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PREDICTIVE PROVISIONING OF WORKLOADS FOR
DYNAMIC APPLICATION SCALING IN CLOUD
ENVIRONMENTS

Octavian MORARIU?, Cristina MORARIU?, Theodor BORANGIU®

The large scale emergence of cloud platforms induce the tendency to
virtualize application workloads that traditionally ran on physical machines. At the
same time, cloud providers advertise unlimited resources available to the customers
at any time for a fixed price. These factors create the opportunity for customers to
easily scale up and down the infrastructure depending on the real time
requirements, reducing the overall costs for providing the service. Cloud platforms
today provide a threshold trigger mechanism that can trigger provisioning or de-
provisioning of additional resources.This paper argues that the threshold approach
is not enough for some real life application scaling requirements and introduces a
predictive mechanism that allows accurate and proactive provisioning of workloads.
The prediction algorithm is based on the observation that for some applications a
usage pattern exists, and this usage pattern is repetitive. This paper presents the
usage pattern identified in a large scale travel booking application and the
execution of the algorithm on this data. The algorithm tested using IBM CloudBurst
2.1 deployment using a benchmark application and results are discussed.

Keywords: Cloud computing, scalability, usage patterns, predictive provisioning,
threshold provisioning

1. Introduction

Cloud computing paradigm promises to resolve the problem of system
capacity and at the same time to keep the resource utilization at maximum.
Historically the system capacity was fixed and determined by the estimated peak
load that the system should support. This approach works well when the behavior
of the user base is generally constant in regards to the load applied to the system.
However in real world scenarios this is rarely the case and has generally caused
poor resource utilization and even system outrages or loss of service if the
estimated peak load has been exceeded. Elasticity can be defined as the capability
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of a system to automatically increase and decrees its capacity based on real time
load without the intervention of the system administrator.

The innovations in virtualization technologies together with the real time
monitoring capabilities implemented by cloud providers allow development of
cloud based elastic systems. System elasticity has been studied as part of self-
optimization problems in autonomic computing area [2] focusing on the system
design, which has a great impact on elasticity.

Commercial cloud providers offer various techniques to support elasticity
for customer applications. Amazon E2C cloud offers a service called Elastic Load
Balancing [5] that abstracts the complexity of managing, maintaining, and scaling
load balancers. The service is designed to automatically add and remove capacity
as needed, without needing any manual intervention. The Amazon Elastic Load
Balancing service architecture has two logical components: load balancers and a
controller service. The load balancers are resources that monitor traffic and handle
requests that come in through the Internet. The controller service monitors the
load balancers and adds and removes capacity based on the load. Also the
controller service monitors the real time behavior of the load balancers. The
scaling of the capacity in Elastic Load Balancing can be configured by defining
rules that operate on the following metrics gathered through Amazon CloudWatch
[4]: Latency, Request count, Healthy hosts, Unhealthy hosts, Backend 2xx-5xx
response count and Elastic Load Balancing 4xx and 5xx response count.

Unlike Amazon E2C, RackSpace does not provide any built in auto-
scaling mechanisms. Instead RackSpace provides an API for monitoring and
control of the hosted workloads. The responsibility for monitoring and scaling the
service in this case is with the customer. For this, a workload management API for
provisioning and de-provisionig is offered by RackSpace to its customers.
External tools like Scalr [6], an open source project, are filling in the missing
functionality by handling scaling of cloud applications hosted by RackSpace.
Scalr is using a set of user defined metrics and rules to scale up and down.
Generally this approach requires more configurations from the customer side, but
can offer better reactivity from the application on the real time load. A complete
comparison on the commercial and open source cloud implementation for scaling
capabilities is presented in the INRIA Research Report 2012 [7].

