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SIX DEGREES OF FREEDOM MODEL FOR THE DYNAMICS 
OF HIGH ALTITUDE FLYING BODIES 

Florin MINGIREANU1, Lucian GEORGESCU2, Gabriel MURARIU2, Ionut 
MOCANU2 

A typical six degrees of freedom (6 DOF) model is presented for the payload 
in order to allow a future implementation of controlled payload recovery through 
the usage of a steerable parafoil. Also an ascent rate calculation model is presented 
that takes into account a standard US 1976 atmosphere model as well as the 
thermodynamics of the lifting gas inside the weather balloon. We present the typical 
payload used as well as the APRS (Automatic Packet Radio System) communication 
package used for tracking and telemetry real-time as well as the photo and video 
equipment used for flight imaging. Altitude and trajectory are presented as functions 
of time and discussion is done regarding the best GPS (Global Positioning System) 
installation position in order to ensure GPS coverage data for most of the flight, 
including the burst. Various flight dynamics characteristics are described including 
the ascent and descent rates as well as a detailed description on how to achieve a 
desired ascent rate. Future aerosol detection mission is proposed in the framework 
of the next generation of satellites aimed at actively detecting aerosol pollution in 
the atmosphere. High altitude balloon platforms are proposed to provide calibration 
and validation of satellite data in various regions of interest worldwide. The flight 
data presented in this paper was obtained during nine high altitude flights 
performed in Romania, Australia and Finland.  
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1. Introduction 

High altitude balloons are an inexpensive method of reaching altitudes 
from as low as 10 km to as high as over 50 km.[1] Nowadays, two main types of 
high altitude balloons are used: 

- Rigid balloons 
- Flexible latex balloons (e.g.: weather balloons) 
Balloons are usually filled with helium or hydrogen which ensures the 

upward lift force generally decreasing with altitude. 
One of the most used types of balloons is the flexible latex balloons which 

ensure expansion of the gas inside the balloon as the altitude increases. Upon 
reaching maximum expandable volume the latex balloon breaks apart and this 
breaking apart is described in the literature as the burst. 
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FIG. 1 High altitude balloon flight train 

After the burst the payload returns to Earth by the means of a recovery 
parachute that decreases the descent velocity down to acceptable values. A typical 
descent velocity can be anywhere between 5m/s and 10 m/s depending on the type 
of equipment that the payload consists of.  

The maximum altitude reached by a high altitude balloon was 53 km in 
2012, reached by BU60-1. This balloon was of rigid type and the envelope was 
made of a 3.4 µm polyethylene film. The BU60-1 balloon was 34.37kg in empty 
weight, 74.5m in length, and 53.7m in diameter. The total weight including 0.8kg 
of parachute package and 4.6kg of observation instruments was 39.77kg. 

2. Six degrees of freedom numerical model 

We developed an in-house 6 DOF numerical simulation that allows 
modeling the attitude of the payload under the various forces that acts on it. This 
model is useful whenever one intends to integrate an inertial navigation unit 
(IMU) on the payload in order to recover attitude and position throughout the 
flight.  The model is based on a general missile code that was developed also in-
house by our research group.[2] The Earth’s diurnal angular velocities are 
considered above basically as transport velocities for the transformation from one 
frame of reference to another.  

Hence, with the above simplifications of non-rotating, flat Earth 
approximation, the translational equations of motion in tensor notation form 
become [4]: 

mgFvmvmD pa
E
B

BEE
B

B +=Ω+ ,           (1) 
where paF ,  is the vector sum of propulsive and aerodynamic forces along the 

given axis, m is mass, g is the gravitational acceleration, BEΩ  is the angular 
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velocity of body B relative to Earth’s reference frame, E
Bv  is the velocity of body 

B relative to Earth’s reference frame.   
We can write (1) in matrix coordinate form which makes them easier to be 

programmed on a computer: 
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where r, p, q represent angular velocities on pitch, roll and yaw axis,  u, v, w    
velocity components in body frame, zyx FFF ,,     resultant force components 
on the X, Y and Z axis. The matrix composed of terms ijt rotates the gravitational 
acceleration vector from body reference frame to Earth’s reference frame. Next 
we show the rotational dynamics equations which provide the relation between 
the aerodynamic and propulsive moments and angular accelerations of the rocket.  

By applying Euler’s law we have the following attitude dynamics 
equations in the body coordinates frame because the moments of inertia tensor has 
a simple and constant form in this reference system. We also have the attitude 
equations in quaternion formulation: 
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where  0q , 1q , 2q , 3q represent the quaternion components. 

