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COMPARATIVE THREE DIMENSIONAL FRACTURE 
ANALYSES OF CRACKED PLATES 

P.M.G.P. MOREIRA1, Ş. D. PASTRAMĂ2, P.M.S.T. de CASTRO3 

 
În această lucrare, se prezintă soluţii tridimensionale pentru factorul de 

intensitate a tensiunii în placi cu fisuri centrale, utilizând metoda elementelor finite. 
Pentru comparaţie, pe lângă soluţiile din literatura de specialitate, in articol se 
obţin şi rezultate prin analize bidimensionale atât cu elemente finite cât şi cu 
metoda duală a elementelor de frontieră. Sunt prezentate concluzii referitoare la 
variaţia factorului de intensitate a tensiunii pe grosimea plăcii precum şi la 
acurateţea analizei tridimensionale, funcţie de discretizarea utilizată. 

In this paper, three dimensional stress intensity factor solutions are obtained 
for a plate with a central crack using the Finite Element Method. For comparison of 
the 3D solutions, further to reference solutions given by the literature, two 
dimensional Finite Element analyses and 2D Dual Boundary Element Method 
analyses were performed. Conclusions are drawn regarding the variation of the 
Stress Intensity Factor along the thickness and the accuracy of the 3D analyses 
depending on the mesh refinement. 

Keywords: finite element method, dual boundary element method, stress intensity 
        factor 

1. Introduction 

In many structures, cracks may appear during manufacturing process or in 
service. Such cracks may grow in time, due to either static or fatigue loading, 
leading to the loss of strength in the structure. In order to avoid possible 
catastrophic failures, the behaviour of the crack must be known. For this, the 
knowledge of the crack size, service stress, material properties and stress intensity 
factor (SIF) are required. Many researchers have drawn their attention to the 
analytical, numerical or experimental methods of calculating the stress intensity 
factor. For complex configurations, numerical methods are used, as the finite 
element method (FEM) or the boundary element method (BEM). In the field of 
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numerical investigations of cracked structures, the two-dimensional (2D) analyses 
are usually adopted, since they are much simpler and less time consuming than the 
three dimensional (3D) ones, and with a reasonable degree of accuracy in most 
cases. However, the state of deformation near the crack tip is always 3D, as it was 
shown since the early work of Kassar and Sih [0]. That is why, especially in the 
last years that have brought an unprecedented development of computers, the 3D 
analysis of cracked structures has been used extensively, in order to produce more 
accurate numerical solutions for the stress and strain fields around the crack tip.  

The plate-like structures having different types of cracks were analyzed by 
many researchers. The first analysis of a plate of finite thickness containing a 
through crack was made by Hartranft and Sih [0], [0] who obtained the stress 
distribution close to the crack front and made an attempt to determine the stress 
intensity factor distribution along the thickness. Further, other researchers have 
drawn their attention to this problem, with focus on the crack tip singularity and 
the stress behaviour in the boundary layers, at the intersection of the crack front 
with the free surface of the plate, see for example [0], [0], [0].  

Three dimensional analyses of thin cracked plates were also presented by 
Nakamura and Parks [0] and Shivakumar and Raju [0], who performed refined 3D 
finite element analyses in order to obtain stress distributions and stress intensity 
factor values.  

A recent detailed 3D analysis was presented by Kwon and Sun [0] who 
investigated the stress field near the crack tip, the degree of plane strain and the 
crack tip singularity. They suggested also a simple technique to determine 3D SIF 
at the plate mid-plane from a 2D analysis.  

In this paper, refined 3D finite element analyses are performed in order to 
obtain the variation of the stress intensity factor along the thickness of a finite 
plate having a through-the-thickness central crack. Three different thickness 
values were used, in order to have both thin and thick plate behaviour.  

The results were compared with values from the literature and also with 
results obtained using both the 2D FEM and the dual boundary element method 
(DBEM).  The influence of the specimen geometry and mesh refinement on the 
SIF values and also and the drop of the SIF values at the intersection of the crack 
front with the free surface of the plate are discussed. 

Conclusions are drawn regarding the accuracy of the 3D analysis and the 
necessity of using such a time-consuming analysis instead of a simpler 2D one.  

2. Numerical techniques  

 Two numerical methods are used in this paper in order to determine SIF: 
the Finite Element Method and the Dual Boundary Element Method (DBEM). 
The J integral technique is used both in FEM and DBEM analyses to obtain SIF 
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solutions. In DBEM, results were also obtained using the singularity subtraction 
technique (SST) [0], [0]. A brief description of these techniques is given further. 

