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In this paper we establish necessary and sufficient efficiency conditions for a

class of multiobjective fractional variational problems (MFP) subject to ODEs & ODIs

constraints involving higher order derivatives. Using the notion of (ρ, b)-quasiinvexity,

we formulate sufficient efficiency conditions for a feasible solution in (MFP).
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1. Introduction and problem description

In a previous work (Treanţă and Udrişte, [12]), strongly motivated by its applications

in natural phenomena, mechanics and engineering problems (which imply derivatives of or-

der higher than one or two), we extended and further developed some optimization results

connected to the efficiency of a feasible solution for a class of multiobjective nonfractional

variational problems. As natural continuation of these results, the present research paper

introduces a study of efficiency conditions for a feasible solution in a multiobjective frac-

tional optimization problem of minimizing a vector of simple integral functionals subject to

certain higher order differential equations and/or inequations. Our study is encouraged by

many practical optimization problems with simple integral functional quotients as objective

vectors.

There is a long story of multiobjective (fractional) programming problems (see [2],

[11], [5], [10], [6], [1], [7], etc.) which involve a generalized convexity. We make an abuse

mentioning only a little part: [11], [4], [10], [6], [7], [9], [8]. In [11], Singh and Hanson derive

duality results using invex functions in vector ratio problems. Jeyakumar and Mond (see [4])

generalize these results for V -invex functions. Later, a unified formulation of the generalized

convexity, in order to derive duality results and optimality conditions, was provided by Z.

A. Liang, H. X. Huang and P. M. Pardalos (see [6]).

Our vector minimization problem, required by practical reasons, despite of the previ-

ous mentioned advances in optimization, has not been studied so far. The present paper is

organized as follows: Section 1 motivates the study and describes the vector ratio problem

(MFP), while Section 2 provides, for a better coherence of this paper, the main ingredients

derived in a previous work (see [12]); Section 3 includes the original results and the final

section contains the conclusions of this work.
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In our subsequent theory, we shall use the following notations:

u = v ⇔ ui = vi, u ≤ v ⇔ ui ≤ vi

u < v ⇔ ui < vi, u ≼ v ⇔ u ≤ v, u ̸= v, i = 1, s

for any two vectors u = (u1, ..., us) , v = (v1, ..., vs) in Rs. Let us consider χx(t) :=

(t, x(t), x(1)(t), ..., x(k)(t)), where x(k)(t) :=
dk

dtk
x(t), with k ≥ 1 a fixed natural number.

Let be given

f = (fα) : I ×Rn(k+1) → Rp, e = (eα) : I ×Rn(k+1) → Rp, α = 1, p

g = (g1, ..., gm) : I ×Rn(k+1) → Rm, h = (h1, ..., hr) : I ×Rn(k+1) → Rr

(see m < n, r < n) four Ck+1-class functions, where I := [t0, t1] ⊆ R is a real interval.

The previous Ck+1-class Lagrangians, fα(χx(t)), eα(χx(t)), α = 1, p, generate the following

simple integral functionals

Fα (x(t)) :=

∫ t1

t0

fα(χx(t))dt, Eα (x(t)) :=

∫ t1

t0

eα(χx(t))dt > 0, α = 1, p.

Consider the space C∞ ([t0, t1], R
n) of all functions x : [t0, t1] → Rn of C∞-class,

having the norm ∥x∥ := ∥x∥∞ +
k∑

β=1

∥x(β)∥∞. Define F (I) as being the set

x ∈ C∞ (I,Rn) , g(χx(t)) ≤ 0, h(χx(t)) = 0, t ∈ I

x(tε) = xε, x(β)(tε) = xβε, ε = 0, 1, β = 1, k − 1

of all feasible solutions (domain) of the following multiobjective fractional variational prob-

lem (MFP),

min
x(·)


∫ t1

t0

f1(χx(t))dt∫ t1

t0

e1(χx(t))dt

,

∫ t1

t0

f2(χx(t))dt∫ t1

t0

e2(χx(t))dt

, ...,

∫ t1

t0

fp(χx(t))dt∫ t1

t0

ep(χx(t))dt


subject to x (·) ∈ F (I),

an ODEs & ODIs constrained vector optimization problem.

Next section introduces auxiliary tools which will be further used for proving the main

results of this work, that is: necessary and sufficient efficiency conditions for (MFP).

2. Preliminaries

Using the same mathematical data as in the previous section, let consider the following

multiobjective variational problem (MVP),

min
x(·)

(∫ t1

t0

f1(χx(t))dt,

∫ t1

t0

f2(χx(t))dt, ...,

∫ t1

t0

fp(χx(t))dt

)
subject to x (·) ∈ F (I).
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This problem was formulated and studied in [12] and, for a better understanding and co-

herence of all that will follow in this paper, we shall recall the basic results.

