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FOR SOLVING FIXED POINTS

AND PSEUDOMONOTONE VARIATIONAL INEQUALITIES
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Fixed point problems and pseudomonotone variational inequalities have been

studied extensively. An additional assumption “weak sequential continuity” imposed on

pseudomonotone operators is used. This paper devotes to construct an iterative algo-

rithm for finding a common point of fixed point problems and pseudomonotone varia-

tional inequalities under a weaker assumption than weak sequential continuity imposed

on pseudomonotone operators. Strong convergence result of the proposed algorithm is

shown.
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1. Introduction

Let H be a real Hilbert space endowed with inner product and induced norm denoted
by 〈·, ·〉 and ‖ · ‖, respectively. Let ∅ 6= C ⊂ H be a closed and convex set.

Let ϕ : C → C be a nonlinear operator. Recall that the classical variational inequality
is to seek a point u† ∈ C such that

〈ϕ(u†), u− u†〉 ≥ 0, ∀u ∈ C. (1)

The solution set of variational inequality (1) is denoted by V I(C, ϕ).
Variational inequality theory was introduced by Stampacchia ([19]) as a tool for the 

study of partial differential equations with applications principally drawn from mechanics. 
Such variational inequality unveiled its methodology for the study of problems in econom-ics, 
operations research and engineering, see [[1, 12, 13, 30, 33, 41]. Variational inequality theory 
provides us with algorithms with accompanying convergence analysis for computational pur-
poses. It contains, as special cases, such well-known problems in mathematical programming 
as: systems of nonlinear equations, optimization problems ([32, 37, 45]), complementarity 
prob-lems and fixed point problems ([8, 20, 25, 26, 28, 35, 39, 40]). For more information, the 
reader can refer to [4, 7, 21, 22, 27, 31, 36, 42].

One of the most important algorithms for solving VI (1) is projection algorithm 
([1, 10, 11]) which generates a sequence {xn} by the following rule

xn+1 = PC [xn − τnϕ(xn)], n ≥ 0, (2)

where PC : H → C is the Orthogonal projection and {τn} is a candidated stepsize sequence.
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In algorithm (2), operator ϕ must be Lipschitz continuous and strongly monotone or 
inverse strongly monotone. To weaken these assumptions, Korpelevich [19] proposed ex-
tragradient method. Extragradient algorithm and its variant form have been studied for 
solving monotone variational inequalities. Please refer to [1, 12, 13, 30, 33, 41]. Especially, 
Ceng, Teboulle and Yao [5] demonstrated the convergence analysis of extragradient algorithm 
for solving the pseudomonotone variational inequality and fixed point problems. In order to 
achieve the weak convergence result, in [5], an additional condition “sequentially weak-to-
strong continuity” was imposed on pseudomonotone operator ϕ. However, this additional 
hypothesis is not satisfied even for the identity operator. Subsequently, Vuong [23] weaken 
this hypothesis imposed on ϕ to a weaker condition “sequentially weak-to-weak continuity”.

On the other hand, in order to solve variational inequality (1), the Lipschitz constant 
of ϕ may be difficult to estimate, even if the underlying mapping is linear. For solving this 
difficulty, some self-adaptive methods for solving variational inequality problems have been 
developed. The advantage of self-adaptive method lies in the fact that prior information on 
Lipschitz constant of ϕ is not required, and convergence is still guaranteed, see [14, 15, 16, 18].

Motivated by the work in this field, the purpose of this paper is to investigate the prob-
lem of fixed point of pseudocontractive operator and pseudomonotone variational inequality. 
We construct an iterative algorithm for finding a common point of fixed point problems and 
pseudomonotone variational inequalities under a weaker assumption than weak sequential 
continuity imposed on ϕ. Strong convergence result of the proposed algorithm is shown.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. ⇀ means the 
weak convergence and → means the strong convergence. Use ωw(un) to denote the set of all 
weak cluster points of the sequence {un}, i.e., ωw(un) = {u† : ∃{uni } ⊂ {un} such that uni ⇀
u† as i → ∞}.

A bounded linear operator Φ is said to be κ̂-strongly positive on H if there exists a 
constant κ̂ > 0 such that

〈Φ(x), x〉 ≥ κ̂‖x‖2, ∀x ∈ H.

An operator φ : C → C is said to be

(i) pseudocontractive if

‖φ(u)− φ(u†)‖2 ≤ ‖u− u†‖2 + ‖(I − φ)u− (I − φ)u†‖2, ∀u, u† ∈ C.