Private cloud implementations like IBM CloudBurst 2.1[16] show that
scalability is implemented based on predefined thresholds [3]. The thresholds can
be defined on low level metrics like CPU usage, Memory usage or disk usage. In
CloudBurst 2.1 this is implemented by IBM Tivoli Monitor[] that uses a Linux
based OS agent to collect real time metrics and monitor predefined thresholds.
When a threshold is reached, a new workload instance can be provisioned or de-
provisioned based on the predefined work-flow. The workflow is executed by
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IBM Tivoli Provisioning Manager [9] and interacts with the underlying
virtualization technology, in this case VMware VCenter[10].
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Fig. 1. Usage patterns (one week and ten week average)

One characteristic common to the implementations described is that these
are reactive in nature. In other words the decision to scale up and down is taken
based on some predefined rules that are evaluated against real time metrics. This
approach is flexible and works well for generic applications. However, for real
life applications with a more specific purpose, an advanced predictive scalability
model based on repetitive usage patterns can assure better resource utilization.

This paper presents such an approach that augments the threshold
mechanism, with information based on the historical repetitive usage patterns. In
the following section the paper presents an industry example focusing on
repetitive usage patterns and the deficiencies of the threshold model. Finally the
paper presents the predictive mechanism developed based on usage pattern and
the experimental results obtained during tests performed on IBM CloudBurst 2.1
running DayTrader[11] benchmark application against various load tests.
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2. An Industry Example for Usage Patterns

By employing web application monitoring tools like Google
Analytics[12], service providers can now determine in real time the load and
usage of the applications. In this section a real life industry use case is presented.
The application considered is a web based travel booking application. The
implementation is based on Drupal[13], Ajax[14] and Symfony[15] PHP based
frameworks. The end user population is US based. The weekly load on the
application is illustrated in Fig. 1 (up).

The above image illustrates the number of concurrent users accessing the
application during 168 hours of the week starting with Sunday. As the user base is
regional, or in other words is located in a single time-zone, the first observation is
that during the night time the load on the application is clearly lower than the
usage during the day time. Also, is easy to observe that the patterns for Monday,
Tuesday, Wednesday and Thursday are similar, showing a first peak during the
morning hours, a decline during noon and a second smaller peak during the
afternoon hours. A special pattern can be seen on Sunday, with a single peak
during the late afternoon hours. Similarly on Friday the pattern show a single peak
during the morning hours and a steady decline during the afternoon. Saturday
shows yet a different pattern, with two equal peaks during the morning hours and
the afternoon hours and a longer decline during the noon hours. To determine if
these behaviors are repetitive, a comparison has been done against the hourly
average of the previous ten consecutive weeks. The results are presented in Fig. 1
(down).

The comparison clearly shows that both the usage patterns and the
amplitude for each day are very similar and have a strong repetitive characteristic
when considering a weekly interval. It has been calculated that the maximum
deviance from the average is under 200 users. This can be explained by the user
behavior in regards to a travel booking application by analyzing the actions
performed and the reasons why these actions and travel decisions are done at
given times during the week.

For the application providers the important aspect is that these patterns
exist and can be used to provision with great accuracy the capacity required at
each hour during the week. A threshold mechanism has certain limitations when
the granularity of the application, given by the number of application instances is
high. In [1] the following example is proposed: considering a linear scalable
application, when going from 1 to 2 instances, the capacity is increased by 100%
but going from 100 to 101 machines increases capacity by only 1%. The relative
capacity increase when adding one additional resource is not constant when the
granularity is high. This leads to the conclusion that a static threshold approach
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would not be appropriate for high granularity applications. To overcome this, a
proportional thresholding mechanism is introduced in [8].

Another important factor to consider is the time taken to provision an
additional resource. This typically includes the provisioning of the workload in a
virtualized environment, the startup of the workload, dynamic configuration of
services and load balancing and startup of the application. This provisioning time
cannot be ignored when planning capacity requirements and elasticity, because it
is significant even for simple applications. The time taken for provisioning and
de-provisioning an application instance for the application considered in this
industry study is represented in Fig. 2.
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Fig. 2. Provisioning and de-provisioning time

The travel booking application considered in this industry example is
hosted in RackSpace and the total provisioning time of a new instance averages at
55 minutes with a 25% variation depending on the time of day when the operation
is performed. As expected the de-provisioning time is considerably smaller as it
involves LBR re-configuration, graceful application instance shutdown, including
session and cache replication and the actual VM de-provisioning. For this
application the de-provisioining averages at 17 minutes with a 10% variation.

