U.P.B. Sci. Bull., Series A, Vol. 77, Iss. 1, 2015 ISSN 1223-7027

ON A VECTOR OPTIMIZATION PROBLEM INVOLVING HIGHER
ORDER DERIVATIVES

Savin TREANTA!

In this paper we establish necessary and sufficient efficiency conditions for a
class of multiobjective fractional variational problems (MFP) subject to ODEs & ODIs
constraints involving higher order derivatives. Using the notion of (p,b)-quasiinvezity,
we formulate sufficient efficiency conditions for a feasible solution in (MFP).
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1. Introduction and problem description

In a previous work (Treantd and Udrigte, [12]), strongly motivated by its applications
in natural phenomena, mechanics and engineering problems (which imply derivatives of or-
der higher than one or two), we extended and further developed some optimization results
connected to the efficiency of a feasible solution for a class of multiobjective nonfractional
variational problems. As natural continuation of these results, the present research paper
introduces a study of efficiency conditions for a feasible solution in a multiobjective frac-
tional optimization problem of minimizing a vector of simple integral functionals subject to
certain higher order differential equations and/or inequations. Our study is encouraged by
many practical optimization problems with simple integral functional quotients as objective
vectors.

There is a long story of multiobjective (fractional) programming problems (see [2],
[11], [5], [10], [6], [1], [7], etc.) which involve a generalized convexity. We make an abuse
mentioning only a little part: [11], [4], [10], [6], [7], [9], [8]. In [11], Singh and Hanson derive
duality results using invex functions in vector ratio problems. Jeyakumar and Mond (see [4])
generalize these results for V-invex functions. Later, a unified formulation of the generalized
convexity, in order to derive duality results and optimality conditions, was provided by Z.
A. Liang, H. X. Huang and P. M. Pardalos (see [6]).

Our vector minimization problem, required by practical reasons, despite of the previ-
ous mentioned advances in optimization, has not been studied so far. The present paper is
organized as follows: Section 1 motivates the study and describes the vector ratio problem
(MFP), while Section 2 provides, for a better coherence of this paper, the main ingredients
derived in a previous work (see [12]); Section 3 includes the original results and the final
section contains the conclusions of this work.
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In our subsequent theory, we shall use the following notations:

U=V U =0V, UIVEU v

u<vsu <v, ulxIvsulv, uFtv, i=1,s

for any two vectors u = (u1,...,us),v = (v1,...,0s) in R’. Let us consider x.(t) :=
dk
(t,z(t), 2V (), ..., 2% (1)), where 2 (t) := ﬁx(t% with £ > 1 a fixed natural number.

Let be given

f=a): Ix RMED s Rgp o = (eq) : I x RMD S RP o =T,p

9=(g1, 0 gm) : I x R*FY s R™ b= (hy, ... h,) : T x RMFFD 5 BT

(see m < n, r < n) four C* '-class functions, where I := [to,t;] C R is a real interval.
The previous C**1-class Lagrangians, fo(xz(t)), €a(xz(t)), @ = I, p, generate the following
simple integral functionals

tl tl
F, (z(t)) = falxz(t)dt, Eq4(z(t)):= / ea(xz(t)dt >0, a=1,p.
to tO
Consider the space C* ([tg,t1], R™) of all functions z: [tg,t;] — R"™ of C*-class,
k
having the norm |[|z| := |||/ + Z 2" 0. Define F(I) as being the set
p=1

zeC*(LR"), g(x«(t) <0, h(x«(t) =0, tel

x(te) = ze, x(ﬁ)(ts):xgg, e=0,1, f=1k-1

of all feasible solutions (domain) of the following multiobjective fractional variational prob-
lem (MFP),

ty t1

ROedt [ falxa(t)dt / (e ()t

. to to to

I;l(lgl T y = y very g
/ 1 (o (£))dt / ea(xa (1)) dt / ey (o (1))dt

to to to

subject to z () € F(I),

an ODEs & ODIs constrained vector optimization problem.
Next section introduces auxiliary tools which will be further used for proving the main
results of this work, that is: necessary and sufficient efficiency conditions for (MFP).

