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CONSTRUCTION AND ANALYSIS OF ITERATIVE METHODS
FOR SOLVING FIXED POINTS
AND PSEUDOMONOTONE VARIATIONAL INEQUALITIES
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Fized point problems and pseudomonotone variational inequalities have been
studied extensively. An additional assumption “weak sequential continuity” imposed on
pseudomonotone operators is used. This paper devotes to construct an iterative algo-
rithm for finding a common point of fixed point problems and pseudomonotone varia-
tional inequalities under a weaker assumption than weak sequential continuity imposed
on pseudomonotone operators. Strong convergence result of the proposed algorithm is
shown.
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1. Introduction

Let H be a real Hilbert space endowed with inner product and induced norm denoted
by (-,-) and || - ||, respectively. Let ) # C C H be a closed and convex set.

Let ¢ : C — C be a nonlinear operator. Recall that the classical variational inequality
is to seek a point ut € C such that

<<p(uT),u — uT> >0, VuecC. (1)

The solution set of variational inequality (1) is denoted by VI(C, ).

Variational inequality theory was introduced by Stampacchia ([19]) as a tool for the
study of partial differential equations with applications principally drawn from mechanics.
Such variational inequality unveiled its methodology for the study of problems in econom-ics,
operations research and engineering, see [[1, 12, 13, 30, 33, 41]. Variational inequality theory
provides us with algorithms with accompanying convergence analysis for computational pur-
poses. It contains, as special cases, such well-known problems in mathematical programming
as: systems of nonlinear equations, optimization problems ([32, 37, 45]), complementarity
prob-lems and fixed point problems (8, 20, 25, 26, 28, 35, 39, 40]). For more information, the
reader can refer to [4, 7, 21, 22, 27, 31, 36, 42].

One of the most important algorithms for solving VI (1) is projection algorithm
(1, 10, 11]) which generates a sequence {z,} by the following rule

Tn+1 = PC[xn - Tn‘P(l‘n)]z n 2 07 (2>

where P : H — C is the Orthogonal projection and {7,,} is a candidated stepsize sequence.
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In algorithm (2), operator ¢ must be Lipschitz continuous and strongly monotone or
inverse strongly monotone. To weaken these assumptions, Korpelevich [19] proposed ex-
tragradient method. Extragradient algorithm and its variant form have been studied for
solving monotone variational inequalities. Please refer to [1, 12, 13, 30, 33, 41]. Especially,
Ceng, Teboulle and Yao [5] demonstrated the convergence analysis of extragradient algorithm
for solving the pseudomonotone variational inequality and fixed point problems. In order to
achieve the weak convergence result, in [5], an additional condition “sequentially weak-to-
strong continuity” was imposed on pseudomonotone operator . However, this additional
hypothesis is not satisfied even for the identity operator. Subsequently, Vuong [23] weaken
this hypothesis imposed on ¢ to a weaker condition “sequentially weak-to-weak continuity”.

On the other hand, in order to solve variational inequality (1), the Lipschitz constant
of ¢ may be difficult to estimate, even if the underlying mapping is linear. For solving this
difficulty, some self-adaptive methods for solving variational inequality problems have been
developed. The advantage of self-adaptive method lies in the fact that prior information on
Lipschitz constant of ¢ is not required, and convergence is still guaranteed, see [14, 15, 16, 18].

Motivated by the work in this field, the purpose of this paper is to investigate the prob-
lem of fixed point of pseudocontractive operator and pseudomonotone variational inequality.
We construct an iterative algorithm for finding a common point of fixed point problems and
pseudomonotone variational inequalities under a weaker assumption than weak sequential
continuity imposed on . Strong convergence result of the proposed algorithm is shown.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. — means the
weak convergence and — means the strong convergence. Use wy, (u,,) to denote the set of all
weak cluster points of the sequence {u, }, i.e., wy (un) = {u’ : 3{u,,} C {u,} such that u,, —
ul asi — oo}.