(ii) β-Lipschitz if there exists a constant β ≥ 0 such that

‖φ(u)− φ(u†)‖ ≤ β‖u− u†‖, ∀u, u† ∈ C.

If β < 1, then φ is said to be β-contractive.

Use Fix(φ) to mean the set of fixed points of φ.
An operator ϕ is said to be

(i) monotone on C if

〈ϕ(u)− ϕ(u†), u− u†〉 ≥ 0, ∀u, u† ∈ C.

(ii) pseudomonotone on H if

〈ϕ(ũ), u− ũ〉 ≥ 0⇒ 〈ϕ(u), u− ũ〉 ≥ 0, ∀u, ũ ∈ H.

(iii) weakly sequentially continuous, if for given sequence {xn} ⊂ C satisfying xn ⇀ x̃, we
conclude that ϕ(xn) ⇀ ϕ(x̃).
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For given u† ∈ H, there exists a unique point in C, denoted by PC [u†] such that

‖u† − PC [u†]‖ ≤ ‖x− u†‖, ∀x ∈ C.
It is known that PC is firmly nonexpansive, that is, PC satisfies

‖PC [q∗]− PC [q†]‖2 ≤ 〈PC [q∗]− PC [q†], q∗ − q†〉, ∀q∗, q† ∈ H.
Moreover, PC satisfies the following inequality

〈q∗ − PC [q∗], q† − PC [q∗]〉 ≤ 0, ∀q∗ ∈ H, q† ∈ C. (3)

Lemma 2.1 ([?]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
φ : C → C be a β2-Lipschitz pseudocontractive operator. Let γ be a constant in (0, 1√

1+β2
2+1

).

Then,

‖φ[(1− γ)x+ γφ(x)]− p̂‖2 ≤ ‖x− p̂‖2 + (1− γ)‖φ[(1− γ)x+ γφ(x)]− x‖2,

for all x ∈ C and p̂ ∈ Fix(φ).

Lemma 2.2 ([?]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
φ : C → C be a continuous pseudocontractive operator. Then φ is demi-closed, namely,

{un}∞n=0 ⊂ C
un ⇀ ũ ∈ C
φ(un)→ u†

⇒ φ(ũ) = u†.

Lemma 2.3 ([?]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
ϕ be a continuous and pseudomonotone operator on H. Then x† ∈ V I(C,ϕ) iff x† solves
the following variational inequality

〈ϕ(p†), p† − x†〉 ≥ 0, ∀p† ∈ C.

Lemma 2.4 ([?]). Let {zn} ⊂ (0,∞), {αn} ⊂ (0, 1) and {sn} be three real number sequences.
If zn+1 ≤ (1 − αn)zn + sn,∀n ≥ 0 with

∑∞
n=1 αn = ∞ and lim supn→∞ sn/αn ≤ 0 or∑∞

n=1 |sn| <∞, then limn→∞ zn = 0.

3. Main results

In this section, we first construct an iterative algorithm for finding a common point
of fixed point of pseudocontractive operator φ and a solution of pseudomonotone variational
inequality (1). Subsequently, we give the convergence analysis of the proposed algorithm.

Let C be a nonempty convex closed subset of a real Hilbert space H. Let ψ : C → C
be a ρ-contractive operator. Let Φ be a κ̂-strongly positive bounded linear operator on
H. Let the operator ϕ be pseudomonotone on H and β1-Lipschitz continuous on C. Let
φ : C → C be a β2-Lipschitz pseudocontractive operator. Suppose that the operator ϕ
possesses the property (WSC):

{un}∞n=0 ⊂ H
un ⇀ u ∈ H

lim infn→∞ ‖ϕ(un)‖ = 0

⇒ ϕ(u) = 0.

Remark 3.1. It is obviously that if ϕ is sequentially weakly continuous, then ϕ satisfies the
above property (WSC).

Let {ϑn}, {γn} and {αn} be three real number sequences in (0, 1). Let κ, ς, $, ζ and
β be five constants. Suppose that these iterative parameters satisfy the following conditions:

(C1): β1 > 0, β2 > 1 and 0 < ϑ < ϑn < ϑ < γn < γ < 1√
1+β2

2+1
(∀n ≥ 0);

(C2): κ̂ > 0, ρ ∈ (0, 1), κ ∈ (0, 1), ς ∈ (0, 1), $ ∈ (0, 1), ζ ∈ (0, 2) and βρ < κ̂;
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(C3): limn→∞ αn = 0 and
∑∞
n=0 αn =∞.