2. Preliminaries

Using the same mathematical data as in the previous section, let consider the following
multiobjective variational problem (MVP),

win ([ A, [ FalxeO)it, .. [ (o)t
)

subject to z () € F(I).
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This problem was formulated and studied in [12] and, for a better understanding and co-
herence of all that will follow in this paper, we shall recall the basic results.
Let p be a real number and b: [C™ ([to, t1], R™)]*™" = [0, 00) a functional. Denote

b (z,:zro, :Z:O(l), ...,xo(kfl)) =by0, 7 (t, z,x(l), e z(kfl) O(k)> = Npzao-

Also, let a: I x R™ Y 5 R be a real function that determines the following simple integral

functional A(xz(t)) = / 1 a(x(t))dt.

to
Definition 2.1. ([12]) The functional A(z) is [strictly] (p,b)-quasiinver at x° if

d
there exist the vector functions n = (n1,...,m,), with the property Zttfz%o =0, ¢ €

{0,1,...k—1}, (V) t €1, and 0: [C™ ([to, t1], R")]*T — R™ such that, for any z [z # 2°],
we have

f da dnigzo  Oa
0 txx
(40) £ AG) = (b [ {5 o)+ P S5 a0
d*1ypeo  Oa
o 2 O (1))t [<) < —pbago || B0 [1).

Theorem 2.1. ([12]) ([Normal] necessary efficiency conditions for (MVP)) If z°(-) €
F(I) is a [normal] efficient solution of the problem (MVP) then there are \ € RP, p: I — R™
and q: I — R satisfying the following conditions:

3 A2 (1) + 0 32 (10 (1) + 0(0) 1 (e ()
S ) 0 00 S

k p
ot (DR > D o (1) (1) (0 () + (1) (o 1)

=0 (higher order Euler-Lagrange ODEs)
p(t)g(Xao(t) =0, p(t) >0, (V)tel

A>0, ex=1, e =(1,1,..,1) € RP.

Theorem 2.2. ([12]) (Sufficient efficiency conditions for (MVP)) Assume that The-
orem 2.1 is fulfilled and there exist the vector functions n and 0 satisfying Definition 2.1.
Also, consider that the following statements are true:

t1
a) the functionals filxz()dt, 1 € {1,....p}, are (p;,b)-quasiinver at x°(-) with
t
respect to n and 6; ’
t1
b) p(t)g(x=(t))dt is (p*,b)-quasiinver at x°(-) with respect to n and 6;

t1
c) q(t)h(x.(t))dt is (p,b)-quasiinvez at x°(-) with respect to n and 0;
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d) one of the integrals /ttl filxz(t)dt, 1 € {1,...,p}, /tt1 p(t)g(x(t))dt,

t1
/ q(t)h(x.(t))dt is strictly (p,b)-quasiinver at x°(-) with respect to n and 6;

to

P

e) Y Nl +p>+0* =0 (p,p% " €R).
=1

Then z°(-) is an efficient solution for (MVP).

3. Main results

This section aims to formulate and prove necessary and sufficient efficiency conditions
for (MFP). In this direction, we establish the following auxiliary results and definitions.

Definition 3.1. A feasible solution 2°(+) € F(I) is called efficient solution (or Pareto
minimum) in (MFP) if there exists no other feasible solution z(-) € F(I) such that K (z(t)) <
K (2°(t)), where

et [ BGa@d [ )
K (z(t) = | “5 , = —
/t 1 (xa(£))dt / e (xa (1))t / ey (e () dt

Lemma 3.1. The feasible solution 2° (-) € F(I) is an efficient solution in (MFP) if
and only if 2° (-) € F(I) is an optimal solution to problems Py(x°), | = 1,p,
t1

subject to
z(te) = we, x(B)(ts):xgg, e=0,1, pf=1k—-1
9(x(t) <0, h(xz(t))=0, (V)tel

