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PREDICTIVE PROVISIONING OF WORKLOADS FOR 
DYNAMIC APPLICATION SCALING IN CLOUD 

ENVIRONMENTS 

Octavian MORARIU1, Cristina MORARIU2, Theodor BORANGIU3 

The large scale emergence of cloud platforms induce the tendency to 
virtualize application workloads that traditionally ran on physical machines. At the 
same time, cloud providers advertise unlimited resources available to the customers 
at any time for a fixed price. These factors create the opportunity for customers to 
easily scale up and down the infrastructure depending on the real time 
requirements, reducing the overall costs for providing the service. Cloud platforms 
today provide a threshold trigger mechanism that can trigger provisioning or de-
provisioning of additional resources.This paper argues that the threshold approach 
is not enough for some real life application scaling requirements and introduces a 
predictive mechanism that allows accurate and proactive provisioning of workloads. 
The prediction algorithm is based on the observation that for some applications a 
usage pattern exists, and this usage pattern is repetitive. This paper presents the 
usage pattern identified in a large scale travel booking application and the 
execution of the algorithm on this data. The algorithm tested using IBM CloudBurst 
2.1 deployment using a benchmark application and results are discussed. 

Keywords: Cloud computing, scalability, usage patterns, predictive provisioning, 
threshold provisioning 

1. Introduction 

Cloud computing paradigm promises to resolve the problem of system 
capacity and at the same time to keep the resource utilization at maximum. 
Historically the system capacity was fixed and determined by the estimated peak 
load that the system should support. This approach works well when the behavior 
of the user base is generally constant in regards to the load applied to the system. 
However in real world scenarios this is rarely the case and has generally caused 
poor resource utilization and even system outrages or loss of service if the 
estimated peak load has been exceeded. Elasticity can be defined as the capability 
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of a system to automatically increase and decrees its capacity based on real time 
load without the intervention of the system administrator. 

The innovations in virtualization technologies together with the real time 
monitoring capabilities implemented by cloud providers allow development of 
cloud based elastic systems. System elasticity has been studied as part of self-
optimization problems in autonomic computing area [2] focusing on the system 
design, which has a great impact on elasticity.   

Commercial cloud providers offer various techniques to support elasticity 
for customer applications. Amazon E2C cloud offers a service called Elastic Load 
Balancing [5] that abstracts the complexity of managing, maintaining, and scaling 
load balancers. The service is designed to automatically add and remove capacity 
as needed, without needing any manual intervention.  The Amazon Elastic Load 
Balancing service architecture has two logical components: load balancers and a 
controller service. The load balancers are resources that monitor traffic and handle 
requests that come in through the Internet. The controller service monitors the 
load balancers and adds and removes capacity based on the load. Also the 
controller service monitors the real time behavior of the load balancers. The 
scaling of the capacity in Elastic Load Balancing can be configured by defining 
rules that operate on the following metrics gathered through Amazon CloudWatch 
[4]: Latency, Request count, Healthy hosts, Unhealthy hosts, Backend 2xx-5xx 
response count and Elastic Load Balancing 4xx and 5xx response count. 

Unlike Amazon E2C, RackSpace does not provide any built in auto-
scaling mechanisms. Instead RackSpace provides an API for monitoring and 
control of the hosted workloads. The responsibility for monitoring and scaling the 
service in this case is with the customer. For this, a workload management API for 
provisioning and de-provisionig is offered by RackSpace to its customers.  
External tools like Scalr [6], an open source project, are filling in the missing 
functionality by handling scaling of cloud applications hosted by RackSpace. 
Scalr is using a set of user defined metrics and rules to scale up and down. 
Generally this approach requires more configurations from the customer side, but 
can offer better reactivity from the application on the real time load.  A complete 
comparison on the commercial and open source cloud implementation for scaling 
capabilities is presented in the INRIA Research Report 2012 [7]. 

