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WEAK CONVERGENCE OF A NEW ITERATE FOR SOLVING SPLIT

FIXED POINT PROBLEMS

Yufei Zhao1, Yonghong Yao2

In this paper, we study a split fixed point problem involving three nonlinear

operators in Hilbert spaces. To solve this split fixed point problem, we propose a new

iterative algorithm by applying fixed point technique. Under plain conditions, we show
that the sequence generated by the suggested algorithm converges weakly to a solution of

the split fixed point problem.
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1. Introduction

Let H1 be a real Hilbert space equipped with the inner produce 〈·, ·〉 and the induced
norm ‖·‖, ϕ be a self-mapping of H1 and {xn} be a sequence in H1. Throughout, we employ
the following expressions: (i) Fix(ϕ) stands for the fixed point set of ϕ, i.e., Fix(ϕ) := {u ∈
H1 : u = ϕ(u)}; (ii) xn ⇀ x† means xn weakly convergent to x† as n → ∞; (iii) xn → x†

indicates xn strongly convergent to x† as n → ∞; (iv) ωw(xn) denotes the set of the weak
cluster points of {xn} in H1, i.e., ωw(xn) := {v ∈ H1 : there exists a subsequence {xni

} of
{xn} such that xni

⇀ v(i→∞)}.
Let H1 and H2 be two real Hilbert spaces. Let ϕ, φ : H1 → H1 and ψ : H2 → H2 be

three nonlinear operators. Let A : H1 → H2 be a bounded linear operator. In this paper,
we focus on the split fixed point problem which is to find a point p† ∈ H1 such that

p† ∈ Fix(ϕ) ∩ Fix(φ) and Ap† ∈ Fix(ψ). (1)

If ϕ ≡ I, then (1) reduces to the following two-sets split fixed point problem of finding a
point p† ∈ H1 such that

p† ∈ Fix(φ) and Ap† ∈ Fix(ψ). (2)

The prototype of the two-sets split fixed point problem is the split feasibility problem
which aims to seek a point p† ∈ H1 such that

p† ∈ C and Ap† ∈ Q, (3)

where C ⊂ H1 and Q ⊂ H2 are two closed convex sets.
The mathematical model (3) was refined by Censor et. al. ([3]) from the intensity-

modulated radiation therapy and was investigated extensively by many scholars ([1–3, 18]).
An important method to solve (2) is fixed point method with the help of the equivalent
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relation: p† solves (2) if and only if p† = φ(p† − ςA∗(I − ψ)Ap†), ς > 0. Based on this fact,
Censor and Segal [4] introduced an iterative algorithm defined by: z0 ∈ H1,

zn+1 = φ(zn − ςA∗(I − ψ)Azn), n ≥ 0, (4)

where A∗ is the adjoint of A and ς ∈ (0, 2/‖A‖2).
The above fixed point method has been further extended and improved by many

scholars, see [5–17, 19–26]. At the same time, we note that solving (2) is equivalent to solve
the fixed point equation x = φ(x)− ςA∗(I −ψ)Ax(ς > 0). By using this equivalent relation,
Zheng et. al. [27] suggested an iterative algorithm defined by: y0 ∈ H1,

yn+1 = (1− µ)yn + µ[φ(yn)− ςA∗(I − ψ)Ayn], n ≥ 0. (5)

Motivated and inspired by the work in this field, in this paper, we construct an
iterative method to solve (1) by utilizing the fixed point technique. Under plain conditions,
we show that the sequence generated by the suggested method converges weakly to a solution
of the split fixed point problem (1).