In the sequel, assume that Ω := Fix(φ)∩V I(C,ϕ) 6= ∅. In this position, we state our
algorithm below.

Algorithm 3.1. Take any initial value x0 ∈ C and set n = 0.
Step 1. Assume that xn is known and calculate

vn = (1− ϑn)xn + ϑnφ[(1− γn)xn + γnφ(xn)]. (4)

Step 2. Finding the smallest nonnegative integer int(vn) such that

un = PC [vn − κςint(vn)ϕ(vn)], (5)

and

κςint(vn)‖ϕ(un)− ϕ(vn)‖ ≤ $‖un − vn‖. (6)

If un = vn, then set yn = vn and go to Step 3. Otherwise, calculate

yn = PC

[
vn + ζ(1−$)‖un − vn‖2

un − vn − κςint(vn)ϕ(un)

‖un − vn − κςint(vn)ϕ(un)‖2
]
. (7)

Step 3. Calculate

xn+1 = PC [αnβψ(xn) + (I − αnΦ)yn]. (8)

Step 4. Set n := n+ 1 and return to Step 1.

Remark 3.2. (i) There exits int(vn) such that (5) and (6) are satisfied. (ii) 0 < ς$
κβ1

<

ςint(vn) ≤ 1(n ≥ 0). (iii) If vn = PC [vn − κςint(vn)ϕ(vn)], then vn ∈ V I(C,ϕ).

Proposition 3.1. un − vn − κςint(vn)ϕ(un) 6= 0(∀n ≥ 0) and furthermore, for any p̂ ∈
V I(C,ϕ),

〈un − vn − κςint(vn)ϕ(un), vn − p̂〉 ≤ −(1−$)‖un − vn‖2 < 0. (9)

Proof. From the property (3) of projection PC and (5), we have

〈un − vn + κςint(vn)ϕ(vn), un − p̂〉 ≤ 0. (10)

Note that

〈un − vn − κςint(vn)ϕ(un), vn − p̂〉

= 〈un − vn + κςint(vn)ϕ(vn), vn − p̂〉 − κςint(vn)〈ϕ(vn), vn − p̂〉

− κςint(vn)〈ϕ(un), vn − un〉 − κςint(vn)〈ϕ(un), un − p̂〉

= 〈un − vn + κςint(vn)(ϕ(vn)− ϕ(un)), vn − un〉 − κςint(vn)〈ϕ(vn), vn − p̂〉

+ 〈un − vn + κςint(vn)ϕ(vn), un − p̂〉 − κςint(vn)〈ϕ(un), un − p̂〉.

(11)

Since 〈ϕ(p̂), vn− p̂〉 ≥ 0 and 〈ϕ(p̂), un− p̂〉 ≥ 0, it follows from the pseudomonotonicity of ϕ
that 〈ϕ(vn), vn − p̂〉 ≥ 0 and 〈ϕ(un), un − p̂〉 ≥ 0. This together with (10) and (11) implies
that

〈un − vn − κςint(vn)ϕ(un), vn − p̂〉 ≤ 〈un − vn + κςint(vn)(ϕ(vn)− ϕ(un)), vn − un〉

≤ −‖un − vn‖2 + κςint(vn)‖ϕ(vn)− ϕ(un)‖‖vn − un‖.
(12)

By (6) and (12), we can obtain the desired result (9). �

Next, we prove the convergence of the sequence {xn} generated by Algorithm 3.1.

Theorem 3.1. The sequence {xn} generated by Algorithm 3.1 converges strongly to q† =
PΩ(I − Φ + βψ)q†.
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Proof. Let p̂ ∈ Ω. It is well known that in any real Hilbert space H, for any u, v ∈ H and
ϑ ∈ R, we have the following equality

‖ϑu+ (1− ϑ)v‖2 = ϑ‖u‖2 + (1− ϑ)‖v‖2 − ϑ(1− ϑ)‖u− v‖2. (13)