In practice, this provisioning time introduces the need to set thresholds at a
lower level then actual dictated by the capacity requirements, in order to allow
time for the new instance to become active before the capacity is exceeded by the
user load. This approach has many disadvantages. One of the most obvious is that
it introduces the risk of false positives that lead to poor resource utilization by
unnecessary provisioning of additional resources. When using simple thresholds
along with a small granularity of the application scalability the effects are
amplified. The following section describes the proposed predictive mechanism
that augments the generic threshold based implementation, by recognizing
repetitive pattern in the application usage.

3. Related Work

The research presented in this paper can be included in the broader scope
of autonomous computing and more specifically in the self-optimization systems
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sub category as classified by IBM in the report The Vision of Autonomic
Computing [17, 18]. Several efforts have been made in this direction in terms of
predictive resource provisioning.

PRedictive Elasticre Source Scaling (PRESS) [18] is using signal
processing techniques to identify repeating patterns if possible. As an alternative
for the situation in which patterns cannot be discovered, PRESS uses a statistical
state-driven approach to capture short-term patterns in resource demand by using
a discrete-time Markov chain. The resource prediction models are updated when a
change in the resource consumption patterns is detected. The Signature-driven
resource demand prediction in PRESS is based on a Fast Fourier Transformation
(FFT) to calculate the dominant frequencies of resource-usage variation in the
observed load pattern. Although PRESS proves an efficient approach when using
a single metric for determining the patterns, it fails short in scenarios where the
use behavior is different during the day, for example scenarios where users are
performing mainly searches in the morning hours and heavy reporting during the
evening hours. The solution presented in this paper is superior in the fact that it
can use multiple metrics at the same time to determine a more meaningful user
behavior patterns such as CPU Usage, Disk 1/0 and so on.

Resource overbooking based on application profiling [19] is another
approach available in the literature. While is a valid approach for grids, where
there is an implicit control on the operating system, so that profiling can be added
to the kernel, is not feasible in cloud environments. Even in private clouds the
workloads are usually controlled by the client and intrusive profiling would not be
possible. Another profiling based approach is presented in [20] that focus on
determining the resource requirements in a sandbox environment by employing
benchmark tests. The approach can determine some valid patterns, however is
static in nature and won't evolve with the application once this changes or new
features are added. At the same time this solution would require an initial
benchmark in simulated conditions.

4. Predictive Capacity Provisioning Mechanism

The capacity supported by one instance is an intrinsic property of the
given application. For example the amount of concurrent users for one instance
can be determined by load testing. The results obtained with load tests serve as
baselines for determining the initial thresholds for the deployment and configuring
the dynamic scalability of the applications.
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To augment this we propose a daily and weekly usage pattern model that
would predict the future required capacity and would act before the threshold is
reached, allowing setting higher levels for thresholds and so avoid false positive
triggers.

The implementation described in this paper is targeted at IBM CloudBurst
2.1 on System X, but the concept does apply to any API based cloud platform,
either public or private. To encapsulate the predictive algorithm we introduce the
Elastic Scalability Module that augments the CloudBurst 2.1 threshold
mechanism. The architecture of the Elastic Scalability Module proposed for IBM
CloudBurst 2.1 is illustrated in Fig. 3. The ESM works by collecting real time
usage metrics provided by IBM TUM. The ESM has two operational phases: the
learning phase and the driving phase. In the learning phase, the ESM stores in the
metrics provided by IBM TUM per day for each day of the week in a relational
database together with the threshold trigger events generated by TUM. This is
done several times until a pattern is established. The ESM determines a pattern for
a day of the week by comparing the metric variation against an average of
previously recorded metrics for the same day of the week. If the difference for
each hourly average is smaller than a preconfigured threshold, the pattern is

considered valid. The algorithm for the learning phase is presented below:
function validatePattern(hourOfDay, currentLoad) is
savelnDatabase(hourOfDay, currentLoad)
if hourOfDay=0 then
weekPatternFound = true
for i=0to 23 do
avg = computeAvgDayWeekHour(i, 10)
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if abs(avg/currentLoad) > patternThreshold then
weekPatternFound = false
endif
endif
if weekPatternFound = true then
swithToDrivingPhase()
setHigherThresholds()
endif
end function