Let ρ be a real number and b : [C∞ ([t0, t1], R
n)]

k+1 → [0,∞) a functional. Denote

b
(
x, x0, x0(1), ..., x0(k−1)

)
:= bxx0 , η

(
t, x, x(1), ..., x(k−1), x0(k)

)
:= ηtxx0 .

Also, let a : I×Rn(k+1) → R be a real function that determines the following simple integral

functional A(x(t)) =

∫ t1

t0

a (χx(t)) dt.

Definition 2.1. ([12]) The functional A(x) is [strictly] (ρ, b)-quasiinvex at x0 if

there exist the vector functions η = (η1, ..., ηn), with the property
dζηtx0x0

dtζ
= 0, ζ ∈

{0, 1, ..., k − 1}, (∀) t ∈ I, and θ : [C∞ ([t0, t1], R
n)]

k+1 → Rn such that, for any x [x ̸= x0],

we have (
A(x) ≤ A(x0)

)
=⇒ (bxx0

∫ t1

t0

{
ηtxx0

∂a

∂x
(χx0(t)) +

dηtxx0

dt

∂a

∂x(1)
(χx0(t))

+...+
dkηtxx0

dtk
∂a

∂x(k)
(χx0(t))

}
dt [<] ≤ −ρbxx0 ∥ θxx0 ∥2).

Theorem 2.1. ([12]) ([Normal] necessary efficiency conditions for (MVP)) If x0(·) ∈
F (I) is a [normal] efficient solution of the problem (MVP) then there are λ ∈ Rp, p : I → Rm

and q : I → Rr satisfying the following conditions:

p∑
j=1

λj
∂fj
∂x

(χx0(t)) + p(t)
∂g

∂x
(χx0(t)) + q(t)

∂h

∂x
(χx0(t))

− d

dt


p∑

j=1

λj
∂fj
∂x(1)

(χx0(t)) + p(t)
∂g

∂x(1)
(χx0(t)) + q(t)

∂h

∂x(1)
(χx0(t))


+...+ (−1)k

dk

dtk


p∑

j=1

λj
∂fj
∂x(k)

(χx0(t)) + p(t)
∂g

∂x(k)
(χx0(t)) + q(t)

∂h

∂x(k)
(χx0(t))


= 0 (higher order Euler-Lagrange ODEs)

p(t)g(χx0(t)) = 0, p(t) ≥ 0, (∀)t ∈ I

λ ≥ 0, etλ = 1, et = (1, 1, ..., 1) ∈ Rp.

Theorem 2.2. ([12]) (Sufficient efficiency conditions for (MVP)) Assume that The-

orem 2.1 is fulfilled and there exist the vector functions η and θ satisfying Definition 2.1.

Also, consider that the following statements are true:

a) the functionals

∫ t1

t0

fl(χx(t))dt, l ∈ {1, ..., p}, are (ρ1l , b)-quasiinvex at x0(·) with

respect to η and θ;

b)

∫ t1

t0

p(t)g(χx(t))dt is (ρ2, b)-quasiinvex at x0(·) with respect to η and θ;

c)

∫ t1

t0

q(t)h(χx(t))dt is (ρ3, b)-quasiinvex at x0(·) with respect to η and θ;
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d) one of the integrals

∫ t1

t0

fl(χx(t))dt, l ∈ {1, ..., p},
∫ t1

t0

p(t)g(χx(t))dt,∫ t1

t0

q(t)h(χx(t))dt is strictly (ρ, b)-quasiinvex at x0(·) with respect to η and θ;

e)

p∑
l=1

λlρ
1
l + ρ2 + ρ3 ≥ 0 (ρ1l , ρ

2, ρ3 ∈ R).

Then x0(·) is an efficient solution for (MVP).

3. Main results

This section aims to formulate and prove necessary and sufficient efficiency conditions

for (MFP). In this direction, we establish the following auxiliary results and definitions.

Definition 3.1. A feasible solution x0(·) ∈ F (I) is called efficient solution (or Pareto

minimum) in (MFP) if there exists no other feasible solution x(·) ∈ F (I) such thatK (x(t)) ≼
K
(
x0(t)

)
, where

K (x(t)) :=


∫ t1

t0

f1(χx(t))dt∫ t1

t0

e1(χx(t))dt

,

∫ t1

t0

f2(χx(t))dt∫ t1

t0

e2(χx(t))dt

, ...,

∫ t1

t0

fp(χx(t))dt∫ t1

t0

ep(χx(t))dt

 .

Lemma 3.1. The feasible solution x0 (·) ∈ F (I) is an efficient solution in (MFP) if

and only if x0 (·) ∈ F (I) is an optimal solution to problems Pl(x
0), l = 1, p,

min
x(·)

∫ t1

t0

fl(χx(t))dt∫ t1

t0

el(χx(t))dt

subject to

x(tε) = xε, x(β)(tε) = xβε, ε = 0, 1, β = 1, k − 1

g(χx(t)) ≤ 0, h(χx(t)) = 0, (∀)t ∈ I∫ t1

t0

fj(χx(t))dt∫ t1

t0

ej(χx(t))dt

≤

∫ t1

t0

fj(χx0(t))dt∫ t1

t0

ej(χx0(t))dt

, j = 1, p, j ̸= l.