2.1. The J-integral technique 

The J integral is a contour integral, originally defined assuming non-linear 
elastic behaviour, introduced by Eshelby [0] and Rice [0]. The J integral is widely 
accepted as a fracture mechanics parameter for both linear and nonlinear material 
response. It is related to the energy release associated with crack growth and it is a 
measure of the intensity of deformation at a notch or crack tip, especially for 
nonlinear materials. If the material response is linear, the J integral can be related 
to the stress intensity factors. The finite element code ABAQUS [0] provides a 
procedure for evaluation of the J integral based on the virtual crack 
extension/domain integral methods. This parameter avoids the difficulties of the 
characterization of the stress field near the crack tip using local parameters such 
as the Crack Opening Displacement (COD), because its value is independent of 
the chosen contour Γ surrounding the crack tip (Fig. 1). 

 
 

Fig. 1. Contour for the determination of J integral. 

The analytical definition of J integral is given by the relationship: 
 

duJ w dy T s
x

Γ

∂
= ⋅ −

∂∫ ,      (1) 

 
where w is the strain energy density in points of the contour, T  is the traction 
vector, u  is the displacement and ds the element of the contour Γ. 
 For calculation of the J integral in a 2D analysis using ABAQUS, the 
domain is described through rings of elements around the crack mouth. Different 
contours are created. The first contour consists of the elements linked directly to 
the nodes of the crack tip. The following contour consists of a ring of elements in 
contact with the first. Each subsequent contour is defined by the next ring of 
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elements. Even with coarse meshes it is possible to obtain precise values of J 
integral, [0]. 
 The stress intensity factors KI, KII and KIII are used in linear elastic fracture 
mechanics to characterize the local crack-tip stress and displacement fields. They 
are related to the energy release rate (the J integral) through the equation: 
 

11
8

−= ⋅ ⋅TJ K B K
π

       (2) 

 
where K = [KI , KII , KIII]T are the SIFs and B is called the pre-logarithmic energy 
factor matrix. For homogeneous and isotropic materials, the above equation 
becomes simpler as follows: 
 

( )2 2 21 1
2I II IIIJ K K K

E G
= + + ,      (3) 

 
where E E=  for plane stress and 2/(1 )E E ν= −  for plane strain, axial symmetry, 
and three dimensions.  
 The SIF values obtained near the surface should be neglected due to 
difficulties of J integral calculation near a free surface [0]. A solution to this issue 
is to refine the mesh in this area. In the 3D analyses the SIF value obtained using 
only nodes in the outside surface of  the plate were not taken into account.  
 For 3D SIF, results are presented in two different ways. In a first study, 
results for coordinates along the thickness are presented; each coordinate 
represents a layer of nodes. In the second study, using the three results of SIF for 
each element, and according to Fig. 2 and equation 4, an average value of SIF is 
calculated as: 
 

4
6

+ +
= A B C

average
K K K

K       (4) 

 
Fig. 2.  Average stress intensity factor for an element. 

When comparing a 3D analysis with a 2D one, attention should be given to 
the type of problem that is analysed: plane strain or plane stress. When a thin plate 
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is loaded parallel to the plane of the plate and the load is distributed uniformly 
over the thickness, the stress components σz, τxz and τyz  are assumed to be zero, 
[0]. When the thickness of the body is very large, it is assumed that a plane strain 
state is present. In this case, γyz, γzx and εz are zero. 

2.2. The Singularity Subtraction Technique 

 The SST technique associated with the Dual Boundary Element Method 
uses a particular solution of the BEM analysis, representing the singular field 
around the crack tip of a semi-infinite crack. Such a singular field is defined using 
the first term of the Williams series expansion. 
 One point in front of the crack tip is considered in this technique, 
implemented in DBEM in the post-processing phase [0]. The normal and shear 
stresses, denoted in Fig. 3 as t1 = σ and t2 = τ respectively at an internal point at a 
distance ε as close as possible to the crack tip, are determined from the boundary 
element analysis. 
 The stress intensity factors KI and KII are obtained from the following 
equations: 
 

 
Fig. 3.  Tractions at a point. 

 
2

2

=

=
I I

II II

K t r

K t r

π

π
       (5) 

  
 In equations (5), the stress σ  is taken as σp (a numerical approximation of 
the stress at an internal point P placed at a distance ε ahead of the crack tip, Fig. 
4). Also, one must use a value of the distance r for which that stress should exist. 
Notice that ε and r can have independent values, since they represent different 
approximations. The calibration of r was carried out taking into account several 
reference cases with known values of SIFs. In a previous work by Matos et al. [0], 
the values which give good results for a large variety of tested cases, were 
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adopted as ε = 0, 0075 le and r = 0,0011 le, where le is the length of the boundary 
element closest to the crack tip. 
 