A bounded linear operator ® is said to be A-strongly positive on H if there exists a
constant & > 0 such that

(®(), ) > &lz||*, Yz € H.
An operator ¢ : C — C is said to be
(i) pseudocontractive if
lo(w) = e(u)* < [lu = u'l* + [I(I = d)u — (I = §)u'|]?, Yu,u' € C.
(ii) B-Lipschitz if there exists a constant 8 > 0 such that
lp(u) = ¢(u)]| < Bllu = ul[|, Vu,u’ € C.

If 8 < 1, then ¢ is said to be S-contractive.

Use Fiz(¢) to mean the set of fixed points of ¢.
An operator ¢ is said to be

(i) monotone on C' if
(o(u) — p(u'),u —u') >0, Yu,ul € C.
(ii) pseudomonotone on H if
(p(a),u —a) > 0= (pu),u—a) >0, Vu,a € H.

(iii) weakly sequentially continuous, if for given sequence {z,} C C satisfying =, — &, we
conclude that p(z,) = ©(Z).
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For given u! € H, there exists a unique point in C, denoted by Pc[u'] such that
|uf = Po[ul]|| < ||z — u'||, Yz € C.
It is known that P is firmly nonexpansive, that is, Po satisfies
1Pcla*] = Pela'lI? < (Pela] = Peld'].a* —d'), Yo', q" € H.
Moreover, Po satisfies the following inequality
(¢* — Pclq*],q" — Pclg®]) <0, Vg* € H,q' € C. (3)

Lemma 2.1 ([?]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
¢ : C — C be a Ba-Lipschitz pseudocontractive operator. Let y be a constant in (0, ————).

1+B2+1
Then,
[o[(1 =)z +¢(@)] = o> < |z = p* + (1 =61 — vz +v¢(x)] — ||,
for all z € C and p € Fix(¢).

Lemma 2.2 ([?]). Let C' be a nonempty closed convex subset of a real Hilbert space H. Let
¢ : C — C be a continuous pseudocontractive operator. Then ¢ is demi-closed, namely,

{untplo CC
u, ~w€C p= o) =ul.
B () — ulf

Lemma 2.3 ([?]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
@ be a continuous and pseudomonotone operator on H. Then xt € VI(C,¢) iff ' solves
the following variational inequality

(o), pf =2y >0, vpl € C.

Lemma 2.4 ([?]). Let {z,} C (0,00), {a,} C (0,1) and {s,} be three real number sequences.
If znp1 < (1 — ap)zn + $p,Vn > 0 with Y.~ a,, = 0o and limsup,,_, . /o, < 0 or
Yoo 1 |8 < 00, then lim, o0 2, = 0.

3. Main results

In this section, we first construct an iterative algorithm for finding a common point
of fixed point of pseudocontractive operator ¢ and a solution of pseudomonotone variational
inequality (1). Subsequently, we give the convergence analysis of the proposed algorithm.

Let C' be a nonempty convex closed subset of a real Hilbert space H. Let ¢ : C — C
be a p-contractive operator. Let ® be a &-strongly positive bounded linear operator on
H. Let the operator ¢ be pseudomonotone on H and [;-Lipschitz continuous on C. Let
¢ : C — C be a [o-Lipschitz pseudocontractive operator. Suppose that the operator ¢
possesses the property (WSC):

{un}?’f:o CH
U, ~u € H = p(u) =0.
liminf, . ||@(un)]| =0

Remark 3.1. It is obviously that if p is sequentially weakly continuous, then ¢ satisfies the
above property (WSC).

Let {9}, {7} and {a,} be three real number sequences in (0,1). Let s, ¢, @, ¢ and
B be five constants. Suppose that these iterative parameters satisfy the following conditions:

(C1): 51>0,62>1and0<ﬁ<19n<5<'yn<7<ﬁ(VnZO);

(C2): k>0,pe(0,1), k€ (0,1),s€(0,1), e (0,1), ¢ €(0,2) and Bp < &;
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(C3): limy 00 vy, =0 and Y07 ) vy = 00.
In the sequel, assume that Q := Fiz(¢)NVI(C, @) # 0. In this position, we state our
algorithm below.