Proof. ” =⇒ ” Let x0 (·) ∈ F (I) be an efficient solution of (MFP) and let suppose

there exists k ∈ {1, ..., p} such that x0 (·) ∈ F (I) is not an optimal solution of the scalar

problem Pk(x
0). Therefore, there exists a function y (·) ∈ F (I) such that∫ t1

t0

fj (χy(t)) dt∫ t1

t0

ej (χy(t)) dt

≤

∫ t1

t0

fj (χx0(t)) dt∫ t1

t0

ej (χx0(t)) dt

, j = 1, p, j ̸= k;

and ∫ t1

t0

fk (χy(t)) dt∫ t1

t0

ek (χy(t)) dt

<

∫ t1

t0

fk (χx0(t)) dt∫ t1

t0

ek (χx0(t)) dt

.
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This fact contradicts the efficiency of the function x0 (·) ∈ F (I) in (MFP). Therefore, the

direct implication is proved.

” ⇐= ” Consider x0 (·) ∈ F (I) an optimal solution of each scalar problem Pl(x
0), l =

1, p. Assume that x0 (·) ∈ F (I) is not an efficient solution in (MFP). Consequently, there

exists a function y (·) ∈ F (I) such that∫ t1

t0

fj (χy(t)) dt∫ t1

t0

ej (χy(t)) dt

≤

∫ t1

t0

fj (χx0(t)) dt∫ t1

t0

ej (χx0(t)) dt

, j = 1, p

and there exists k ∈ {1, ..., p} such that∫ t1

t0

fk (χy(t)) dt∫ t1

t0

ek (χy(t)) dt

<

∫ t1

t0

fk (χx0(t)) dt∫ t1

t0

ek (χx0(t)) dt

.

But, the function x0 (·) ∈ F (I) minimizes the functional

∫ t1

t0

fk (χx(t)) dt∫ t1

t0

ek (χx(t)) dt

on the set of all

feasible solutions of problem Pk(x
0). The proof is complete.

Remark 3.1. Denoting R0
l :=

∫ t1

t0

fl(χx0(t))dt∫ t1

t0

el(χx0(t))dt

= min
x(·)

∫ t1

t0

fl(χx(t))dt∫ t1

t0

el(χx(t))dt

, l = 1, p, the

previous lemma can be rewritten under the next equivalent form:

The feasible solution x0 (·) ∈ F (I) is an efficient solution in (MFP) if and only if

x0 (·) ∈ F (I) is an optimal solution to problems Pl(x
0), l = 1, p,

min
x(·)

∫ t1

t0

fl(χx(t))dt∫ t1

t0

el(χx(t))dt

[= R0
l ]

subject to

x(tε) = xε, x(β)(tε) = xβε, ε = 0, 1, β = 1, k − 1

g(χx(t)) ≤ 0, h(χx(t)) = 0, (∀)t ∈ I∫ t1

t0

[
fj(χx(t))−R0

jej(χx(t))
]
dt ≤ 0, j = 1, p, j ̸= l.

Next, we shall enunciate a Jagannathan-type lemma (see [3]).

Lemma 3.2. The feasible solution x0 (·) ∈ F (I) is an optimal solution of Pl(x
0), l =

1, p, if and only if x0 (·) ∈ F (I) is an optimal solution of Pl(x
0), l = 1, p,

min
x(·)

∫ t1

t0

[
fl(χx(t))−R0

l el(χx(t))
]
dt

subject to
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x(tε) = xε, x(β)(tε) = xβε, ε = 0, 1, β = 1, k − 1

g(χx(t)) ≤ 0, h(χx(t)) = 0, (∀)t ∈ I∫ t1

t0

[
fj(χx(t))−R0

jej(χx(t))
]
dt ≤ 0, j = 1, p, j ̸= l.

Now, we have all the necessary ingredients to provide the following

Lemma 3.3. Consider l ∈ {1, ..., p} fixed and x0 (·) ∈ F (I) an optimal solution of the

scalar problem Pl(x
0). Then there exist the real scalars λjl ≥ 0 and the piecewise smooth

functions pl(t) and ql(t) such that

p∑
j=1

λjl

[
∂fj
∂x

(χx0)−R0
j

∂ej
∂x

(χx0)

]
+ pl(t)

∂g

∂x
(χx0) + ql(t)

∂h

∂x
(χx0)

− d

dt


p∑

j=1

λjl

[
∂fj
∂x(1)

(χx0)−R0
j

∂ej
∂x(1)

(χx0)

]
+ pl(t)

∂g

∂x(1)
(χx0) + ql(t)

∂h

∂x(1)
(χx0)


+...+ (−1)k

dk

dtk


p∑

j=1

λjl

[
∂fj
∂x(k)

(χx0)−R0
j

∂ej
∂x(k)

(χx0)

]
+ (−1)k

dk

dtk

{
pl(t)

∂g

∂x(k)
(χx0) + ql(t)

∂h

∂x(k)
(χx0)

}
= 0

(higher order Euler-Lagrange ODEs)

pl(t)g(χx0(t)) = 0, pl(t) ≥ 0, (∀)t ∈ I.