The quaternions are related to the Euler angles through the following well-
known relations in the aerospace field [3], [4]: 
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In order to determine attitude angles (yaw, pitch, roll) we use the inverse 
of relations (4) as follows: 
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where  θ  represents the pitch angle,ϕ represents roll angle,ψ represents yaw 
angle. Based on the above quaternions one can write the full quaternion based 
transformation matrix from body to Earth reference frame: 
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Next we can express the Euler equations in simple scalar form for easier 
programming on the computer through the following relations: 
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where  xM , yM and zM are the aerodynamic moments around body’s x, y and z 
axis; 1I is the axial moment of inertia, 2I = 3I are the lateral moments of inertia. 

This 6 DOF model allows on one hand to simulate the dynamics of the 
payload under various forces and momenta. At the same time the same 6 DOF 
was implemented on an IMU in order to measure the dynamics of the payload 
during the flight and to keep track of the trajectory while comparing with the 
trajectory as measured by a GPS unit. 

This IMU will allow in the future implementing an autonomous steerable 
parachute for the controlled recovery of high altitude balloon payloads. This will 
ensure the limitation of drift and will decrease the cost of recovery of such 
payloads.  

3. Ascent dynamics model 

An important parameter for high altitude flights is the ascent velocity. The 
ascent velocity is dependent on both the payload mass as well as the general 
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expected flight performances. One example is one the payload is required to have 
a certain altitude at a certain moment of time. Such an example is represented by 
our ECLIPSER-1 flight (November, 2012 - Australia) which needed to capture the 
eclipse at 25 km altitude and, hence, a precise timing had to be taken into account 
when computing the ascent rate and the time of launch.  

We developed a 1-D model that predicts the ascent speed taking into 
account the atmosphere model, payload characteristics and some aerodynamics 
forces. For a payload hanged under a balloon we can write the equation of motion 
on vertical axis as follows: 

0
2
12 =−− xlift SCvGF ρ                   (7) 

where  xC  axial aerodynamic coefficient, S is the cross section, v is the velocity 
and ρ  is the local air density. In (7) we considered that weight G, lifting force 
Flift and aerodynamic drag force D are the only forces that act on the balloon on 
the vertical axis. Important note is that in this particular situation, without 
incidence angle, the drag force D is identical to the axial force xF  from equation 
(2). We also ignored any dynamics on the horizontal axis due mainly the wind 
drifting. At equilibrium the ascent velocity is constant and, hence, the resultant of 
the above forces should be zero (right-hand side term is 0). That specific ascent 
velocity is the equilibrium ascent velocity which on average will be measured 
during that specific balloon flight mission. Also in (7) we assume that the gas 
inside the envelope expands isothermally and hence we can write the following 
equation for the gas expansion during an infinitesimal increase of altitude: 

.constpV =                                    (8) 
In equation (8), p  is the local atmospheric pressure which is related to the 

altitude by the usual barometric relation: 
kTghepp /

0
μ−=         (9) 

where p  is the pressure at a certain altitude, k  is the Boltzmann constant,  T is 
the temperature in Kelvin, g is the gravitational acceleration, h  is the altitude, µ 
is the molar mass. 

For the atmosphere profile we used the US 1976 standard atmosphere 
characteristics as given in [4] and included in Table 1. 

       Table 1 
Standard US 1976 atmosphere- temperature profile 

Altitude (meters) Temperature (K) Temperature lapse (K/m) 
0 288.15 -0.0065 

11000 216.65 0.0 
20000 216.65 0.001 
32000 228.65 0.0028 
47000 270.65 0.0 
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By setting a certain amount of gas for a certain payload and balloon size 
we observe that we can obtain various values for the ascent velocities as given by 
equation (7).  

As a conclusion of the above reasoning, the entire ascent of the balloon 
can be viewed as the isothermal expansion of the gas bubble represented by the 
balloon alongside with the dynamics generated by the expanding bubble and 
decreasing of air density with the increase of altitude. 

4. High altitude balloon missions. Flight results and numerical 
modeling comparison. 

A total of nine missions have been undertaken by our research group in 
order validate our solution for the payload, flight telemetry equipment as well as 
general launch procedures. First two flights were launched from Buzau city, 
Romania (October, 2011 and August, 2012) and represented the preparation for 
the third flight that took off from Queensland (near Zimba) Australia on 
November 2012. Additional of two flights were performed from Buzau in January 
and April, 2014 as well as four more missions in Finland with the specific purpose 
of measuring accurate six degrees of freedom payload dynamics through a 
dedicated IMU on which the above 6 DOF model was ran real-time. 

Fig. 3, show the altitude as a function of time for STRATOSPHERIUM-1. 
The horizontal axis represents time. At moment 200 we observe a dropout 

in telemetry data. This was produced by the positioning of the GPS module under 
a foam layer which in conjunction with the violent rotations of the payload after 
the burst (visible on the video recording) lead to a temporary loss of GPS signal. 