With the help of above equality (13), by (4), we obtain

‖vn − p̂‖2 = ‖(1− ϑn)(xn − p̂) + ϑn(φ[(1− γn)xn + γnφ(xn)]− p̂)‖2

= (1− ϑn)‖xn − p̂‖2 + ϑn‖φ[(1− γn)xn + γnφ(xn)]− p̂‖2

− ϑn(1− ϑn)‖φ[(1− γn)xn + γnφ(xn)]− xn‖2.
(14)

According to Lemma 2.1, we have

‖φ[(1− γn)xn + γnφ(xn)]− p̂‖2 ≤ (1− γn)‖φ[(1− γn)xn + γnφ(xn)]− xn‖2

+ ‖xn − p̂‖2.
(15)

It follows from (14) and (15) that

‖vn − p̂‖2 ≤ (1− ϑn)‖xn − p̂‖2 − ϑn(1− ϑn)‖φ[(1− γn)xn + γnφ(xn)]− xn‖2

+ ϑn(‖xn − p̂‖2 + (1− γn)‖φ[(1− γn)xn + γnφ(xn)]− xn‖2)

= ‖xn − p̂‖2 + ϑn(ϑn − γn)‖φ[(1− γn)xn + γnφ(xn)]− xn‖2.
(16)

Since PC is nonexpansive, from (7), one has

‖yn − p̂‖2 = ‖PC
[
vn + ζ(1−$)‖un − vn‖2

un − vn − κςint(vn)ϕ(un)

‖un − vn − κςint(vn)ϕ(un)‖2
]
− p̂‖2

≤
∥∥∥vn − p̂+ ζ(1−$)‖un − vn‖2

un − vn − κςint(vn)ϕ(un)

‖un − vn − κςint(vn)ϕ(un)‖2
∥∥∥2

= ‖vn − p̂‖2 +
2ζ(1−$)‖un − vn‖2

‖un − vn − κςint(vn)ϕ(un)‖2
〈un − vn − κςint(vn)ϕ(un), vn − p̂〉

+
ζ2(1−$)2‖un − vn‖4

‖un − vn − κςint(vn)ϕ(un)‖2
,

which together with (9) and (16) implies that

‖yn − p̂‖2 ≤ ‖vn − p̂‖2 +
ζ2(1−$)2‖un − vn‖4

‖un − vn − κςint(vn)ϕ(un)‖2
− 2ζ(1−$)2‖un − vn‖4

‖un − vn − κςint(vn)ϕ(un)‖2

= ‖vn − p̂‖2 −
(2− ζ)ζ(1−$)2‖un − vn‖4

‖un − vn − κςint(vn)ϕ(un)‖2

≤ ‖xn − p̂‖2 + ϑn(ϑn − γn)‖φ[(1− γn)xn + γnφ(xn)]− xn‖2

− (2− ζ)ζ(1−$)2‖un − vn‖4

‖un − vn − κςint(vn)ϕ(un)‖2

≤ ‖xn − p̂‖2.

(17)

Since Φ is bounded linear, we have

‖1− αnΦ‖ = sup{〈(1− αnΦ)u, u〉 : u ∈ H, ‖u‖ = 1}
= sup{1− αn〈Φ(u), u〉 : u ∈ H, ‖u‖ = 1}.

This together with the strong positivity of Φ implies that

‖1− αnΦ‖ ≤ 1− αnκ̂.
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From (8) and (17), we get

‖xn+1 − p̂‖ = ‖PC [αnβψ(xn) + (I − αnΦ)yn]− p̂‖
≤ (I − αnΦ)‖yn − p̂‖+ αnβ‖ψ(xn)− ψ(p̂)‖+ αn‖βψ(p̂)− Φ(p̂)‖
≤ (1− αnκ̂)‖xn − p̂‖+ αnβρ‖xn − p̂‖+ αn‖βψ(p̂)− Φ(p̂)‖
= [1− (κ̂− βρ)αn]‖xn − p̂‖+ αn‖βψ(p̂)− Φ(p̂)‖.