Proof. Define the real Ck+1-class functions, ϕj : I×Rn(k+1) → R, ϕj(χx(t)) ≥ 0, j =

1, p, j ̸= l, as follows

Gj(x(t)) :=

∫ t1

t0

[
fj (χx(t))−R0

jej (χx(t)) + ϕj(χx(t))
]
dt = 0.

Therefore, the scalar problem Pl(x
0), l ∈ {1, ..., p} fixed, is changed into

max
x(·)

∫ t1

t0

[
fl(χx)−R0

l el(χx)
]
dt

subject to

x ∈ F (I) , Gj(x) = 0

ϕj(χx) ≥ 0, j = 1, p, j ̸= l

or, equivalently,

max
x(·)

∫ t1

t0

fl (χx)−R0
l el(χx) +

p∑
j=1; j ̸=l

λjl

[
fj (χx)−R0

jej(χx) + ϕj(χx)
] dt (1)

subject to
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x(tε) = xε, x(β)(tε) = xβε, ε ∈ {0, 1}, β ∈ {1, ..., k − 1}
g(χx) ≤ 0, h(χx) = 0, (∀)t ∈ I

−ϕj(χx) ≤ 0, j = 1, p, j ̸= l.

Consider

Vl(χx, pl, ql, γl, aj)

= γl

fl (χx)−R0
l el(χx) +

p∑
j=1; j ̸=l

λjl

[
fj (χx)−R0

jej (χx) + ϕj(χx)
]

+ pl(t)g(χx) + ql(t)h(χx)−
p∑

j=1; j ̸=l

aj(t)ϕj(χx),

where γl ∈ R+, and pl : I → Rm
+ , ql : I → Rr

+, aj : I → R+, j = 1, p, j ̸= l, are piece-

wise smooth functions. The function x0 being an optimal solution for (1), the following

Valentine’s necessary conditions (see [13]) are fulfilled

∂Vl

∂x
(χx0 , pl, ql, γl, aj)−

d

dt

∂Vl

∂x(1)
(χx0 , pl, ql, γl, aj)

+...+ (−1)k
dk

dtk
∂Vl

∂x(k)
(χx0 , pl, ql, γl, aj) = 0

pl(t)g(χx0(t)) = 0, pl(t) ≥ 0, t ∈ I

aj(t)ϕj(χx0(t)) = 0, aj(t) ≥ 0, j = 1, p, j ̸= l

γl ≥ 0, λjl ≥ 0, j = 1, p, j ̸= l.

Concretely, we have

γl
∂fl
∂x

(χx0)− γlR
0
l

∂el
∂x

(χx0) +

p∑
j=1; j ̸=l

γlλjl

[
∂fj
∂x

(χx0)−R0
j

∂ej
∂x

(χx0) +
∂ϕj

∂x
(χx0)

]

+ pl(t)
∂g

∂x
(χx0) + ql(t)

∂h

∂x
(χx0)−

p∑
j=1; j ̸=l

aj(t)
∂ϕj

∂x
(χx0)

− d

dt

{
γl

∂fl
∂x(1)

(χx0)− γlR
0
l

∂el
∂x(1)

(χx0)

}

− d

dt


p∑

j=1; j ̸=l

γlλjl

[
∂fj
∂x(1)

(χx0)−R0
j

∂ej
∂x(1)

(χx0) +
∂ϕj

∂x(1)
(χx0)

]
− d

dt

pl(t)
∂g

∂x(1)
(χx0) + ql(t)

∂h

∂x(1)
(χx0)−

p∑
j=1; j ̸=l

aj(t)
∂ϕj

∂x(1)
(χx0)


+...+ (−1)k

dk

dtk

{
γl

∂fl
∂x(k)

(χx0)− γlR
0
l

∂el
∂x(k)

(χx0)

}

+ (−1)k
dk

dtk


p∑

j=1; j ̸=l

γlλjl

[
∂fj
∂x(k)

(χx0)−R0
j

∂ej
∂x(k)

(χx0) +
∂ϕj

∂x(k)
(χx0)

]
+ (−1)k

dk

dtk

pl(t)
∂g

∂x(k)
(χx0) + ql(t)