Once the pattern is validated, the ESM begins to function in the driving
phase, by sending predictive provisioning instructions to IBM Tivoli Provisioning
Manager (TPM), eventually replacing the trigger based behavior of TUM. Also at
this point, the thresholds are set to higher values, to avoid false positives. Even in
the driving phase the current usage load is validated against the pattern stored in
the database and if the pattern validation fails, the ESM will transition back to
learning phase and will set relaxed values for the thresholds. This behavior helps
in exceptional scenarios like special days of the year or one off situations in which
the system load is unexpected. In this case, the system would fall back on

threshold based provisioning and de-provisioning.
function predictiveSetCapacity(dayOfWeek, hourOfDay) is
loadDayPattern(dayOfWeek)
nextProvisioningTime = hourOfDay + provisioningDelay
estimatedCapacity = getPatternCapacity(nextProvisioningTime)
instances = (currentCapacity - estimatedCapacity)/instanceCapacity
if (instances > safeCapacityThresholdProv) then
provision(instances)
endif
if (instances < safeCapacityThresholdDeprov) then
deprovision(abs(instances))
endif
end function

The predictive provisioning algorithm is invoked each hour and based on the
provisioning delay it computes the next provisioning time. The next provisioning
time represents the time when a new machine would be active, if the decision to
provision it is taken now. Based on the daily pattern, the estimated capacity is
retrieved. The difference between the current provisioned capacity and the
estimated capacity divided by the instance capacity represents the number of
instances that need to be provisioned or de-provisioned, depending if the
difference is positive or negative. The result is compared with a safe capacity
threshold and the decision is made to provision or de-provision additional
instances. The ESM considers the average provisioning time in the
provisioningDelay constant. The overall goal followed by ESM algorithm is to
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keep the capacity as close as possible with the average user load using historical

usage patterns.

Algorithm execution for Sunday pattern vs. threshold approach time

Hour of Day Next Provisioning
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5. Experimental Results

To validate the functional
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Table 1

Threshold Threshold
Decision Capacity

Ceprov 1
Ceprov 1

Ceprovl

3000
3000
3000
3000
3000

5000
9000
9000
9000
9000
9000
9000
9000
12000
12000
12000
12000
9000
5000
5000
3000

characteristics of the ESM module

implemented, a simulation environment has been created using IBM CloudBurst
2.1 system. The simulation environment is built using DayTrader benchmark
application running on a virtual image based on CentOS 5.5 operating system.
DayTrader is a benchmark application designed to simulate an online stock
trading system. The application was originally developed by IBM for WebSphere
and was known as the Trade Performance Benchmark Sample. In 2005, IBM
donated the DayTrader application to the Apache Geronimo community. The user
base was simulated using Apache JMeter load testing tool, by feeding the real life
usage data presented in Section 2 of this paper. Each instance of the application
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was configured to have a limited capacity of 3000 concurrent users. The load test
was performed on a day pattern considering three different patterns identified in
practice. The pattern analyzed in details is the Sunday specific usage pattern.
Table 1 presents the prediction based on the pattern and the actual capacity
compared to the results obtained with a simple threshold algorithm.

The threshold algorithm works with simple 80% hardened thresholds when in
driving phase and with relaxed predefined incremental thresholds in learning
phase. In the above example, the threshold was configured to provision an
additional instance when the load reaches 80% of the capacity. Similarly when the
load drops under 80% of the system capacity one instance will be de-provisioned.
One important thing to notice in the experimental results is that with this threshold
the capacity is exceeded twice, causing loss of service for small time intervals.
Also, the overall resource utilization is better when using predictive model based
on usage patterns.

