A_\Gamma A_{\Gamma'}.$$

For $a = 1$ and $\Gamma' = T$, we obtain following theorem:

Theorem 2. For every convex, closed curve $\Gamma \subset \mathbf{M}_2$, of class C^1 , with area A_Γ and the length L_Γ , the following isoperimetric inequality holds:

$$L_\Gamma^2 \geq 4A_\Gamma A_T, \quad (11)$$

where T is the isoperimetric of the space \mathbf{M}_2 .

In (11) the equality holds only for $\Gamma = T$ or for every curve homothetic with T .

If the space \mathbf{M}_2 is the euclidian space, then $A_T = \pi$ and from (11) we obtain classic inequality $L_\Gamma^2 \geq 4\pi A_\Gamma$.

4. The generalization of isoperimetric inequality in the space \mathbf{M}_2

Let $\mathbf{B} \subset \mathbf{M}_2$ be a bounded and connected set and let \mathbf{B}^* be the convex cover of \mathbf{B} .

Theorem 3. The set of straight lines $X = \{g \mid g \cap \mathbf{B} \neq \emptyset\}$ and $X^* = \{g \mid g \cap \mathbf{B}^* \neq \emptyset\}$ coincide.

The proof is made by double inclusion.

Theorem 4. Let $\mathbf{B} \subset \mathbf{M}_2$ be a convex and bounded set and $\xi_g(\mathbf{B})$ be minkowskian length of the linear set determined by the intersection $g \cap \mathbf{B}$.

Then, relativ to the elementary measure of the set of straight lines in the space \mathbf{M}_2 , $d g = \lambda^{-1}(\varphi) d H \wedge d\varphi$, we have ([5]):

$$\int_X \xi_{\mathbf{B}}(g) d g = A_{\mathbf{T}} A_{\mathbf{B}} \quad (12)$$

where $A_{\mathbf{T}}$ is the area of isoperimetric \mathbf{T} and $A_{\mathbf{B}}$ is the area of the set \mathbf{B} .

In space M_2 holds Crofton's integral formula ([5]):

$$\int_X v d g = 2L_{\mathbf{B}}, \quad (13)$$

where v is the number of intersections of with the boundary $\partial\mathbf{B}$ of the set \mathbf{B} and $L_{\mathbf{B}}$ is the length of the boundary $\partial\mathbf{B}$, supposed of class C^1 .

If \mathbf{B} is not a convex set, then in (12) $v \geq 2$ and we obtain,

$$L_{\mathbf{B}} \geq \int_X d g. \quad (14)$$

When \mathbf{B} is convex, $L_{\mathbf{B}} = \int_X d g$, because $v = 2$.

The following theorem extend inequality (11).

Theorem 5. For every bounded and connected set $\mathbf{B} \subset M_2$ whose boundary $\partial\mathbf{B}$ is a closed curve of class C^1 , with the length $L_{\mathbf{B}}$, the inequality holds,

$$L_{\mathbf{B}}^2 \geq 4 \int_X \xi_{\mathbf{B}}(g) d g. \quad (15)$$

Proof. Let \mathbf{B}^* be the convex cover of the set \mathbf{B} and let $L_{\mathbf{B}^*}$ be minkowskian length of its boundary.

Then, by (14) and theorem 3, we have,

$$L_{\mathbf{B}}^2 \geq \left(\int_X d g \right)^2 = \left(\int_{X^*} d g \right)^2. \quad (16)$$

By (11) and (12), for the convex set \mathbf{B}^* we have,

$$L_{\mathbf{B}^*}^2 \geq A_{\mathbf{B}^*} A_{\mathbf{T}} \text{ and } \int_{X^*} \xi_{\mathbf{B}^*}(g) d g = A_{\mathbf{T}} A_{\mathbf{B}^*},$$

hence

$$L_{\mathbf{B}^*}^2 \geq 4 \int_{X^*} \xi_{\mathbf{B}^*}(g) d g. \quad (17)$$

Because $L_{\mathbf{B}^*} = \int_{X^*} d g$, by relations (16) and (17) we obtain,

$$L_{\mathbf{B}}^2 \geq \left(\int_X d g \right)^2 = \left(\int_{X^*} d g \right)^2 = L_{\mathbf{B}^*}^2 \geq 4 \int_{X^*} \xi_{\mathbf{B}^*}(g) d g \quad (18)$$

The inclusion $\mathbf{B} \subset \mathbf{B}^*$ implies that $g \cap \mathbf{B} \subset g \cap \mathbf{B}^*$, for all g . Hence $\|g \cap \mathbf{B}\| \leq \|g \cap \mathbf{B}^*\|$, that is $\xi_{\mathbf{B}^*}(g) \geq \xi_{\mathbf{B}}(g)$.

So relation (18) becomes (15), that is

$$L_{\mathbf{B}}^2 \geq 4 \int_{X^*} \xi_{\mathbf{B}}(g) d g = 4 \int_X \xi_{\mathbf{B}}(g) d g. \quad (19)$$

In case that \mathbf{B} is convex, from (15) and (12) it can be obtained relation (11).

R E F E R E N C E S

1. *Biberstein O.*, Elements de géometrie différentielle Minkowskienne, Thése de Decteur, Université de Montreal, 1957
2. *Busemann H.*, The Foundations of Minkowskian Geometry, Com. Math. Helv. **24**, fasc 2, 156 - 186, 1950
3. *Busemann H.*, The Isoperimetric Problem in the Minkowski Plane, Am. Journ. of Math., vol. LXIX, No. 4, 863-871, 1950
4. *Bonensen T., Fenchel W.*, Teorie der konvexen korper, Ergeb. der Math. Springer, Berlin, 1934
5. *Chakerian G. D.*, Integral Geometry in the Minkowski Plane, Duke Math. J., 375-382, 1960
6. *Chakerian G. D.*, The Isoperimetric Problem in the Minkowski Plane, Am. Math. Monthly, 67, 1002-1004, 1962
7. *Doubrrovine B., Novikov S., Fomenko A.*, Géométrie contemporaine, Editions MIR, Moscow, 1982
8. *Efimov N. V., Rozendorn E. R.*, Linear algebra and multidimensional geometry, MIR Publishers, Moskow, 1975
9. *Gheorghiev Gh., Opoiu V.*, Differentiable Manifolds, Ed. Academiei, Romania, 1976