Subsequently, by induction, we get that ‖xn− p̂‖ ≤ max{‖βψ(p̂)−Φ(p̂)‖
κ̂−βρ , ‖x0− p̂‖}. Thus, the

sequences {xn}, {vn} and {yn} are bounded.
By virtue of (3) and (8), we achieve

‖xn+1 − p̂‖2 = ‖PC [αnβψ(xn) + (I − αnΦ)yn]− PC [p̂]‖2

≤ 〈αnβψ(xn) + (I − αnΦ)yn − p̂, xn+1 − p̂〉
= βαn〈ψ(xn)− ψ(p̂), xn+1 − p̂〉+ αn〈βψ(p̂)− Φ(p̂), xn+1 − p̂〉

+ (I − αnΦ)〈yn − p̂, xn+1 − p̂〉
≤ βραn‖xn − p̂‖‖xn+1 − p̂‖+ αn〈βψ(p̂)− Φ(p̂), xn+1 − p̂〉

+ ‖I − αnΦ‖‖yn − p̂‖‖xn+1 − p̂‖
≤ [βραn‖xn − p̂‖+ (1− κ̂αn)‖yn − p̂‖)‖xn+1 − p̂‖

+ αn〈βψ(p̂)− Φ(p̂), xn+1 − p̂〉

≤ [βραn‖xn − p̂‖+ (1− κ̂αn)‖yn − p̂‖]2

2
+
‖xn+1 − p̂‖2

2
+ αn〈βψ(p̂)− Φ(p̂), xn+1 − p̂〉.

It follows that

‖xn+1 − p̂‖2 ≤ [κ̂αn
βρ

κ̂
‖xn − p̂‖+ (1− κ̂αn)‖yn − p̂‖]2 + 2αn〈βψ(p̂)− Φ(p̂), xn+1 − p̂〉

≤ βραn‖xn − p̂‖2 + (1− κ̂αn)‖yn − p̂‖2 + 2αn〈βψ(p̂)− Φ(p̂), xn+1 − p̂〉.
(18)

On account of (17) and (18), we have

‖xn+1 − p̂‖2 ≤ [1− (κ̂− βρ)αn]‖xn − p̂‖2 + 2αn〈βψ(p̂)− Φ(p̂), xn+1 − p̂〉
+ (1− κ̂αn)ϑn(ϑn − γn)‖φ[(1− γn)xn + γnφ(xn)]− xn‖2

− (1− κ̂αn)(2− ζ)ζ(1−$)2‖un − vn‖4

‖un − vn − κςint(vn)ϕ(un)‖2

≤ [1− (κ̂− βρ)αn]‖xn − p̂‖2 + (κ̂− βρ)αn

{
(1− κ̂αn)ϑn(ϑn − γn)

(κ̂− βρ)αn

×‖φ[(1− γn)xn + γnφ(xn)]− xn‖2 +
2αn

(κ̂− βρ)αn
〈βψ(p̂)− Φ(p̂), xn+1 − p̂〉

− (1− κ̂αn)(2− ζ)ζ(1−$)2

(κ̂− βρ)αn

‖un − vn‖4

‖un − vn − κςint(vn)ϕ(un)‖2

}
.

(19)

For any n ≥ 0, set zn = ‖xn − p̂‖2 and

wn =
(1− κ̂αn)ϑn(ϑn − γn)

(κ̂− βρ)αn
‖φ[(1− γn)xn + γnφ(xn)]− xn‖2

− (1− κ̂αn)(2− ζ)ζ(1−$)2

(κ̂− βρ)αn

‖un − vn‖4

‖un − vn − κςint(vn)ϕ(un)‖2

+
2

κ̂− βρ
〈βψ(p̂)− Φ(p̂), xn+1 − p̂〉.

(20)
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Inequality (19) can be rewritten as

zn+1 ≤ [1− (κ̂− βρ)αn]zn + (κ̂− βρ)αnwn, ∀n ≥ 0. (21)

Based on (20), we deduce

wn ≤
2

κ̂− βρ
〈βψ(p̂)− Φ(p̂), xn+1 − p̂〉 ≤

2

κ̂− βρ
‖ψ(p̂)− Φ(p̂)‖‖xn+1 − p̂‖.

It follows from the boundedness of {xn} that lim supn→∞ wn < +∞.
Next, we show that lim supn→∞ wn ≥ −1. If lim supn→∞ wn < −1, then there exists

m such that wn < −1 when n ≥ m. Hence, for all n ≥ m, from (21), we obtain

zn+1 ≤ [1− (κ̂− βρ)αn]zn − (κ̂− βρ)αn

≤ zn − (κ̂− βρ)αn.

So,

zn+1 ≤ zm − (κ̂− βρ)

n∑
k=m

αk,

which implies that

lim sup
n→∞

zn ≤ zm − (κ̂− βρ) lim sup
n→∞

n∑
k=m

αk = −∞.