Algorithm 3.1. Take any initial value x¢g € C and set n = 0.
Step 1. Assume that x,, is known and calculate

Un = (1 = Un)an + 0nd[(1 — 1n)Tn + o (zn)]. (4)
Step 2. Finding the smallest nonnegative integer int(v,) such that
un = Polvn = k™ p(v,)], (5)
and
R o (un) = @(0n) ]| < @llun — vnll- (6)

If u, = vy, then set y, = v, and go to Step 3. Otherwise, calculate

o o int(vn)
Un = Pe v + C(1 — @) ||un — v |2 In — S i (un) }

[t = vn = ) o (uy, ) |12
Step 3. Calculate

Step 4. Set n:=n+ 1 and return to Step 1.

Remark 3.2. (i) There exits int(v,) such that (5) and (6) are satisfied. (i) 0 < 27 <
§mtvn) < 1(n > 0). (iii) If v, = Polvn — ks ) p(v,)], then v, € VI(C, o).

Proposition 3.1. u, — v, — k™" p(u,) # 0(Vn > 0) and furthermore, for any p €
VI(C, ),

(un —vn — ’igint(vn)@(un)zvn =) < =(1 = @)|lun —va||* <0 (9)

Proof. From the property (3) of projection Po and (5), we have

(U — vn + £SO o(0), 1y — P) < 0. (10)
Note that
(n = v = mS" (), 0, = P)
= (un — vn + K p(03), 00 = B) — K (p(00), V0 — D)

int(v")<‘:0(un)vun —D) (11)

= (tn — vn + K™ (0(0n) — V(un)), vy — Un) — K™ (p(vy,), v, — P)

— k") (o (), vn — ) — kS

+ <un —Up + Kgint(vn)@(vn)) Up — ]3> - "fgint(vn)“ﬁ’(un)z Up — ﬁ)

Since (@(p), vn, —P) > 0 and (@(p), un —p) > 0, it follows from the pseudomonotonicity of ¢
that (p(vn),vn, — D) > 0 and {p(uy,),u, — py > 0. This together with (10) and (11) implies
that

(tn — vy, — K™ p

@(un)v Un — p> < <un — Up + ’igint(vn)(@(vn) - @(un))v Un — uﬂ> (12)
< —llun — UnHz + "ﬂint(vn)‘l@(”n) = @(un)||llvn — unl.
By (6) and (12), we can obtain the desired result (9). O
Next, we prove the convergence of the sequence {z,} generated by Algorithm 3.1.

Theorem 3.1. The sequence {z,} generated by Algorithm 3.1 converges strongly to q' =
Po(I — @ + Bi)g'.
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Proof. Let p € Q. It is well known that in any real Hilbert space H, for any u,v € H and
¥ € R, we have the following equality

19w+ (1 = D)olf* = Il + (1 = )]v]* = 91 = 9)lJu— o], (13)
With the help of above equality (13), by (4), we obtain
lvn = BII* = (1 = V) (@n = D) + In(Bl(L = n)an + me(za)] - H)?
= (1= 9n)llzn = Bl + 9ll0[(1 = W)2n + ynd(@n)] - DI (14)
— On(1 = 0n)[6[(1 = )an + nd(zn)] — @n|®.
According to Lemma 2.1, we have

1G[(1 = n)zn + Mmd(za)] = BlI* < (1 = W) IS[(L = y0)zn + n(20)] — znll?

(15)
+[|zn —pH2~

It follows from (14) and (15) that

v — pH2 (1= dn)zs _13”2 = Un(1 = 9)[[0[(1 — Yn)Tn + Ynd(n)] — zn”Q
+ (2 = D1 + (1 =) 811 = )20 + md(@n)] — 24]?) (16)
= ||zn _ﬁHQ + In(In = ¥ )Q1(1 = Yn)Tn + Ynd(zn)] — anQ