/ et [ f (@)t
totl < totl , J=1,p, ]7& L.
| estutn / 5 (e (1))t

Proof. 7 = " Let 2° () € F(I) be an efficient solution of (MFP) and let suppose
there exists k& € {1,...,p} such that z°(-) € F(I) is not an optimal solution of the scalar
problem P (z°). Therefore, there exists a function y (-) € F(I) such that

5 Oa@)d [ f Gue(®) di
o < . J=Lp, j#k
[ et [ etuma
to to
and "

fi (x(6)) dt / i (e (1)) dt

< dho

/ e (1)) dt / ex (xan (1)) dt

t() tO

to
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This fact contradicts the efficiency of the function z° () € F(I) in (MFP). Therefore, the
direct implication is proved.

? <=7 Consider 2° (-) € F(I) an optimal solution of each scalar problem P;(z°), | =
T,p. Assume that 2° () € F(I) is not an efficient solution in (MFP). Consequently, there
exists a function y (-) € F(I) such that

/ £ (e (8)) dt £ (oo ()t
t[;tl < t(;tl , J=Lp
[ etama [ euma
to to
and there exists k € {1, ..., p} such that
| i Ouy () dt t i (e (1)) dt
/t e Oy () dt / e (xao (1)) dt

fr (xa(t)) di

But, the function z° (-) € F(I) minimizes the functional “X on the set of all

t1
er (Xa(t)) di
to
feasible solutions of problem Py (z°). The proof is complete.
t1 t1
Ji(xzo(2))dt filxa(t))dt
Remark 3.1. Denoting R? = totl— = Hl(il)ltotl—, l=1,p, the
[ et " [t
to

t
previous lemma can be rewritten under ghe next equivalent form:

The feasible solution 2°(-) € F(I) is an efficient solution in (MFP) if and only if
2% (-) € F(I) is an optimal solution to problems Py(z"), | =1, p,

" filxa()dt
min =& [= RY)
/t 1 (1)t

subject to
z(te) = we, m(ﬁ)(tg):xgs, e=0,1, B=1k-1
g(xz(1)) <0, h(xz(t) =0, (Vtel

/ O (®) — Roei(xa ()] dt <0, j=Tp, j#L

to

Next, we shall enunciate a Jagannathan-type lemma (see [3]).
Lemma 3.2. The feasible solution x° (-) € F(I) is an optimal solution of Py(x°), | =
1,p, if and only if 2° (-) € F(I) is an optimal solution of Py(z°), | =T, p,

i / (1) — RYer(xa(0)] dt

z(- to

subject to
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z(te) = we, m(B)(te):xgg, e=0,1, B=1k—-1

g(x=(t) €0, h(xz(t))=0, (Mtel

/ () - Res(e ()] dt <0, j=Tp, j#1

to

Now, we have all the necessary ingredients to provide the following

Lemma 3.3. Considerl € {1,...,p} fired and 2° (-) € F(I) an optimal solution of the
scalar problem Pl(xo). Then there exist the real scalars Aj; > 0 and the piecewise smooth
functions pi(t) and q(t) such that

T

p of. e o oh
> [afwxo) - R;?;;(xxo)} ) 52 () + (1) g (o)

z:: [a 5 Oao) = RY 5( )<xxo)] +pl(t)%(xro)+ql(t)%(xmo)

d* | & of; de;
k Z 0
+...+ (-1) ﬁ . )\jl |:a{IJ(Jk)<X‘rO) - Rj ax(i) (X:L’O):|

Jj=1

dk 15) oh
+ (—1)]@@ {Pl(t)ax(gk)(xfw) + QZ(t)ax(k)(XzO)} =0

(higher order Euler-Lagrange ODEs)

Pit)g(xao (1) =0, pi(t) =0, (V)t € I.

Proof. Define the real C**1-class functions, ¢;: I x R" 1) 5 R ¢ (x,(t)) >0, j =
1,p, j #1, as follows

G;(a(t)) = / 1 (xelt)) — Boe; (xalt)) + 65 (xa (1)) dt = 0.