This yields a contradiction. Therefore, −1 ≤ lim supn→∞ wn < +∞. At the same time,
noting that {xn} is bounded, pick up any x† ∈ ωw(xn). We can choose a subsequence {ni}
of {n} such that xni ⇀ x† ∈ C and

lim sup
n→∞

wn = lim
i→∞

wni
= lim
i→∞

[ϑni
(ϑni

− γni
)

(κ̂− βρ)

‖φ[(1− γni
)xni

+ γni
φ(xni

)]− xni
‖2

αni

− (2− ζ)ζ(1−$)2

(κ̂− βρ)

‖uni
− vni

‖4

‖uni
− vni

− κςint(vni
)ϕ(uni

)‖2αni

+
2

κ̂− βρ
〈βψ(p̂)− Φ(p̂), xni+1 − p̂〉

]
.

(22)

Since {xni+1} is bounded, without loss of generality, we assume that limi→∞
2

κ̂−βρ 〈βψ(p̂)−
Φ(p̂), xni+1 − p̂〉 exists. By (22), the limit

lim
i→∞

[ϑni
(ϑni

− γni
)

(κ̂− βρ)

‖φ[(1− γni
)xni

+ γni
φ(xni

)]− xni
‖2

αni

− (2− ζ)ζ(1−$)2

(κ̂− βρ)

‖uni
− vni

‖4

‖uni
− vni

− κςint(vni
)ϕ(uni

)‖2αni

] (23)

exists.
It follows from conditions (C1)-(C3) and (23) that

lim
i→∞

‖uni
− vni

‖4

‖uni − vni − κςint(vni
)ϕ(uni)‖2

= 0 (24)

and

lim
i→∞

‖φ[(1− γni
)xni

+ γni
φ(xni

)]− xni
‖2 = 0. (25)

Now, we show ωw(xn) ⊂ Fix(φ). Firstly, by the β2-Lipschit continuity of φ, we derive

‖φ(xni
)− xni

‖ ≤ ‖φ(xni
)− φ[(1− γni

)xni
+ γni

φ(xni
)]‖

+ ‖φ[(1− γni)xni + γniφ(xni)]− xni‖
≤ β2γni

‖φ(xni
)− xni

‖+ ‖φ[(1− γni
)xni

+ γni
φ(xni

)]− xni
‖,
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which leads to

‖φ(xni
)− xni

‖ ≤ 1

1− β2γni

‖φ[(1− γni
)xni

+ γni
φ(xni

)]− xni
‖.

Which together with (25) implies that

lim
i→∞

‖φ(xni)− xni‖ = 0.

At the same time, noting that xni
⇀ x†, by Lemma 2.2 and the last equality, we deduce

that x† ∈ Fix(φ). That is, ωw(xn) ⊂ Fix(φ). Next, we show that ωw(xn) ⊂ V I(C,ϕ).
In the light of (5), we obtain

‖un − p̂‖ ≤ ‖vn − p̂‖+ κςint(vn)‖ϕ(vn)‖. (26)

Since {vn} is bounded, {ϕ(vn)} is bounded due to the Lipschitz continuity of ϕ. Taking
account of (26), {un} is bounded. Thus, {un − vn − κςint(vn)ϕ(un)} is bounded. Thanks to
(24), we derive

lim
i→∞

‖uni − vni‖ = 0. (27)

Combining (6) and (27), we deduce

lim
i→∞

‖ϕ(uni
)− ϕ(vni

)‖ = 0. (28)

As a result of (7), we have the following estimate

‖yni
− vni

‖ =
∥∥∥PC[vni

+ ζ(1−$)‖uni
− vni

‖2 uni
− vni

− κςint(vni
)ϕ(uni

)

‖uni
− vni

− κςint(vni
)ϕ(uni

)‖2
]
− PC [vni

]
∥∥∥

≤ ζ(1−$)‖uni
− vni

‖2

‖uni
− vni

− κςint(vni
)ϕ(uni

)‖
.

This together with (24) implies that

lim
i→∞

‖yni − vni‖ = 0. (29)

By (10), we have

〈vni − κςint(vni
)ϕ(vni

)− uni
, uni

− p†〉 ≥ 0, ∀p† ∈ C.