 
Fig. 3 Variation of altitude with time for STRATOSPHERIUM 1 
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 The estimated ascent velocity based on our 1-D ascent velocity model was 
6.2 m/s which is in good agreement with the measured ascent velocity was 5.83 
m/s. For the calculation we used payload mass 3.7 kg, drag coefficient 0.2 and 
initial helium volume of 6.2 cubic meters. 

Fig. 4 shows the trajectory of STRATOSPHERIUM-1 over the ground. In 
Fig. 4 we have the trajectory as received through APRS tracking system while in 
green we have the predicted trajectory using the 6 DOF model outlined in the 
previous chapter.  We observe a very good agreement between the predicted 
trajectory and the real trajectory as determined during the flight. We can observe 
that the simulated trajectory (green track) is smoother than the real trajectory (red 
track) and this happens because average winds predictions are used rather than 
real wind data. It is important to note that the wind predictions are not 100% 
identical with the real winds from the day of flight and, hence, differences 
between the 6 DOF model and the real flight trajectory are to be expected. 
However, these differences are shown to be rather small in comparison to the 
range of the trajectory. 

One step further was represented by the Finland flights. During these 
flights an IMU was installed onboard of the balloons and the above 6 DOF model 
was ran on the IMU throughout the flight.  

Basically the 6 DOF model was ran real-time during the flight using the 
real wind data as measured during that specific flight. The trajectory as 
determined by the IMU (yellow trajectory) is basically the trajectory as 
determined by the 6 DOF model with real wind data- Fig. 5. This trajectory is 
then compared with the GPS trajectory (red trajectory) and a very accurate match 
is observed. Hence, our 6 DOF model as implemented for high altitude payloads 
is shown to be a high fidelity model well adapted to this type of flights usable on 
IMU applications. 

Moreover the IMU was able to determine a series of attitude related 
parameters: pitch, yaw, roll angles as function of time. We can observe a very 
wide variation of all these parameters which is a sign of fast rolling, pitching and 
yawing dynamics. Despite this high dynamics the IMU was able to keep track of 
the trajectory proving that our quaternion based 6 DOF model is a sufficiently 
general model that allows modeling of flight dynamics with wide variation of 
flight parameters. The advantage of using the quaternion formulation is that we 
can avoid the typical trigonometrically singularities that would have prevented 
Euler based 6 DOF to work under this flight conditions. 

The 6 DOF basically propagates an inertial solution based on gyroscope 
and accelerometer data provided by the IMU. Moreover, due to the inherent drift 
of the low cost gyroscope and accelerometers used in the IMU construction we 
drift-compensate the inertial data with GPS data every second. 
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Fig. 4 Trajectory of STRATOSPHERIUM 1 as received by APRS network 

 
Without this compensation the drift and bias of the gyroscope and 

accelerometers would provide false inertial solution and the trajectory as 
determined by IMU would slowly drift from the real trajectory. This drift and bias 
has nothing to do with the 6 DOF model; it is an instrumental error that is specific 
to the gyroscopes and accelerometers. 

 
Fig. 4 Trajectory of Finland flight- IMU yellow; GPS red 

 
In Fig. 5, 6 and 7 the horizontal axis represents the time in IMU time units. 

In order to convert the time from IMU time units to seconds one has to perform a 
multiplication by factor 0.288 of the IMU time units. 
The reason for which we used IMU time units is because we did not want to 
perform additional operational on the onboard microcontroller. We used a time 
scale that was easier to maintain and use on the onboard microcontroller and then 
post-flight we would perform the conversion from the IMU time units to seconds. 
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 As an example, one can observe in Fig. 5 that the roll dynamics settles 
down after ~25000 IMU time units which, through multiplication by 0.288 gives 
the result 7200 seconds which is the time from take-off to landing of that specific 
balloon mission. 

 
Fig. 5 Roll (ϕ ) versus time 

 
Fig. 6 Pitch (θ ) versus time 

 

 
Fig. 7 Position and velocity components as determined by IMU 
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5. Conclusions 

High altitude balloons are an inexpensive method of researching high 
altitudes and they are available on demand at mostly any point in the world. 
Satellites are more expensive and their data is not available on demand at anytime, 
anywhere. Through our work we developed an extensive 6 DOF model that is 
applicable to typical high altitude flights for both the ascent and the descent 
portions of the trajectory. We compared the 6 DOF trajectory estimations based 
on wind forecast with the actual trajectory recorded during a high altitude flight 
and found good correlation between the two. Next an IMU was shown to ran the 6 
DOF model and provide accurate trajectory and attitude parameters. The 6 DOF 
ran real time on IMU with GPS drift compensation provides an excellent solution 
for both tracking and future recoverable steerable applications. 

Next work will involve a complete model for the steerable parafoil as well 
as several test flights to validate the guidance algorithm. 
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