Therefore, the scalar problem P;(2°), I € {1,..., p} fixed, is changed into

t1
s [ [6610) - et

subject to

or, equivalently,

max/lt ! {fl (xz) — RYer(xx) Z At [fi (Xa) R?ej(xw)—kgbj(xx)]}dt (1)

=) Jj=1; j#l

subject to
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z(te) = ze, ( ) =x8., €€{0,1}, Be{l,., k—-1}
9( 2) <0, hixs)=0, Mtel
~0i(xz) <0, j=T1,p, j#L

Consider
Vi(Xas 1> @1 15 @)

=M {fl (Xa:) Rl €l Xac Z )\]l f] Xac R?ej (Xw) + ¢](X:v)] }

j=1; j#l
+pt)g(xa) + aOh(xa) = Y a;(t)d;(xa),
J=1;

where v € Ry, and p;: I — R, ¢: I — R, aj: I — Ry, j = 1,p, j # |, are piece-

wise smooth functions. The function z° being an optimal solution for (1), the following

Valentine’s necessary conditions (see [13]) are fulfilled

8Vl( _ d 0V, ‘
or X0 DLy Q1> V15 @5) — am(&o,pz?qlﬂhag)

d* oV,
—+...+ (71)kwm(xzoapl)ql7’n7aj) =0

pt)g(Xa0(t)) =0, p(t) >0, tel
aj(t)¢;(xe0(t) =0, a;(t) 20, j=T1,p, j#I
'YZZO, >\]l207 j:15p7 ]#l

Concretely, we have
af 3 P afj anj 8(;5]
Mgy (Xa0) = Ry B L(xa0) + | Z AL [ax(XxO) Rj 5 (xao) + - (Xa0)
J=1; j#l
dg oh u do;
+ pu(t) %(th)) +a (t)%(XzO) - j_;ﬂ a; (t)%(Xzo)

d af Oe
— {%a iy (Xa0) = MRy 5 (XIO)}

d P af; de; ;i
T { Z YiAji |:ax(jl) (Xz0) — Rgaxd) (Xa0) + O (i) (X0 ):| }

J=1; j#l

-4 {pxt)ai‘fﬁ)(xﬂ) Falt) e — Y a0 (xwo>}

d* ofi Oe;
k 0
+oot+ ( 1) dtk {’Y Oz 9..(k) (Xaco) ’YlRlal,(k)(Xxo)}
dr de; 0¢;
)k 0_9€j J
+( dtk {] 12;# NAj [8 (%) (Xa0) — R; EIG) (Xa0) + M(XIO)]}

k P
R {pz(t)ai(gk)(xzo) a0 = Y a5 <xwo>} =0



122 Savin TREANTA

or, equivalently,

df; b o of;
Nre(Xa0) = Y vang Z7 (xgo) — %R L (x0) + S mhi=Llao)  (2)
or / 7 Oz oz , ‘ ox
J=1; j#l J=1; j#l
P
8¢j 89 oh
+ D =g (0] 52 (o) + 2D 5 (Xa0) + () 5 (Xao)
J=1; j#l
d u 0 Oe;
df am(l) Xwo - Z 'Yl/\JZR]a 1) (Xa: ) ’YlRl 9z (Xwo)
J=1; j#l
d a b
d{ ’W)\jl XIO + Z ’YI)\jl )] P ) (Xz )}
J=1; j#l j=1; j#l

k p
ot (DL {waﬁ(xmo)— | > WY 38 (Xa0) — ?aa i (Xro)}

dtk Oz (k) Pere ¥
dk p P
+ (_l)kﬁ { Z Vl)‘jla (k) Xxo + Z ’Yl/\]l )] oz k) (Xa: )
J=1; j#l J=1; j#l
dé d

We impose the following conditions: y\j; — a;(t) =0, j =1,p, j #1, for any t € I,
Y=Mi >0, \ji =X\ >0, j=1,p, j # . Rewriting (2), we obtain

Zm[ (o) = RYG (a0)] + )52 () + () 5 )

AR i ) = R )|+ 0 50 )

P O af; 0
-2 {qz(t)axﬁ)(xro)} bt ()R {Zfﬂ {ax{]k)(’(f“) B 5t (X‘"”O)] }
p

k
#1405 () + ) () | =0
and the proof is complete.