It results in that

〈ϕ(vni
), p† − vni

〉 ≥ 〈ϕ(vni
), uni

− vni
〉+

1

κςint(vni
)
〈uni

− vni
, uni

− p†〉, ∀p† ∈ C. (30)

In view of (27) and (30), we obtain

lim inf
i→∞

〈ϕ(vni
), p† − vni

〉 ≥ 0, ∀p† ∈ C. (31)

On account of (4), we have

‖vni − xni‖ = ϑni‖φ[(1− γni)xni + γniφ(xni)]− xni‖,

which together with (25) implies that

lim
n→∞

‖vni
− xni

‖ = 0.

So, vni ⇀ x†.
Now, we consider two cases: (i) lim infi→∞ ‖ϕ(vni

)‖ = 0; (ii) lim infi→∞ ‖f(vni
)‖ > 0.

If lim infi→∞ ‖ϕ(vni
)‖ = 0, by the property (WSC) of ϕ, we deduce that ϕ(x†) = 0.

Therefore, x† ∈ V I(C,ϕ) and ω(xn) ⊂ V I(C,ϕ). If lim infi→∞ ‖ϕ(vni)‖ > 0, without loss of
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generality, we assume that ‖ϕ(vni
)‖ ≥ v̂(∀i ≥ 0) for some v̂ > 0. Set v̂ni

=
f(vni

)

‖f(vni
)‖2 (∀i ≥ 0).

Then, 〈ϕ(vni
), v̂ni

〉 = 1(∀i ≥ 0). From (31), we have

lim inf
i→∞

〈 ϕ(vni)

‖ϕ(vni
)‖
, p† − vni

〉 ≥ 0. (32)

Let {εi} be a positive real number sequence satisfying εi → 0 as i→∞. According to (32),
for each εi, there exists the smallest positive integer Ni such that

〈 ϕ(vni
)

‖ϕ(vni)‖
, p† − vni

〉+ εi ≥ 0, ∀i ≥ Ni,

which implies that

〈ϕ(vni), p
† − vni〉+ εi‖ϕ(vni)‖ ≥ 0, ∀i ≥ Ni.

Namely,

〈ϕ(vni
), p† + εi‖ϕ(vni

)‖v̂ni
− vni

〉 ≥ 0, ∀i ≥ Ni.

This together with the pseudomonotonicity of ϕ implies that

〈ϕ(p† + εi‖ϕ(vni
)‖v̂ni

), p† + εi‖ϕ(vni
)‖v̂ni

− vni
〉 ≥ 0, ∀i ≥ Ni. (33)

Since limi→∞ εi‖ϕ(vni)‖‖v̂ni‖ = limi→∞ εi = 0, letting i→∞ in (33), we deduce

〈ϕ(p†), p† − x†〉 ≥ 0,∀p† ∈ C. (34)

B Lemma 2.3 and (34), we conclude that x† ∈ V I(C,ϕ). Thus, ωw(xn) ⊂ V I(C,ϕ).
Therefore, x† ∈ Ω.

Finally, we show xn → PΩ(I − Φ + βψ)q† = q†. With the help of (19), we deduce

‖xn+1 − q†‖2 ≤ [1− (κ̂− βρ)αn]‖xn − q†‖2

+ (κ̂− βρ)αn ×
2αn

(κ̂− βρ)αn
〈βψ(q†)− Φ(q†), xn+1 − q†〉.

(35)

It is obviously that

lim sup
n→∞

〈βψ(q†)− Φ(q†), xn+1 − q†〉 ≤ 0.

Therefore, applying Lemma 2.4 to (35), we conclude that xn → q†. This completes the
proof. �

Algorithm 3.2. Take any initial value x0 ∈ C and set n = 0.
Step 1. Assume that xn is known. Finding the smallest nonnegative integer int(xn)

such that

un = PC [xn − κςint(xn)ϕ(xn)],

and

κςint(xn)‖ϕ(un)− ϕ(xn)‖ ≤ $‖un − xn‖.

If un = xn, then set yn = xn and go to Step 2. Otherwise, calculate

yn = PC

[
xn + ζ(1−$)‖un − xn‖2

un − xn − κςint(xn)ϕ(un)

‖un − xn − κςint(xn)ϕ(un)‖2
]
.

Step 2. Calculate

xn+1 = PC [αnβψ(xn) + (I − αnΦ)yn].

Step 3. Set n := n+ 1 and return to Step 1.
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Corollary 3.1. The sequence {xn} generated by Algorithm 3.2 converges strongly to q†1 =

PV I(C,ϕ(I − Φ + βψ)q†1.
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