∂h

∂x(k)
(χx0)−

p∑
j=1; j ̸=l

aj(t)
∂ϕj

∂x(k)
(χx0)

 = 0
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or, equivalently,

γl
∂fl
∂x

(χx0)−
p∑

j=1; j ̸=l

γlλjlR
0
j

∂ej
∂x

(χx0)− γlR
0
l

∂el
∂x

(χx0) +

p∑
j=1; j ̸=l

γlλjl
∂fj
∂x

(χx0) (2)

+

p∑
j=1; j ̸=l

[γlλjl − aj(t)]
∂ϕj

∂x
(χx0) + pl(t)

∂g

∂x
(χx0) + ql(t)

∂h

∂x
(χx0)

− d

dt

γl
∂fl
∂x(1)

(χx0)−
p∑

j=1; j ̸=l

γlλjlR
0
j

∂ej
∂x(1)

(χx0)− γlR
0
l

∂el
∂x(1)

(χx0)


− d

dt


p∑

j=1; j ̸=l

γlλjl
∂fj
∂x(1)

(χx0) +

p∑
j=1; j ̸=l

[γlλjl − aj(t)]
∂ϕj

∂x(1)
(χx0)


− d

dt

{
pl(t)

∂g

∂x(1)
(χx0) + ql(t)

∂h

∂x(1)
(χx0)

}

+...+ (−1)k
dk

dtk

γl
∂fl
∂x(k)

(χx0)−
p∑

j=1; j ̸=l

γlλjlR
0
j

∂ej
∂x(k)

(χx0)− γlR
0
l

∂el
∂x(k)

(χx0)


+ (−1)k

dk

dtk


p∑

j=1; j ̸=l

γlλjl
∂fj
∂x(k)

(χx0) +

p∑
j=1; j ̸=l

[γlλjl − aj(t)]
∂ϕj

∂x(k)
(χx0)


+ (−1)k

dk

dtk
d

dt

{
pl(t)

∂g

∂x(k)
(χx0) + ql(t)

∂h

∂x(k)
(χx0)

}
= 0.

We impose the following conditions: γlλjl − aj(t) = 0, j = 1, p, j ̸= l, for any t ∈ I,

γl = λll ≥ 0, λjl = γlλjl ≥ 0, j = 1, p, j ̸= l. Rewriting (2), we obtain

p∑
j=1

λjl

[
∂fj
∂x

(χx0)−R0
j

∂ej
∂x

(χx0)

]
+ pl(t)

∂g

∂x
(χx0) + ql(t)

∂h

∂x
(χx0)

− d

dt


p∑

j=1

λjl

[
∂fj
∂x(1)

(χx0)−R0
j

∂ej
∂x(1)

(χx0)

]
+ pl(t)

∂g

∂x(1)
(χx0)


− d

dt

{
ql(t)

∂h

∂x(1)
(χx0)

}
+ ...+ (−1)k

dk

dtk


p∑

j=1

λjl

[
∂fj
∂x(k)

(χx0)−R0
j

∂ej
∂x(k)

(χx0)

]
+ (−1)k

dk

dtk

{
pl(t)

∂g

∂x(k)
(χx0) + ql(t)

∂h

∂x(k)
(χx0)

}
= 0

and the proof is complete.

Theorem 3.1. The feasible solution x0(·) ∈ F (I) is an efficient solution to (MFP)

if and only if it is an optimal solution of each scalar problem Pl(x
0), l = 1, p.

Proof. Using Lemmas 3.1 and 3.2, the proof is immediately.

Definition 3.2. The feasible solution x0(·) ∈ F (I) is a normal efficient solution of

the problem (MFP) if it is a normal optimal solution for at least one of the scalar problems

Pl(x
0), l = 1, p.

Let establish one of the main results of this section, that is, the normal necessary

efficiency conditions of the multiobjetive fractional variational program (MFP).
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Theorem 3.2. ([Normal] necessary efficiency conditions for (MFP)) Let x0(·) ∈ F (I)

be a [normal] efficient solution of the fractional program (MFP). Then there are λ ∈ Rp,

p : I → Rm and q : I → Rr satisfying the following conditions:

p∑
j=1

λj

[
∂fj
∂x

(χx0)−R0
j

∂ej
∂x

(χx0)

]
+ p(t)

∂g

∂x
(χx0) + q(t)

∂h

∂x
(χx0)

− d

dt


p∑

j=1

λj

[
∂fj
∂x(1)

(χx0)−R0
j

∂ej
∂x(1)

(χx0)

]
+ p(t)

∂g

∂x(1)
(χx0) + q(t)

∂h

∂x(1)
(χx0)


+...+ (−1)k

dk

dtk


p∑

j=1

λj

[
∂fj
∂x(k)

(χx0)−R0
j

∂ej
∂x(k)

(χx0)

]
+ (−1)k

dk

dtk

{
p(t)

∂g

∂x(k)
(χx0) + q(t)

∂h

∂x(k)
(χx0)

}
= 0

(higher order Euler-Lagrange ODEs)

p(t)g(χx0(t)) = 0, p(t) ≥ 0, (∀)t ∈ I

λ ≥ 0, etλ = 1, et = (1, 1, ..., 1) ∈ Rp.