Private cloud implementations like IBM CloudBurst 2.1[16] show that 
scalability is implemented based on predefined thresholds [3]. The thresholds can 
be defined on low level metrics like CPU usage, Memory usage or disk usage. In 
CloudBurst 2.1 this is implemented by IBM Tivoli Monitor[] that uses a Linux 
based OS agent to collect real time metrics and monitor predefined thresholds. 
When a threshold is reached, a new workload instance can be provisioned or de-
provisioned based on the predefined work-flow. The workflow is executed by 
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IBM Tivoli Provisioning Manager [9] and interacts with the underlying 
virtualization technology, in this case VMware  VCenter[10]. 

 
Fig. 1. Usage patterns (one week and ten week average) 

 
One characteristic common to the implementations described is that these 

are reactive in nature. In other words the decision to scale up and down is taken 
based on some predefined rules that are evaluated against real time metrics. This 
approach is flexible and works well for generic applications. However, for real 
life applications with a more specific purpose, an advanced predictive scalability 
model based on repetitive usage patterns can assure better resource utilization. 

This paper presents such an approach that augments the threshold 
mechanism, with information based on the historical repetitive usage patterns. In 
the following section the paper presents an industry example focusing on 
repetitive usage patterns and the deficiencies of the threshold model. Finally the 
paper presents the predictive mechanism developed based on usage pattern and 
the experimental results obtained during tests performed on IBM CloudBurst 2.1 
running DayTrader[11] benchmark application against various load tests.    
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2. An Industry Example for Usage Patterns 

By employing web application monitoring tools like Google 
Analytics[12], service providers can now determine in real time the load and 
usage of the applications. In this section a real life industry use case is presented. 
The application considered is a web based travel booking application. The 
implementation is based on Drupal[13], Ajax[14] and Symfony[15] PHP based 
frameworks. The end user population is US based. The weekly load on the 
application is illustrated in Fig. 1 (up). 

The above image illustrates the number of concurrent users accessing the 
application during 168 hours of the week starting with Sunday. As the user base is 
regional, or in other words is located in a single time-zone, the first observation is 
that during the night time the load on the application is clearly lower than the 
usage during the day time. Also, is easy to observe that the patterns for Monday, 
Tuesday, Wednesday and Thursday are similar, showing a first peak during the 
morning hours, a decline during noon and a second smaller peak during the 
afternoon hours. A special pattern can be seen on Sunday, with a single peak 
during the late afternoon hours. Similarly on Friday the pattern show a single peak 
during the morning hours and a steady decline during the afternoon. Saturday 
shows yet a different pattern, with two equal peaks during the morning hours and 
the afternoon hours and a longer decline during the noon hours. To determine if 
these behaviors are repetitive, a comparison has been done against the hourly 
average of the previous ten consecutive weeks. The results are presented in Fig. 1 
(down). 

The comparison clearly shows that both the usage patterns and the 
amplitude for each day are very similar and have a strong repetitive characteristic 
when considering a weekly interval. It has been calculated that the maximum 
deviance from the average is under 200 users. This can be explained by the user 
behavior in regards to a travel booking application by analyzing the actions 
performed and the reasons why these actions and travel decisions are done at 
given times during the week.  

For the application providers the important aspect is that these patterns 
exist and can be used to provision with great accuracy the capacity required at 
each hour during the week. A threshold mechanism has certain limitations when 
the granularity of the application, given by the number of application instances is 
high. In [1] the following example is proposed: considering a linear scalable 
application, when going from 1 to 2 instances, the capacity is increased by 100% 
but going from 100 to 101 machines increases capacity by only 1%. The relative 
capacity increase when adding one additional resource is not constant when the 
granularity is high. This leads to the conclusion that a static threshold approach 
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would not be appropriate for high granularity applications. To overcome this, a 
proportional thresholding mechanism is introduced in [8]. 

Another important factor to consider is the time taken to provision an 
additional resource. This typically includes the provisioning of the workload in a 
virtualized environment, the startup of the workload, dynamic configuration of 
services and load balancing and startup of the application. This provisioning time 
cannot be ignored when planning capacity requirements and elasticity, because it 
is significant even for simple applications. The time taken for provisioning and 
de-provisioning an application instance for the application considered in this 
industry study is represented in Fig. 2. 