 
Fig. 4. Stress σp in a point P at a distance ε of the crack tip. 

 
 3. The studied structure 
 
 The structure considered for the present analysis is a center cracked finite 
plate, subjected to a remote uniform stress σ. Several geometric configurations for 
this study are defined according to Fig. 5. Note that the origin of the system of 
axes lies at the middle thickness plane.  
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Fig. 5. Plate with a central crack. 

 The considered values of the ratios h/b, c/b and t/c are listed in Table 1, 
together with the reference solutions used for comparison.  
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Table 1 
The studied geometries of the plate 

h/b c/b t/c Reference value 

0.5 0.5 
0.5 3D FEM; 2D FEM and DBEM; literature 

0.25 2D FEM and DBEM; literature 1 

4. Results and discussions 

 According to Tada et al [0] the nondimensional 2D SIF K/(σ cπ )for the 
center cracked plate with h/b = 0.5 and c/b = 0.5 is 1.9145. First, 2D analyses 
were performed, using both FEM and DBEM. For the 2D DBEM analysis, SIFs 
were obtained using the J integral technique and the SST.. 
 The finite element analysis was performed using 6840 eight noded plane 
CPE8 elements, while for the DBEM analysis the mesh contained only 60 
elements (Fig. 6). 

 
Fig. 6. Deformed and undeformed mesh for the 2D DBEM analysis 

 
 The results obtained with these techniques are listed in Table 2. 

Table 2 

2D results, FEM 2D and DBEM 

Tada [0] FEM 2D (J integral) DBEM (J integral) DBEM (SST) 
Solution Difference [%] Solution Diference [%] Solution Diference [%] 

1.9145 1.9651 2.64 1.9884 3.86 1.9480 1.75 
 
 Then, a 3D FEM analysis was performed, for each of the three values of 
the ratio t/c, presenting the results in two different ways (nodal and element SIF), 
as mentioned in paragraph 1.1. 



P.M.G.P Moreira, Ş. D. Pastramă, P.M.S.T. de Castro 

 

50

 In order to calculate SIF for the 3D analysis, a mesh with 19440 elements 
and another one with 67200 elements were used in all cases. Only half of the plate 
was modelled. In the first mesh, 6 elements were placed along the thickness while 
in the second mesh 16 elements were used along the thickness. The plate was 
modelled with 20 nodes brick isoparametric elements (C3D20).  

4.1. The case t/c = 0.5 

 In Fig. 7 is presented a detail of the less refined mesh showing the stress 
distribution in the load direction when a remote stress of 100 units is applied.  
 

 
Fig. 7. Mesh detail for the 3D analysis: plot of the stress  σy (19440 elements, t/c = 0.5). 

 
 Table 3 and Table 4 show the values of the nodal non-dimensional K 
along the thickness for the two different meshes used. 
 Studying the differences between the 3D FEM and the results from [0],  
one can see that in this case the use of a more refined mesh is useless; the errors 
are practically the same. 
 Fig. 8 shows the values of non-dimensional K along the thickness for the 
different meshes used, together with the reference 3D solutions found in Raju and 
Newman [0] and Atluri and Kathiresan [0] and the 2D results from this study.  
  

Table 3 
Non-dimensional 3D SIF along the thickness for the mesh with 19440 elements (t/c = 0.5) 

Node layer z/t K/(σ cπ ) Tada [0] Difference [%] 
1 0,5000 1,8297

1,9145 

-4,4317 
2 0,4167 2,0059 4,7751 
3 0,3333 2,0613 7,6665 
4 0,2500 2,0700 8,1230 
5 0,1667 2,0817 8,7317 
6 0,0833 2,0831 8,8078 
7 0,0000 2,0846 8,8839 
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Table 4 
Non-dimensional 3D FEM SIF along the thickness for the 67200 elements mesh (t/c = 0.5) 

Node layer z/t K/(σ cπ ) Tada [0] Difference [%] 
1 0,5000 1,7189 

1,9145 

-10,2145 
2 0,4688 1,9316 0,8945 
3 0,4375 1,9986 4,3946 
4 0,4063 2,0205 5,5360 
5 0,3750 2,0423 6,6773 
6 0,3438 2,0511 7,1339 
7 0,3125 2,0613 7,6665 
8 0,2813 2,0671 7,9708 

10 0,2500 2,0729 8,2752 
11 0,2188 2,0758 8,4274 
12 0,1875 2,0788 8,5795 
13 0,1563 2,0802 8,6556 
14 0,1250 2,0831 8,8078 
15 0,0938 2,0831 8,8078 
16 0,0625 2,0846 8,8839 
17 0,0313 2,0846 8,8839 
18 0,0000 2,0846 8,8839 

 

 
Fig. 8.  Non-dimensional K along thickness (t/c = 0.5). 