Proof. Taking into account Theorem 3.1, we get that x0(·) ∈ F (I) is an optimal

solution of each problem Pl(x
0), l = 1, p. Therefore, if x0(·) ∈ F (I) is [normal] optimal

solution in Pl(x
0), l ∈ {1, ..., p} fixed, then the relations which appear in Lemma 3.3 are

true [λll = 1]. Making summation over l = 1, p of all relations in Lemma 3.3 and setting

p∑
l=1

λjl = λ̃j ,

p∑
l=1

pl(t) = p̃(t),

p∑
l=1

ql(t) = q̃(t),

we get the following relations

p∑
j=1

λ̃j

[
∂fj
∂x

(χx0)−R0
j

∂ej
∂x

(χx0)

]
+ p̃(t)

∂g

∂x
(χx0) + q̃(t)

∂h

∂x
(χx0)

− d

dt


p∑

j=1

λ̃j

[
∂fj
∂x(1)

(χx0)−R0
j

∂ej
∂x(1)

(χx0)

]
+ p̃(t)

∂g

∂x(1)
(χx0) + q̃(t)

∂h

∂x(1)
(χx0)


+...+ (−1)k

dk

dtk


p∑

j=1

λ̃j

[
∂fj
∂x(k)

(χx0)−R0
j

∂ej
∂x(k)

(χx0)

]
+ p̃(t)

∂g

∂x(k)
(χx0)


+ (−1)k

dk

dtk

{
q̃(t)

∂h

∂x(k)
(χx0)

}
= 0

p̃(t)g(χx0(t)) = 0, p̃(t) ≥ 0, λ̃j ≥ 0, (∀)t ∈ I, [λ̃j ≥ 1].

By dividing with S =

p∑
j=1

λ̃j ≥ 1 and denoting λj = λ̃j/S, p(t) = p̃(t)/S, q(t) = q̃(t)/S, we

obtain
p∑

j=1

λj

[
∂fj
∂x

(χx0)−R0
j

∂ej
∂x

(χx0)

]
+ p(t)

∂g

∂x
(χx0) + q(t)

∂h

∂x
(χx0)
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− d

dt


p∑

j=1

λj

[
∂fj
∂x(1)

(χx0)−R0
j

∂ej
∂x(1)

(χx0)

]
+ p(t)

∂g

∂x(1)
(χx0) + q(t)

∂h

∂x(1)
(χx0)


+...+ (−1)k

dk

dtk


p∑

j=1

λj

[
∂fj
∂x(k)

(χx0)−R0
j

∂ej
∂x(k)

(χx0)

]
+ (−1)k

dk

dtk

{
p(t)

∂g

∂x(k)
(χx0) + q(t)

∂h

∂x(k)
(χx0)

}
= 0

(higher order Euler-Lagrange ODEs)

p(t)g(χx0(t)) = 0, p(t) ≥ 0, (∀)t ∈ I

λ ≥ 0, etλ = 1, et = (1, 1, ..., 1) ∈ Rp

and the proof is complete.

The previous theorem represents the corresponding result to Theorem 2.1 in Section

2. We have (see Section 1)

Fl

(
x0(t)

)
:=

∫ t1

t0

fl(χx0(t))dt, El

(
x0(t)

)
:=

∫ t1

t0

el(χx0(t))dt > 0

and, using Remark 3.1, we get R0
l =

∫ t1

t0

fl(χx0(t))dt∫ t1

t0

el(χx0(t))dt

=
Fl

(
x0(t)

)
El (x0(t))

, l = 1, p. By replacing

the above given numbers R0
l , l = 1, p, and redefining the functions p and q in Theorem 3.2,

we obtain the following result:

Theorem 3.3. ([Normal] necessary efficiency conditions for (MFP)) Consider x0(·) ∈
F (I) a [normal] efficient solution in (MFP). Then there exist λ ∈ Rp, p : I → Rm and

q : I → Rr satisfying the following conditions:

p∑
j=1

λj

[
Ej

(
x0
) ∂fj
∂x

(χx0)− Fj

(
x0
) ∂ej
∂x

(χx0)

]
+ p(t)

∂g

∂x
(χx0) + q(t)

∂h

∂x
(χx0)

− d

dt


p∑

j=1

λj

[
Ej

(
x0
) ∂fj
∂x(1)

(χx0)− Fj

(
x0
) ∂ej
∂x(1)

(χx0)

]
+ p(t)

∂g

∂x(1)
(χx0)


− d

dt

{
q(t)

∂h

∂x(1)
(χx0)

}

+...+ (−1)k
dk

dtk


p∑

j=1

λj

[
Ej

(
x0
) ∂fj
∂x(k)

(χx0)− Fj

(
x0
) ∂ej
∂x(k)

(χx0)

]
+ (−1)k

dk

dtk

{
p(t)

∂g

∂x(k)
(χx0) + q(t)

∂h

∂x(k)
(χx0)

}
= 0

(higher order Euler-Lagrange ODEs)
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p(t)g(χx0(t)) = 0, p(t) ≥ 0, (∀)t ∈ I

λ ≥ 0, etλ = 1, et = (1, 1, ..., 1) ∈ Rp.