Since P¢ is nonexpansive, from (7), one has

Up — Un — '%am(vn)‘ﬂ(un) } N AH2

AN2 2
[yn = DII" = |Pe |vn + C(1 = @) [[un — va Hun—vn—mmt(””)@( )||2

t(vn
5 Un — Up 7,€§7,n (vn) H

< 7ﬁ+€(17w)“univn” int(v ) 2
Hun_vn_""fg ”@Un H
) 2((1 — @) |[un — vall® ; R
_ A2 n n _ _ int(vy) _
||UTL p” + ||un — v, — :‘<E§int(v")§0(un)”2 <Un Un RS cp(un),vn p>
(1= @)?|Jun — val*
+ , )
[t — vn — w6 o (uy,) |12
which together with (9) and (16) implies that
2 1— 2 " — Un 4 20(1 — 2 n — Un 4
Hyn _ﬁ”Q S H'Un _ﬁH2+ C ( ’(ﬂ) ”u v H _ C( w) ”u v ”
[tn — vn — Kgmt(vn)@(un)ng |tn — vn — ”gmt(v")@(un)HQ

ﬁH2 _ (2 — C)C(l — w)QHUW — Uﬂ||4

[tt, = vy, = KT (1w, ) |12
S Hxn - ﬁ”Z + 1971(19n - 771)”@1)[(1 - r)/n)mn + ’Y,LQS(.I‘")] — Tn
_ (2-0¢(1 - W)QH’LLn - 'UnH4

[un = va = K m) (uy) |2

= ||vn —

2 (17)

< flzn =5l
Since @ is bounded linear, we have
11— an®@|| = sup{{(1 — @, P)u,u) : u € H,|u|| =1}
=sup{l — a,(®(u),u) : u € H,||u|| = 1}.
This together with the strong positivity of ® implies that

11— an®| < 1— ank.
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From (8) and (17), we get

[#n41 = Il = |PelanB(zn) + (I — an®)yn] — pl|
< I = an®)llyn = pll + anBllv(zn) — L) + anllB (D) — 2(P)
< (1 = ank)lzn = pll + anBpllzn — pll + anllB(p) — @)l

(1= (& = Bp)am][lzn = pll + anl| B (D) — 2(P)]-

Subsequently, by induction, we get that ||z, — p|| < max{w, [lzo — pl|}- Thus, the
sequences {z,}, {v,} and {y,} are bounded.
By virtue of (3) and (8), we achieve

2041 = Bl = [|Pelanfi(@n) + (I — an®)ya) — Po[p]|?

< A{anf(zn) + (I — an®)yn — P, Tny1 — P)

= Ban(Y(zn) = (D) Tnt1 — D) + an(BY (D) — ®(D), Tnt1 — D)
+ (I — an®)(yn — P, Tnt1 — P)

< Bpam||zn = plllzn+1 — Bl + an(BY(D) — ®(P), Tni1 — P)
+ 1 = an®|lllyn — Pl #n+1 — B

< [Bpanllzn — Bl + (1 = few)[yn — Bl lznt1 — Bl
+ an(BY(p) — (D), Tnv1 — D)

[Bpan||zn — pl| + (1 — Raw) ||y _ﬁHP + 1 Zn41 _15||2
2 2
+ an(BY(D) — (D), Tnt1 — D).

<

It follows that
241 = BII” < [ﬁan%llxn =l + (1 = ~an)llyn = Bl + 200 (BY (D) — D(H), ¥ns1 — P)
< Bpaglzn — bl + (1 — kaw) lyn — Dl + 200 (Y (D) — @ (D), Tnr1 — B)-
On account of (17) and (18), we have
|zns1 = BII* < [1 = (& = Bp)an]llwn — DI + 200 (BY(5) — (D), Tns1 — B)
+ (1= B0 (90 = V) IB[(L = )2 + Y (2n)] — 20|
(1 — ko) (2 = )¢(1 — @) |un — va|*

l|tn — vn — Hgint(v")‘P(un)HQ

< 1= (% = Bo)an]len — I + (i — ﬂp)an{

(18)

(1 — ko) V0 (U5 — ) (19)
(k= Bp)an,

<NG[(1 — ) + Ynd(a)] — Tall? + (Rf@%w(m — ®(p), T — )
(- ka2 - O - w)? ln = onl* }
(k= Bp)an [tn, — v — KT n) () [|2 J
For any n > 0, set 2z, = ||z,, — p||* and
wn = LR 2011 — ) + ()] 2
(1= kan)(2— Q41 — )2 [un — va* (20)
(& — Bp)an [tn — vn — KSR o (uy, ) |2
2