Fig. 2. Provisioning and de-provisioning time 
 

The travel booking application considered in this industry example is 
hosted in RackSpace and the total provisioning time of a new instance averages at 
55 minutes with a 25% variation depending on the time of day when the operation 
is performed. As expected the de-provisioning time is considerably smaller as it 
involves LBR re-configuration, graceful application instance shutdown, including 
session and cache replication and the actual VM de-provisioning. For this 
application the de-provisioining averages at 17 minutes with a 10% variation. 

In practice, this provisioning time introduces the need to set thresholds at a 
lower level then actual dictated by the capacity requirements, in order to allow 
time for the new instance to become active before the capacity is exceeded by the 
user load. This approach has many disadvantages. One of the most obvious is that 
it introduces the risk of false positives that lead to poor resource utilization by 
unnecessary provisioning of additional resources. When using simple thresholds 
along with a small granularity of the application scalability the effects are 
amplified. The following section describes the proposed predictive mechanism 
that augments the generic threshold based implementation, by recognizing 
repetitive pattern in the application usage. 

3. Related Work 

The research presented in this paper can be included in the broader scope 
of autonomous computing and more specifically in the self-optimization systems 
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sub category as classified by IBM in the report The Vision of Autonomic 
Computing [17, 18]. Several efforts have been made in this direction in terms of 
predictive resource provisioning. 

PRedictive Elasticre Source Scaling (PRESS) [18] is using signal 
processing techniques to identify repeating patterns if possible. As an alternative 
for the situation in which patterns cannot be discovered, PRESS uses a statistical 
state-driven approach to capture short-term patterns in resource demand by using 
a discrete-time Markov chain. The resource prediction models are updated when a 
change in the resource consumption patterns is detected. The Signature-driven 
resource demand prediction in PRESS is based on a Fast Fourier Transformation 
(FFT) to calculate the dominant frequencies of resource-usage variation in the 
observed load pattern. Although PRESS proves an efficient approach when using 
a single metric for determining the patterns, it fails short in scenarios where the 
use behavior is different during the day, for example scenarios where users are 
performing mainly searches in the morning hours and heavy reporting during the 
evening hours. The solution presented in this paper is superior in the fact that it 
can use multiple metrics at the same time to determine a more meaningful user 
behavior patterns such as CPU Usage, Disk I/O and so on. 

Resource overbooking based on application profiling [19] is another 
approach available in the literature. While is a valid approach for grids, where 
there is an implicit control on the operating system, so that profiling can be added 
to the kernel, is not feasible in cloud environments. Even in private clouds the 
workloads are usually controlled by the client and intrusive profiling would not be 
possible. Another profiling based approach is presented in [20] that focus on 
determining the resource requirements in a sandbox environment by employing 
benchmark tests. The approach can determine some valid patterns, however is 
static in nature and won't evolve with the application once this changes or new 
features are added. At the same time this solution would require an initial 
benchmark in simulated conditions. 

4. Predictive Capacity Provisioning Mechanism 

The capacity supported by one instance is an intrinsic property of the 
given application. For example the amount of concurrent users for one instance 
can be determined by load testing. The results obtained with load tests serve as 
baselines for determining the initial thresholds for the deployment and configuring 
the dynamic scalability of the applications.  
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Fig. 3. Architecture of ESM for IBM Cloud Burst 2.1 
 
To augment this we propose a daily and weekly usage pattern model that 

would predict the future required capacity and would act before the threshold is 
reached, allowing setting higher levels for thresholds and so avoid false positive 
triggers. 

The implementation described in this paper is targeted at IBM CloudBurst 
2.1 on System x, but the concept does apply to any API based cloud platform, 
either public or private. To encapsulate the predictive algorithm we introduce the 
Elastic Scalability Module that augments the CloudBurst 2.1 threshold 
mechanism. The architecture of the Elastic Scalability Module proposed for IBM 
CloudBurst 2.1 is illustrated in Fig. 3. The ESM works by collecting real time 
usage metrics provided by IBM TUM. The ESM has two operational phases: the 
learning phase and the driving phase. In the learning phase, the ESM stores in the 
metrics provided by IBM TUM per day for each day of the week in a relational 
database together with the threshold trigger events generated by TUM. This is 
done several times until a pattern is established. The ESM determines a pattern for 
a day of the week by comparing the metric variation against an average of 
previously recorded metrics for the same day of the week. If the difference for 
each hourly average is smaller than a preconfigured threshold, the pattern is 
considered valid. The algorithm for the learning phase is presented below: 