In order to obtain sufficient efficiency conditions for the multiobjective fractional

variational problem (MFP) we shall use the (ρ, b)-quasiinvexity notion that we recalled in

the previous section (see Definition 2.1). The corresponding theorem to Theorem 2.2 is the

following

Theorem 3.4. (Sufficient efficiency conditions for (MFP)) Assume that Theorem

3.2 is fulfilled and there exist the vector functions η and θ satisfying Definition 2.1. Also,

consider that the following statements are true:

a) the functionals

∫ t1

t0

[
fl(χx(t))−R0

l el(χx(t))
]
dt, l ∈ {1, ..., p}, are (ρ1l , b)-quasiinvex

at x0(·) with respect to η and θ;

b)

∫ t1

t0

p(t)g(χx(t))dt is (ρ2, b)-quasiinvex at x0(·) with respect to η and θ;

c)

∫ t1

t0

q(t)h(χx(t))dt is (ρ3, b)-quasiinvex at x0(·) with respect to η and θ;

d) one of the integrals

∫ t1

t0

[
fl(χx(t))−R0

l el(χx(t))
]
dt, l ∈ {1, ..., p},∫ t1

t0

p(t)g(χx(t))dt,

∫ t1

t0

q(t)h(χx(t))dt is strictly (ρ, b)-quasiinvex at x0(·) with respect to η

and θ; (ρ = ρ1l , ρ
2 or ρ3, respectively)

e)

p∑
l=1

λlρ
1
l + ρ2 + ρ3 ≥ 0 (ρ1l , ρ

2, ρ3 ∈ R).

Then x0(·) is an efficient solution for (MFP).

Proof. The proof follows in the same manner as in Theorem 2.2. The functionals∫ t1

t0

fl(χx(t))dt are replaced by

∫ t1

t0

[
fl(χx(t))−R0

l el(χx(t))
]
dt, l ∈ {1, ..., p}.

Let assume that x0(·) is not an efficient solution in (MFP). Taking into account the

hypotheses a) (multiplied by λl ≥ 0 and making summation over l = 1, p), b) and c) we

get three similar relations as in Definition 2.1. Making the sum, side by side, of the three

relations previously obtained and applying d), e) and the formula of integration by parts,

we get ∫ t1

t0

ηtxx0

[
λ
∂φ

∂x
(χx0(t)) + p(t)

∂g

∂x
(χx0(t)) + q(t)

∂h

∂x
(χx0(t))

]
dt

+ηtxx0

[
λ

∂φ

∂x(1)
(χx0(t)) + p(t)

∂g

∂x(1)
(χx0(t)) + q(t)

∂h

∂x(1)
(χx0(t))

]
|t1t0

−
∫ t1

t0

ηtxx0

d

dt

[
λ

∂φ

∂x(1)
(χx0(t)) + p(t)

∂g

∂x(1)
(χx0(t)) + q(t)

∂h

∂x(1)
(χx0(t))

]
dt

+...+ (−1)k
∫ t1

t0

ηtxx0

dk

dtk

[
λ

∂φ

∂x(k)
(χx0(t)) + p(t)

∂g

∂x(k)
(χx0(t))

]
dt

+(−1)k
∫ t1

t0

ηtxx0

dk

dtk

[
q(t)

∂h

∂x(k)
(χx0(t))

]
dt < −

(
p∑

l=1

λlρ
1
l + ρ2 + ρ3

)
∥ θxx0 ∥2

where φl(χx(t)) := fl(χx(t))−R0
l el(χx(t)).
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Considering the boundary conditions x(tε) = xε, x(β)(tε) = xβε, ε = 0, 1, β =

1, k − 1 (see x(tε) = xε = x0(tε), x
(β)(tε) = xβε = x0(β)(tε)), and knowing that

dζηtx0x0

dtζ
=

0, ζ ∈ {0, 1, 2, ..., k − 1}, (∀) t ∈ I (see Definition 2.1), and applying Theorem 3.2, we get

0 < −

(
p∑

l=1

λlρ
1
l + ρ2 + ρ3

)
∥ θxx0 ∥2 .

According to hypothesis e) and ∥ θxx0 ∥2≥ 0, we find a contradiction. Therefore, the point

x0 is an efficient solution to (MFP). The proof is complete.