 
 Table 5 presents values of the non-dimensional K in each element along 
the thickness at a crack tip for the 19440 elements mesh, calculated using equation 
(4). Layers 1 and 6 contain elements that lie on the surfaces; since the external 
nodes layer is averaged with the other two subsequent layers of nodes, the SIF 
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were not disregarded. SIFs obtained using the 3D FEM analyses are compared 
with Tada and DBEM SST results. 
 

Table 5 

3D FEM K/(σ πc ) for the 19440 elements mesh (t/c = 0.5) 

Element 
layer FEM 3D Tada [0] DBEM SST 

Ref. value Difference [%] solution Difference [%] 
1 1,9858 

1.9145 

3,723

1.9884 

-0,132 
2 2,0705 8,148 4,129 
3 2,0831 8,808 4,764 
4 2,0831 8,808 4,764 
5 2,0705 8,148 4,129 
6 1,9858 3,723 -0,132 

 
 From the table above, it can be concluded that DBEM results show a good 
agreement with FEM 3D results. 

 4.2 The case t/c = 0.25 

 Table 6 and Table 7 show the values of non-dimensional K along the 
thickness for the different meshes used in this case. 
 Again, one can in this case the use of a more refined mesh is useless; the 
errors are practically the same. 
 Fig. 9 shows the values of non-dimensional K along the thickness for the 
different meshes used, DBEM J integral and SST analysis, and FEM 2D analysis. 
 
 

Table 6 
Non-dimensional 3D FEM SIF along thickness for the 19440 elements mesh (t/c = 0.25) 

Node layer z/t K/(σ cπ ) Tada [0] Difference [%] 
1 0,5000 1,8122

1.9145 

-5,3448 
2 0,4167 2,0074 4,8512 
3 0,3333 2,0642 7,8187 
4 0,2500 2,0744 8,3513 
5 0,1667 2,0875 9,0361 
6 0,0833 2,0890 9,1122 
7 0,0000 2,0919 9,2644 
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Table 7  
Non-dimensional 3D FEM SIF along thickness for the 67200 elements mesh (t/c = 0.25) 

Node layer z/t K/(σ cπ ) Tada [0] Diference [%] 
1 0,5 1,6884 

1.9145 

-11,8124 
2 0,468751 1,9316 0,8945 
3 0,4375 1,9957 4,2425 
4 0,406251 2,0219 5,6121 
5 0,375 2,0453 6,8295 
6 0,343751 2,0540 7,2860 
7 0,3125 2,0642 7,8187 
8 0,281251 2,0715 8,1991 

10 0,25 2,0773 8,5035 
11 0,218751 2,0802 8,6556 
12 0,1875 2,0846 8,8839 
13 0,156251 2,0860 8,9600 
14 0,125 2,0890 9,1122 
15 0,093751 2,0904 9,1883 
16 0,0625 2,0904 9,1883 
17 0,031251 2,0919 9,2644 
18 0 2,0919 9,2644 

 

 
Fig. 9.  Non-dimensional K along the thickness (t/c = 0.25). 
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 Table 8 presents values of non-dimensional K in each element along the 
thickness at the crack tip for the mesh with 19440 elements. Again, DBEM results 
show a good agreement with FEM 3D results. 
 

Table 8 
3D FEM K/(σ cπ ) for the 19440 elements mesh (t/c = 0.25) 

Element 
layer FEM 3D Tada [0] DBEM SST 

ref value Difference [%] solution Difference [%] 
1 1,9843 

1.9145 

3,646 

1.9884 

-0,206 
2 2,0749 8,377 4,349 
3 2,0892 9,125 5,069 
4 2,0892 9,125 5,069 
5 2,0749 8,377 4,349 
6 1,9843 3,646 -0,206 

4.3 The case t/c = 1 

 In Table 9 and Table 10, the values of non-dimensional K along the 
thickness for the different meshes used are listed. Fig. 10 shows the values of non-
dimensional K along the thickness for the different meshes used, DBEM J integral 
and SST analysis and FEM 2D analysis. 
 