function validatePattern(hourOfDay, currentLoad) is 
  saveInDatabase(hourOfDay, currentLoad)  
  if hourOfDay=0 then  
     weekPatternFound = true  
     for i=0 to 23 do  
        avg = computeAvgDayWeekHour(i, 10)  
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        if abs(avg/currentLoad) > patternThreshold then   
   weekPatternFound = false  
        endif  
  endif  
  if weekPatternFound = true then  
  swithToDrivingPhase()  
 setHigherThresholds() 
  endif 
end function 
 
Once the pattern is validated, the ESM begins to function in the driving 

phase, by sending predictive provisioning instructions to IBM Tivoli Provisioning 
Manager (TPM), eventually replacing the trigger based behavior of TUM. Also at 
this point, the thresholds are set to higher values, to avoid false positives. Even in 
the driving phase the current usage load is validated against the pattern stored in 
the database and if the pattern validation fails, the ESM will transition back to 
learning phase and will set relaxed values for the thresholds. This behavior helps 
in exceptional scenarios like special days of the year or one off situations in which 
the system load is unexpected. In this case, the system would fall back on 
threshold based provisioning and de-provisioning.  

function predictiveSetCapacity(dayOfWeek, hourOfDay) is 
  loadDayPattern(dayOfWeek) 
  nextProvisioningTime = hourOfDay + provisioningDelay  
  estimatedCapacity = getPatternCapacity(nextProvisioningTime)  
  instances = (currentCapacity - estimatedCapacity)/instanceCapacity  
  if (instances > safeCapacityThresholdProv) then  
    provision(instances)  
  endif  
  if (instances < safeCapacityThresholdDeprov) then  
    deprovision(abs(instances))  
  endif  
end function 
 

The predictive provisioning algorithm is invoked each hour and based on the 
provisioning delay it computes the next provisioning time. The next provisioning 
time represents the time when a new machine would be active, if the decision to 
provision it is taken now. Based on the daily pattern, the estimated capacity is 
retrieved. The difference between the current provisioned capacity and the 
estimated capacity divided by the instance capacity represents the number of 
instances that need to be provisioned or de-provisioned, depending if the 
difference is positive or negative. The result is compared with a safe capacity 
threshold and the decision is made to provision or de-provision additional 
instances. The ESM considers the average provisioning time in the 
provisioningDelay constant. The overall goal followed by ESM algorithm is to 
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keep the capacity as close as possible with the average user load using historical 
usage patterns. 

Table 1 
Algorithm execution for Sunday pattern vs. threshold approach time 

 

5. Experimental Results 

To validate the functional characteristics of the ESM module 
implemented, a simulation environment has been created using IBM CloudBurst 
2.1 system. The simulation environment is built using DayTrader benchmark 
application running on a virtual image based on CentOS 5.5 operating system.  
DayTrader is a benchmark application designed to simulate an online stock 
trading system. The application was originally developed by IBM for WebSphere 
and was known as the Trade Performance Benchmark Sample. In 2005, IBM 
donated the DayTrader application to the Apache Geronimo community. The user 
base was simulated using Apache JMeter load testing tool, by feeding the real life 
usage data presented in Section 2 of this paper. Each instance of the application 
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was configured to have a limited capacity of 3000 concurrent users. The load test 
was performed on a day pattern considering three different patterns identified in 
practice. The pattern analyzed in details is the Sunday specific usage pattern. 
Table 1 presents the prediction based on the pattern and the actual capacity 
compared to the results obtained with a simple threshold algorithm.  

The threshold algorithm works with simple 80% hardened thresholds when in 
driving phase and with relaxed predefined incremental thresholds in learning 
phase. In the above example, the threshold was configured to provision an 
additional instance when the load reaches 80% of the capacity. Similarly when the 
load drops under 80% of the system capacity one instance will be de-provisioned. 
One important thing to notice in the experimental results is that with this threshold 
the capacity is exceeded twice, causing loss of service for small time intervals. 
Also, the overall resource utilization is better when using predictive model based 
on usage patterns. 