+ (B(p) — @(p), Tnt1 — P)-

R —Bp
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Inequality (19) can be rewritten as

2ust < 1= (5 — Bp)an]zn + (7 — Bp)antwn, Vi > 0. (21)
Based on (20), we deduce
2 2
Wn S 2 p (BY(B) = 2(B), Tnt1 = P) < —— Ble/)(ﬁ) = @) llzn+r =2l

It follows from the boundedness of {z,} that limsup,,_, . w, < +oo.
Next, we show that limsup,,_, ., w, > —1. If limsup,, .. w, < —1, then there exists
m such that w, < —1 when n > m. Hence, for all n > m, from (21), we obtain

zn1 < [1— (R — Bp)an]zn — (K — Bp)an
<zp-— ("% - /Bp)an-
So,

g1 < 2m — (R = Bp) > a,
k=m

which implies that

n
limsup z,, < z,, — (kK — Bp) limsup Z ap = —00.
n—oo n—oo k=m
This yields a contradiction. Therefore, —1 < limsup,,_, ., w, < +00. At the same time,
noting that {x,} is bounded, pick up any x € w,,(x,). We can choose a subsequence {n;}

of {n} such that z,,, — = € C' and

O (O — Y 1 — v ) Zn, ()] = T ||
limsupw, = lim w,, = lim { 1(A = ) 1910 = i) Zns + Y (@] = T,
n—00 i—00 i—00 (/‘f - ﬁp) Qn;
_ _ 2 _ 4
_ (2 {)C(l w) ||um Un; (22)
(R=Bp)  un, = v, = KO o(up, )P,
2
5) — ®(p), 2 11 — D).
+ Rfﬁp(ﬁw(p) (D), Tni+1 — D)
Since {2p,+1} is bounded, without loss of generality, we assume that lim;_, %ﬁp(ﬁw(ﬁ) —
D(p), xp,+1 — D) exists. By (22), the limit
lim [19’/1; (ﬂm — ’yni) H(b[(l — ’ynL)an + Tn; ¢(x7h)] — Tn; 2
_ (2 B C)C(l — w)Q Hunl — Uni||4
(’% - BP) ”um — Un; — Hgmt(vn"’)so(um)HQO[m
exists.
It follows from conditions (C1)-(C3) and (23) that
. ||un — Un; 4
lim T =0 24
L P >y
and
(|G = )T, + Yo @(n,)] = 20, |2 = 0. (25)

Now, we show wy,(2,) C Fiz(¢). Firstly, by the Sa-Lipschit continuity of ¢, we derive
[¢(xn,) = T, | < [|$(zn;) — AL = Vi )Tn; + Yoy S(@,)]]
F18[(L = Yn,)n, + n,B(@n,)] — 2o, ||
< Bovnilld(@n,) — o[l + [|9[(1 — ¥ni)Tns + Yy B(@n,)] — Ty |l
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which leads to

16(n,) — n, !

< mw[u — V)T, + Y, (@n,)] — T, -

Which together with (25) implies that
lim ||¢(zn,) — 2y, || = 0.

1—> 00

At the same time, noting that z,, — 2, by Lemma 2.2 and the last equality, we deduce
that o7 € Fiz(¢). That is, wy (z,) C Fiz(¢). Next, we show that w,,(z,) C VI(C, ).
In the light of (5), we obtain

lan, = Bl < on = b + £ o (). (26)

Since {v,} is bounded, {¢(v,)} is bounded due to the Lipschitz continuity of ¢. Taking
account of (26), {u,} is bounded. Thus, {u, — v, — ks ) p(u,)} is bounded. Thanks to
(24), we derive

li — . || = 0. 2
Jim [, — v, || = 0 (27)

Combining (6) and (27), we deduce

T {lp(un,) = ¢ (vn,)|| = 0. (28)

1— 00
As a result of (7), we have the following estimate

int(vn, )

[0, = vl = [[Pe o, + €= @), — vy |2 e Z I ) T gy
[tn; = vn, — K™ o (un, )|
C(l — w)”um — Un; H2
B ”um = Un; — ’igint(v"i)go(uni) |
This together with (24) implies that
T [, — v, | = 0. (20)

By (10), we have

int(vn,)

<U7Lz‘ — KRG @(Unq) = Un; s Un, 7pT> 2 07 VPT cC.