Fig. 4 illustrates the provisioned capacity against the load of the system for
the same pattern, showing a better allocation for the predictive provisioning
compared to the threshold approach. The vertical lines represent the point in time
when the decision to provision (+1) or to de-provision (-1) has been made. The
capacity increase will be visible only after the provisioning time. For simplicity
the provisioning time has been rounded at 1 hour and the de-provisioning time at
15 minutes.
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Fig. 4. Predictive and Threshold models for Sunday pattern



Predictive provisioning of workloads for dynamic application scaling in cloud environments 13

30000 2
Load || Unknown Pattern Detected
-> Relax Thresholds

-> Move to Learning Phase

25000
42 |+ +3

20000

Th 5 60%)
tual 55% = 2

15000

Th 4 (50%) - actual 61% = +2

10000

5000 f—— Th 3 (20%) - actual 34% = +3

Th1 (0% - actual 45% = 2 | Hour Of Day

1 ‘ 2 3 4 5 & 7 g ‘ |2 1o 11 12 13 14 15 ‘ 16 17 13 19 20 21 22 I 23, 24
Fig. 5. Black Friday Scenario

The dotted horizontal lines represent the three thresholds configured as
relative 80% ratio between capacity and load.

To validate the prototype functionality in exceptional situations, or in
other words in scenarios where the user load does not match the normal usage
patterns, the data recorded during Black Friday was feed to the load test. The
usage during that day is illustrated in Fig. 5 above. The system behavior is to
move from driving phase to learning phase within the first hour, as the load was
not matching the Friday pattern. At that time the thresholds, which were set at
80% of capacity during driving phase, were relaxed to 30 % for the first threshold,
25% for the next threshold, 20% for the third one and 50% for the fourth one. The
reason for this threshold setting is to keep up with the steep increase of site
visitors during the morning hours considering also the provisioning time required
to increase capacity. We could see that in these conditions the system performed
well in regards to assuring there is enough capacity provisioned. However, the
resource utilization was poor, especially on the descending side after the peak at
noon hours.

A study has been done to determine the actual gain in resource utilization
during one normal week, or in other words, a week that maps closely to the
repetitive behavior observed. When the ESM module was operating normally in
driving phase for a complete week, the resource utilization in regards to
provisioned capacity and the number of users on the site was better with 23 %
compared with the relaxed threshold approach on the same input data for the load
test. This was achieved with an increase of 3 % in provisioning and de-
provisioning operations. Although the increase of 3% in the provisioning and de-
provisioning operations is important, as it does have an associated cost which
cannot be neglected, the increase in resource utilization is significant.
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6. Conclusions

By analyzing the usage of a real life application in the travel booking
industry a set of weekly usage patterns have been discovered. Arguably each web
application exposed to a large user base would show a weekly usage pattern that is
repetitive. Starting from this observation this paper argues that these patterns can
be used as a source for predictive scaling of the application using cloud based
technologies. The algorithm proposed does not replace the threshold based
mechanism completely, but rather it augments it by reusing historical information
about repetitive usage patterns.

The experimental results demonstrate that in normal conditions, where a
repetitive pattern can be identified, a predictive provisioning mechanism is
superior to a simple threshold based mechanism, in both resource allocation and
resource utilization.

However, one important limitation is the ability to react to unexpected
peak loads on the system, where the threshold mechanism is better. The ideal
solution for this kind of applications is to use a combined solution, in which the
predictive mechanism controls the capacity in normal operation mode and a
threshold mechanism can override in case of unexpected peak loads on the
system. One important advantage of the predictive mechanism is that it allows
setting higher level thresholds, as these will only be hit when a significant
deviation from the pattern is encountered, thus avoiding false positives triggered
during threshold evaluation.

This combined approach is better suited for applications where the
instance granularity is high and provisioning overhead is very small, as it would
allow near optimal resource utilization. In essence the predictive mechanism
described represents a proactive approach for scalability, while the threshold
based mechanism represents a reactive approach. When the provisioning time
becomes comparable to the load variation in time in regards to instance capacity
this proactive approach is mandatory.

Future work is focused on extending the ESM module to consider multiple
factors as inputs for generating and storing usage patterns. It has been observed
that not only the site visits are following a pattern, but also the operations of the
users. These enhancements would help to better define the required capacity based
on user operations and the resource costs associated and so would be a more
accurate driver for dynamic scalability of the system.
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