Fig. 4 illustrates the provisioned capacity against the load of the system for 
the same pattern, showing a better allocation for the predictive provisioning 
compared to the threshold approach. The vertical lines represent the point in time 
when the decision to provision (+1) or to de-provision (-1) has been made. The 
capacity increase will be visible only after the provisioning time. For simplicity 
the provisioning time has been rounded at 1 hour and the de-provisioning time at 
15 minutes.  

 

 
Fig. 4. Predictive and Threshold models for Sunday pattern 
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Fig. 5. Black Friday Scenario 

 
The dotted horizontal lines represent the three thresholds configured as 

relative 80% ratio between capacity and load. 
 To validate the prototype functionality in exceptional situations, or in 

other words in scenarios where the user load does not match the normal usage 
patterns, the data recorded during Black Friday was feed to the load test. The 
usage during that day is illustrated in Fig. 5 above. The system behavior is to 
move from driving phase to learning phase within the first hour, as the load was 
not matching the Friday pattern. At that time the thresholds, which were set at 
80% of capacity during driving phase, were relaxed to 30 % for the first threshold, 
25% for the next threshold, 20% for the third one and 50% for the fourth one. The 
reason for this threshold setting is to keep up with the steep increase of site 
visitors during the morning hours considering also the provisioning time required 
to increase capacity. We could see that in these conditions the system performed 
well in regards to assuring there is enough capacity provisioned. However, the 
resource utilization was poor, especially on the descending side after the peak at 
noon hours. 

A study has been done to determine the actual gain in resource utilization 
during one normal week, or in other words, a week that maps closely to the 
repetitive behavior observed. When the ESM module was operating normally in 
driving phase for a complete week, the resource utilization in regards to 
provisioned capacity and the number of users on the site was better with 23 % 
compared with the relaxed threshold approach on the same input data for the load 
test. This was achieved with an increase of 3 % in provisioning and de-
provisioning operations. Although the increase of 3% in the provisioning and de-
provisioning operations is important, as it does have an associated cost which 
cannot be neglected, the increase in resource utilization is significant. 
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6. Conclusions 

By analyzing the usage of a real life application in the travel booking 
industry a set of weekly usage patterns have been discovered. Arguably each web 
application exposed to a large user base would show a weekly usage pattern that is 
repetitive. Starting from this observation this paper argues that these patterns can 
be used as a source for predictive scaling of the application using cloud based 
technologies. The algorithm proposed does not replace the threshold based 
mechanism completely, but rather it augments it by reusing historical information 
about repetitive usage patterns. 

The experimental results demonstrate that in normal conditions, where a 
repetitive pattern can be identified, a predictive provisioning mechanism is 
superior to a simple threshold based mechanism, in both resource allocation and 
resource utilization.  

However, one important limitation is the ability to react to unexpected 
peak loads on the system, where the threshold mechanism is better. The ideal 
solution for this kind of applications is to use a combined solution, in which the 
predictive mechanism controls the capacity in normal operation mode and a 
threshold mechanism can override in case of unexpected peak loads on the 
system. One important advantage of the predictive mechanism is that it allows 
setting higher level thresholds, as these will only be hit when a significant 
deviation from the pattern is encountered, thus avoiding false positives triggered 
during threshold evaluation. 

This combined approach is better suited for applications where the 
instance granularity is high and provisioning overhead is very small, as it would 
allow near optimal resource utilization. In essence the predictive mechanism 
described represents a proactive approach for scalability, while the threshold 
based mechanism represents a reactive approach. When the provisioning time 
becomes comparable to the load variation in time in regards to instance capacity 
this proactive approach is mandatory. 

Future work is focused on extending the ESM module to consider multiple 
factors as inputs for generating and storing usage patterns. It has been observed 
that not only the site visits are following a pattern, but also the operations of the 
users. These enhancements would help to better define the required capacity based 
on user operations and the resource costs associated and so would be a more 
accurate driver for dynamic scalability of the system. 
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