Theorem 3.1. The feasible solution x°(-) € F(I) is an efficient solution to (MFP)
if and only if it is an optimal solution of each scalar problem Py(z°), | =1, p.

Proof. Using Lemmas 3.1 and 3.2, the proof is immediately.

Definition 3.2. The feasible solution 2°(-) € F(I) is a normal efficient solution of
the problem (MFP) if it is a normal optimal solution for at least one of the scalar problems
P;(2°), 1 =T1,p.

Let establish one of the main results of this section, that is, the normal necessary
efficiency conditions of the multiobjetive fractional variational program (MFP).
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Theorem 3.2. ([Normal] necessary efficiency conditions for (MFP)) Let z°(-) € F(I)
be a [normal] efficient solution of the fractional program (MFP). Then there are A\ € RP,
p: I — R™ and q: I — R" satisfying the following conditions:

DN %(Xx") — Rj ik (Xa0) | + p(t>@(xz°) + Q(t)%(m)
‘ ox Ox Ox O

k
(1 g {0 205 ) + a0 5 ) |
(higher order Euler-Lagrange ODEs)
p(t)g(xe0 () =0, p(t) =0, (V)tel
A>0, ex=1, e =(1,1,..,1) € RP.

Proof. Taking into account Theorem 3.1, we get that z°(-) € F(I) is an optimal
solution of each problem P;(z°), I = T,p. Therefore, if z°(-) € F(I) is [normal] optimal
solution in P;(2°), I € {1,...,p} fixed, then the relations which appear in Lemma 3.3 are
true [A\;; = 1]. Making summation over [ = 1, p of all relations in Lemma 3.3 and setting

P P P
D oNi=Ns Y om®)=51), D alt) =),
1=1 1=1 1=1

we get the following relations

8ej

52 (x0n) = B G2 ) | 50 G2 00) + 0 5 ()

d |- [ 0f; de; g . Oh
T dt {Z)‘J {83:(]1) (Xa:o) - Rgax(]l) (XIO):| +p(t)m(><aﬂ’) +Q(t)6$(1)(X$O)}

& | G [ of; de; 9g
. i
s A {2 by { ax(;) (Xa0) — Rg?—ax(;) (xgco)] P 500 0a)

k
+ (1) {05 ()} =0
Pt)g(xao(t) =0, B(t) >0, X\ >0, (Wtel, [N >1].

P
By dividing with § =)~ A; > 1 and denoting \; = ;/S, p(t) = p(t)/S, q(t) = §(t)/S, we
j=1
obtain
de;

s [ G200 = RS2 )] 500 F2 00) + ) )
=1
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af; Oe; 0 oh
{Z A | oty ) = R ks )| 900 55 ) + q(t)w(”(xmo)}

P& ) d
+...+(_1)k% Zl)\ [a{k( )~ B s (xa )}

k
(1) {05 () + ) () =0

(higher order Euler-Lagrange ODEs)

—~

~
~—
Q
—
=
8

=]
—~
~—
~—

|

\.C)
s
—~

>0, (tel

A>0, ex=1, e'=(1,1,...,1)€RP

and the proof is complete.
The previous theorem represents the corresponding result to Theorem 2.1 in Section
2. We have (see Section 1)

ty

By (2°(t)) == filxeo (t))dt, By (2°(t)) := / 1 er(xzo(8))dt >0

to tO

t1

Lo ())dt

. A Jilxao (1)) Fi (2°(t)) _
and, using Remark 3.1, we get R} = —; = o , I =1,p. By replacing
' By (2°(t))

el(Xz" (t))dt

to

the above given numbers RY, | = T, p, and redefining the functions p and ¢ in Theorem 3.2,
we obtain the following result:

Theorem 3.3. ([Normal] necessary efficiency conditions for (MFP)) Consider 2°(-) €
F(I) a [normal] efficient solution in (MFP). Then there exist A € RP, p: I — R™ and
q: I — R" satisfying the following conditions:

;A |: %f] (Xac ) - Fj (JCO) %(Z(XIO):| —|—p(t)%(xxo) +q(t)%(xxo)
_% Z)\j |:E (xo) aij(cjl (X0 )—F ( 0) 86(1 (e ):| ot )%(XID)

- g {05 00

dk | & o de;
tot (CDf o ;Aj [E (z°) 8;:; (Xa0) — Fj (2°) 8x(j€ (Xa )}
k d”

o {0525 () + 400 5 0 b = 0

(higher order Euler-Lagrange ODEs)
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p(t)g(Xao(t)) =0, p(t) >0, (V)tel
A>0, ex=1, e =(1,1,..,1) € RP.

In order to obtain sufficient efficiency conditions for the multiobjective fractional
variational problem (MFP) we shall use the (p,b)-quasiinvexity notion that we recalled in
the previous section (see Definition 2.1). The corresponding theorem to Theorem 2.2 is the
following

Theorem 3.4. (Sufficient efficiency conditions for (MFP)) Assume that Theorem
3.2 is fulfilled and there exist the vector functions n and 0 satisfying Definition 2.1. Also,
consider that the following statements are true:

t1
a) the functionals/ [filxa(t)) — Rle(xo(t))] dt, L € {1, ...,p}, are (p,b)-quasiinvex
to

a ) with respect to n and 6;

t a®
t1
b) / ))dt is (p*,b)-quasiinvez at x°(-) with respect to n and 6;

c) ( Yh(xz(t))dt is (p3,b)-quasiinvex at 2°(-) with respect to n and 6;

d) one of the integrals /tl [fl(xT(t)) — R?el(xm(t))} dt, 1 € {1,...,p},

to

t1 ty
/ p(t)g(x(t))dt, / q(t)h(xa(t))dt is strictly (p,b)-quasiinvex at 2°(-) with respect to 1
to t

0
and 0;  (p = p},p* or p*, respectively)
P

e)> Npt+p°+p*=0 (p,p%p* € R).
=1
Then 2°(-) is an efficient solution for (MFP).
Proof. The proof follows in the same manner as in Theorem 2.2. The functionals

f1(x=(¢))dt are replaced by / ' [fl(x$(t)) — R?el(xw(t))] dt, 1 € {1,...,p}.

t() t[)
Let assume that 2°(-) is not an efficient solution in (MFP). Taking into account the

t1

hypotheses a) (multiplied by A; > 0 and making summation over [ = 1,p), b) and c) we
get three similar relations as in Definition 2.1. Making the sum, side by side, of the three
relations previously obtained and applying d), e) and the formula of integration by parts,
we get

= [ o Gy [N (00 200 555 ) + a0 5 (e )

0

o )| a

Ox(k ox

k h dk 6h - 1 2 3 2
+(_1> Ntxao Atk Q(t)a (k) (X:vo (t)) dt < — E )‘lpl +p +p || 020 H
to Z

=1
where ¢;(x2(t)) == fi(xz(t)) = Rlei(xz(t)).

t1 k
+o o (=1)F /to mmo:;? [Aaw)(xwo(t))wLp(t)
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Considering the boundary conditions z(t.) = z., ¥ (t.) = x5, ¢ = 0,1, B =

- P
Lk—1 (see z(t.) = xe = 2°(t.), 2P (t.) = x5. = z°P)(t.)), and knowing that % =

0, (€40,1,2,....,k — 1}, (V) t € I (see Definition 2.1), and applying Theorem 3.2, we get