 
Fig. 10.  Non-dimensional K along the thickness (t/c = 1). 
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Table 9 
Non-dimensional 3D FEM SIF along thickness for the 19440 elements mesh (t/c = 1) 

Node layer z/t K/(σ cπ ) Tada [0] Difference [%] 
1 0,5000 1,8500 

1.9145 

-3,3665 
2 0,4167 2,0074 4,8512 
3 0,3333 2,0554 7,3621 
4 0,2500 2,0554 7,3621 
5 0,1667 2,0627 7,7426 
6 0,0833 2,0613 7,6665 
7 0,0000 2,0613 7,6665 

  
 Table 10 

Non-dimensional 3D FEM SIF along thickness for the 67200 elements mesh (t/c = 1) 

Node layer z/t K/(σ cπ ) Tada [0] Diference [%] 
1 0,5 1,7510 

1.9145 

-8,5406 
2 0,468751 1,9404 1,3511 
3 0,4375 2,0074 4,8512 
4 0,406251 2,0219 5,6121 
5 0,375 2,0394 6,5251 
6 0,343751 2,0467 6,9056 
7 0,3125 2,0525 7,2099 
8 0,281251 2,0554 7,3621 

10 0,25 2,0584 7,5143 
11 0,218751 2,0598 7,5904 
12 0,1875 2,0613 7,6665 
13 0,156251 2,0613 7,6665 
14 0,125 2,0613 7,6665 
15 0,093751 2,0627 7,7426 
16 0,0625 2,0627 7,7426 
17 0,031251 2,0627 7,7426 
18 0 2,0627 7,7426 

 
 Table 11 presents values of non-dimensional K in each element along the 
thickness at a crack tip for the 19440 elements mesh.  
 In this case also, DBEM results show a good agreement with FEM 3D 
results. 
 
 4.4 Comparison of results 
 
 A comparison between the 3D SIF results obtained for the several plate 
thickness and  the 2D reference results is presented in Fig. 11. From this figure, a 
similar trend followed by the 3D SIF can be noticed both in this analysis and in 
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the 3D reference values from the literature: the stress intensity factor has a slow 
variation at the middle of the plate but decreases dramatically near the free 
surface. 

Table 11 
3D FEM K/(σ cπ ) for the 19440 elements mesh (t/c = 1) 

Element 
layer FEM 3D Tada [0] DBEM SST 

ref value Diference [%] solution Diference [%] 
1 1,9892 

1.9145 

3,90 

1.9884 

0,04 
2 2,0567 7,43 3,43 
3 2,0615 7,68 3,68 
4 2,0615 7,68 3,68 
5 2,0567 7,43 3,43 
6 1,9892 3,90 0,04 

 

 
Fig. 11. Non-dimensional K for each studied plate thickness. 

5. Conclusions 

 In this paper, FEM and DBEM analyses were used in order to obtain SIF 
solutions for a cracked finite plate, with the J integral and Singularity Subtraction 
techniques. To convert the J integral into SIF values in a 2D analysis, the 
expressions J = KI

2/E for plane stress and J = KI
2⋅ (1 − ν2)/E for plane strain are 

used. Nevertheless, it should be noticed that the J solution is not the same in a 
plane stress and plane strain analysis. So, at the end it results the SIF for a plane 
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stress analysis is equal to the SIF for a plane strain analysis. In a 2D numerical 
simulation, despite carrying out a plane strain analysis or a plane stress analysis, 
leading to different strain and stress results, KI solutions are independent of the 
type of analysis.  
 In a 3D analysis, SIF has different values through the thickness. So, a 2D 
SIF analysis is only an approximation of the exact solution since there is no 
difference on plane stress or plane strain SIF solutions for LEFM.  
 Values of SIF obtained in Raju and Newman [0] and Atluri and Kathiresan 
[0] are lower than those obtained in the 3D FEM analyses. A parametric study 
was carried out in order to assess the influence of mesh refinement in the final 
solution. It was found that a good agreement between the present 3D analysis and 
the solution in [0] is obtained even when using coarse meshes. Nevertheless it 
should be reminded that the 3D references solutions were obtained with FEM 
meshes created in the middle 70’s when computational resources were quite low.  
 When comparing reference SIF solutions (literature or 2D FEM or DBEM) 
with 3D FEM SIFs, the best agreement was found when using the SIF value in the 
external layer of elements. 
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