Theorem 3.5. (Sufficient efficiency conditions for (MFP)) Assume that Theorem

3.3 is fulfilled and there exist the vector functions η and θ satisfying Definition 2.1. Also,

consider that the following statements are true:

a) the functionals

∫ t1

t0

[
El

(
x0(t)

)
fl(χx(t))− Fl

(
x0(t)

)
el(χx(t))

]
dt, l = 1, p, are

(ρ1l , b)-quasiinvex at x0(·) with respect to η and θ;

b)

∫ t1

t0

p(t)g(χx(t))dt is (ρ2, b)-quasiinvex at x0(·) with respect to η and θ;

c)

∫ t1

t0

q(t)h(χx(t))dt is (ρ3, b)-quasiinvex at x0(·) with respect to η and θ;

d) one of the integrals

∫ t1

t0

[
El

(
x0(t)

)
fl(χx(t))− Fl

(
x0(t)

)
el(χx(t))

]
dt, l ∈ {1, ..., p},∫ t1

t0

p(t)g(χx(t))dt,

∫ t1

t0

q(t)h(χx(t))dt is strictly (ρ, b)-quasiinvex at x0(·) with respect to η

and θ; (ρ = ρ1l , ρ
2 or ρ3, respectively)

e)

p∑
l=1

λlρ
1
l + ρ2 + ρ3 ≥ 0 (ρ1l , ρ

2, ρ3 ∈ R).

Then x0(·) is an efficient solution for (MFP).

Proof. The proof follows in the same manner as in Theorem 2.2. The functionals∫ t1

t0

fl(χx(t))dt are replaced by

∫ t1

t0

[
El

(
x0(t)

)
fl(χx(t))− Fl

(
x0(t)

)
el(χx(t))

]
dt, l = 1, p.

Corollary 3.1. (Sufficient efficiency conditions for (MFP)) Let suppose that Theorem

3.2 is fulfilled and there exist the vector functions η and θ satisfying Definition 2.1. Also,

consider that the following statements are true:

a) the functionals

∫ t1

t0

[
fl(χx(t))−R0

l el(χx(t))
]
dt, l = 1, p, are (ρ1l , b)-quasi-invex at

x0(·) with respect to η and θ;

b)

∫ t1

t0

[p(t)g(χx(t)) + q(t)h(χx(t))] dt is (ρ2, b)-quasiinvex at x0(·) with respect to η

and θ;

c) one of the integrals

∫ t1

t0

[
fl(χx(t))−R0

l el(χx(t))
]
dt, l ∈ {1, ..., p},∫ t1

t0

[p(t)g(χx(t)) + q(t)h(χx(t))] dt is strictly (ρ, b)-quasiinvex at x0(·) with respect to η and

θ; (ρ = ρ1l or ρ2, respectively)

d)

p∑
l=1

λlρ
1
l + ρ2 ≥ 0 (ρ1l , ρ

2 ∈ R).

Then x0(·) is an efficient solution for (MFP).
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Corollary 3.2. (Sufficient efficiency conditions for (MFP)) Assume that Theorem

3.3 is fulfilled and there exist the vector functions η and θ satisfying Definition 2.1. Also,

we suppose that the following statements are true:

a) the functionals

∫ t1

t0

[
El

(
x0(t)

)
fl(χx(t))− Fl

(
x0(t)

)
el(χx(t))

]
dt, l = 1, p, are

(ρ1l , b)-quasiinvex at x0(·) with respect to η and θ;

b)

∫ t1

t0

[p(t)g(χx(t)) + q(t)h(χx(t))] dt is (ρ2, b)-quasiinvex at x0(·) with respect to η

and θ;

c) one of the integrals

∫ t1

t0

[
El

(
x0(t)

)
fl(χx(t))− Fl

(
x0(t)

)
el(χx(t))

]
dt, l ∈ {1, ..., p},∫ t1

t0

[p(t)g(χx(t)) + q(t)h(χx(t))] dt is strictly (ρ, b)-quasiinvex at x0(·) with respect to η and

θ; (ρ = ρ1l or ρ2, respectively)

d)

p∑
l=1

λlρ
1
l + ρ2 ≥ 0 (ρ1l , ρ

2 ∈ R).

Then x0(·) is an efficient solution for (MFP).

Remark 3.2. The hypotheses b) and c) in Theorems 3.4 and 3.5 are replaced by∫ t1

t0

[p(t)g(χx(t)) + q(t)h(χx(t))] dt is (ρ
2, b)-quasiinvex at x0(·) with respect to η and

θ

and, in this way, we have obtained the previous two corollaries.

4. Conclusions

We introduced and studied a class of single-time vector fractional variational problems

involving higher order derivatives (see (MFP)). Within this framework, we formulated and

proved necessary and sufficient efficiency conditions for a feasible solution in (MFP).
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