It results in that
1

<<p(vni)7pT - vm> > <(P(’Uni)’uni - Um> + W@Lnb — Unys Un, _pT>7 VpT eC. (30)
In view of (27) and (30), we obtain
lim inf(p(v,, ), p" — vn,) >0, Vp' € C. (31)
1— 00

On account of (4), we have

= Un, 1011 = )20, + Yo, d(@n,)] — Tn,
which together with (25) implies that

ani — Tn; )

So, v, — x.
Now, we consider two cases: (i) liminf; o ||@(vy,)|| = 0; (ii) iminf, o || f(vn,)]| > 0.
If liminf; o ||¢(vn,)|| = 0, by the property (WSC) of ¢, we deduce that ¢(x) = 0.
Therefore, 2T € VI(C, ) and w(x,) C VI(C,p). If liminf; o [[¢(vn, )| > 0, without loss of
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generality, we assume that ||@(v,, )| > #(Vi > 0) for some & > 0. Set 0, = %(Vz > 0).

Then, (©(vn,), 0n,) = 1(Vi > 0). From (31), we have
lim inf<7<p(vn'i) ,
imoelp(vn, )|
Let {¢;} be a positive real number sequence satisfying e; — 0 as i — oo. According to (32),
for each ¢;, there exists the smallest positive integer IN; such that
[l (vn, )l

pf — Un,) > 0. (32)

pl — U,y + € >0, Vi >N,

which implies that
(@vn), " —vn,) +eill(vn)| = 0, Wi = N
Namely,
(@(vn,),p" + €ill(vn,) 0n, — v} >0, Vi > N;.
This together with the pseudomonotonicity of ¢ implies that
|0, — U, ) >0, Vi > N;. (33)

|ﬁni)?pT + ei“@(vni)
= lim; , €; = 0, letting ¢ — oo in (33), we deduce
(e(p),p' — 2ty = 0,vp' € C. (34)

B Lemma 2.3 and (34), we conclude that =T € VI(C,p). Thus, wy(r,) C VI(C,p).
Therefore, zf € Q.
Finally, we show z,, — Po(I — ® + B¢)q" = ¢. With the help of (19), we deduce

(" + €ll(vn,)

Since lim;_, 0 €| (vn; )

[9n;

[2ns1 — gl < [1— (& — Bp)am]|zn — ¢'|)?
20, 35
+ (k= Bp)ay, x mww(‘f) - q)(qT)aanrl - qT>- #2)

It is obviously that
limsup(8¢(q") — ®(¢"), 2ns1 — ¢') <0.

n—oo

Therefore, applying Lemma 2.4 to (35), we conclude that z,, — ¢f. This completes the
proof. O

Algorithm 3.2. Take any initial value xg € C' and set n = 0.
Step 1. Assume that ©,, is known. Finding the smallest nonnegative integer int(x,)
such that
un = Po [ajn - “gint(xn)W(xn)],

and

ﬂgint(a:n)

P(un) — @(@n) || < @[ltn — n].
If uy, = x,, then set y, = x, and go to Step 2. Otherwise, calculate

Uy — Ty — Hgint(zn)(p(un)

un — 2 — Hgint(x")‘P(un)HQ .

Yo = Por |2+ (1 = @) un — @

Step 2. Calculate

Tny1 = Po [anﬁ'lp(xn) + (I - O‘nq))yn}
Step 3. Set n:=n+ 1 and return to Step 1.
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Corollary 3.1. The sequence {x,} generated by Algorithm 3.2 converges strongly to q

T
1

Py — @+ BY)gl.

(1]

(5]

[6]

[10]
[11]
[12]
[13
[14
[15]
[16]
[17]
18]
[19]
[20]

(21]
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