P
0<— (Z Aipt + p° +p3> | 0200 |2

I=1
According to hypothesis e) and || 6,0 ||>> 0, we find a contradiction. Therefore, the point
2¥ is an efficient solution to (MFP). The proof is complete.
Theorem 3.5. (Sufficient efficiency conditions for (MFP)) Assume that Theorem
3.3 is fulfilled and there exist the vector functions n and 0 satisfying Definition 2.1. Also,

consider that the following statements are true:

t1
a) the functionals / [El (:Eo(t)) filxz () — B (:ro(t)) el(xm(t))] dt, | = 1,p, are
to
(p,b)- quasiinvew at z°(-) with respect to n and 6;

b) p(t)g(xe(t))dt is (p*,b)-quasiinvez at z°(-) with respect to n and 6;

t1
c) q(t)h(x.(t))dt is (p,b)-quasiinvez at z°(-) with respect to n and 0;

d) one of the integmls/ 1 [E, (2°(®)) filxa(t)) — Fy (2°(2)) el(xa(t)] dt, 1 € {1,...,p},

to

t1 ty
/ p(t)g(xz(t))dt, / q(t)h(xz(t))dt is strictly (p,b)-quasiinvex at x°(-) with respect to n

to to

and 0;  (p = p},p? or p*, respectively)
P

e)> Npt+p°+p*=0 (pl,p% 0 € R).
I=1
Then 2°(-) is an efficient solution for (MFP).
Proof. The proof follows in the same manner as in Theorem 2.2. The functionals

f1(x=(¢))dt are replaced by /t ' [El (sco(t)) filx=(t)) = By (mo(t)) el(x$(t))} dt,l=1,p.

0
Corollary 3.1. (Sufficient efficiency conditions for (MFP)) Let suppose that Theorem
3.2 is fulfilled and there exist the vector functions n and 0 satisfying Definition 2.1. Also,
consider that the following statements are true:

t1

to

a) the functionals /t1 [filxz(t)) — Rlei(xo(t))] dt, L =T,p, are (p;,b)-quasi-invex at
x0(~ with respect to n anéoﬁ
b) /t1 (1)) + q(O)h(x(t)] dt is (p*,b)-quasiinver at x°(-) with respect to
and 0;
¢) one of the integrals /t1 [fl(xz(t)) - R?el(xx(t))} dt, 1 € {1,...,p},
to

[p(t)g(x2(t)) + q(t)h(xx(t))] dt is strictly (p,b)-quasiinvex at x°(-) with respect to n and
to
0;  (p=p} or p?, respectively)
P

d)> Npt+p° >0 (p}.p* €R).
=1
Then x°(-) is an efficient solution for (MFP).
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Corollary 3.2. (Sufficient efficiency conditions for (MFP)) Assume that Theorem
3.3 is fulfilled and there exist the vector functions n and 0 satisfying Definition 2.1. Also,
we suppose that the following statements are true:
t

a) the functionals /tl [El (a:o(t)) filxz(t)) = By (:Uo(t)) el(xz(t))] dt, | = 1,p, are
(pt,b)-quasiinvez at z°(-) with respect to n and 6;

b) /tl Xz (1)) + q(t)h(x(t)] dt is (p*,b)-quasiinver at x°(-) with respect to n
and 6;

¢) one of the integrals /ttl (B (2°(t) filxa () — F1 (2°(1)) er(xa ()] dt, L € {1, ..., p},

[p()g(x=(t)) + q(t)h(xx(t))] dt is strictly (p,b)-quasiinvex at x°(-) with respect to n and
to

0; (p=p} or p?, respectively)
P

d) > Nl +p°>0 (p},p° €R).
1=1
Then x°(-) is an efficient solution for (MFP).
Remark 3.2. The hypotheses b) and ¢) in Theorems 3.4 and 3.5 are replaced by

/ 1 [p()g(x=(t)) + q(t)h(xx(t))] dt is (p*,b)-quasiinver at z°(-) with respect to n and

to

and, in this way, we have obtained the previous two corollaries.

4. Conclusions

We introduced and studied a class of single-time vector fractional variational problems
involving higher order derivatives (see (MFP)). Within this framework, we formulated and
proved necessary and sufficient efficiency conditions for a feasible solution in (MFP).
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