2. Preliminaries

In this section, we collect several notations and lemmas. Let H be a real Hilbert
space. First, we have the following two well-known equalities in H:

‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2, ∀x, y ∈ H, (6)

and

‖(1− µ1)x+ µ1y‖2 = (1− µ1)‖x‖2 + µ1‖y‖2 − (1− µ1)µ1‖x− y‖2 (7)

for all x, y ∈ H and ∀µ1 ∈ R.
An operator f : H → H is said to be δ-demicontractive if Fix(f) 6= ∅ and there is a

constant δ ∈ [0, 1) such that, for each x̂ ∈ Fix(f),

‖f(x)− x̂‖2 ≤ ‖x− x̂‖2 + δ‖x− f(x)‖2, ∀x ∈ H, (8)

equivalently,

〈x− f(x), x− x̂〉 ≥ 1− δ
2
‖x− f(x)‖2, ∀x ∈ H. (9)

Recall that an operator g : H → H is said to be

(i) δ-Lipschitz if
‖g(x)− g(y)‖ ≤ δ‖x− y‖, ∀x, y ∈ H,

where δ ≥ 0 is a constant.
(ii) pseudocontractive if

〈g(x)− g(y), x− y〉 ≤ ‖x− y‖2,∀x, y ∈ H,
equivalently,

‖g(x)− g(y)‖2 ≤ ‖x− y‖2 + ‖(I − g)x− (I − g)y‖2, ∀x, y ∈ H.

Lemma 2.1 ([27]). Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded
linear operator and let A∗ be the adjoint operator of A. Let φ : H1 → H1 and ψ : H2 → H2

be two demicontractive operators. Then,

x ∈ Fix(φ) and Ax ∈ Fix(ψ)⇔x ∈ Fix(φ− ςA∗(I − ψ)A),

for all ς > 0.

Lemma 2.2 ([28, 29]). Let H1 be a real Hilbert space. Let ϕ : H1 → H1 be a δ2-Lipschitz
pseudocontractive operator. Then,

(i) ϕ is demi-closedness, namely, xn ⇀ p(n → ∞) and ϕ(xn) → q(n → ∞) imply that
ϕ(p) = q.
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(ii) for each ẑ ∈ Fix(ϕ), we have

‖ϕ((1− µ2)x+ µ2ϕ(x))− ẑ‖2 ≤ ‖x− ẑ‖2 + (1− µ2)‖x− ϕ((1− µ2)x+ µ2ϕ(x))‖2,

for all x ∈ H1, where 0 < µ2 <
1√

1+δ22+1
.

Lemma 2.3. (Opial) Let Γ be a nonempty closed convex subset of a real Hilbert space H1.
Let {un} be a sequence in H1. Suppose that

(i) ∀ẑ ∈ Γ, limn→∞ ‖un − ẑ‖ exists;
(ii) ωw(un) ⊂ Γ.

Then the sequence {un} converges weakly to some point in Γ.

3. Main results

In this section, to solve the split fixed point problem (1), we construct a new iterate
algorithm and show that the sequence generated by the algorithm converges weakly to a
solution of (1) under some mild conditions.

Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear
operator and let A∗ be the adjoint operator of A. Let ϕ : H1 → H1 be a δ2-Lipschitz
pseudocontractive operator. Let φ : H1 → H1 be a δ1-demicontractive operator and ψ :
H2 → H2 be a δ3-demicontractive operator.

The solution set of the split fixed point problem (1) is denoted by Γ, namely,

Γ := {x ∈ H1 : x ∈ Fix(φ) ∩ Fix(ϕ) and Ax ∈ Fix(ψ)}.

Now, we present an iterative algorithm to solve the split fixed point problem (1).

Algorithm 3.1. Let α, β, γ, µ1 and µ2 be five constants. For an initial guess u0 ∈ H1,
define the sequence {un} iteratively by

yn = (1− γ)un + γφ(un)− αA∗(I − ψ)Aun, (10)

vn = un − β(un − yn), (11)

zn = (1− µ2)vn + µ2ϕ(vn), (12)

un+1 = (1− µ1)vn + µ1ϕ(zn), n ≥ 0. (13)

Next, we analyse the convergence of the sequence {un} generated by Algorithm 3.1.

Theorem 3.1. Suppose the following conditions are satisfied:

(i) ‖A‖ 6= 0 and Γ 6= ∅;
(ii) I − φ and I − ψ are demiclosed at zero;
(iii) δ1 ∈ [0, 1), δ2 ≥ 1, δ3 ∈ [0, 1), γ ∈ (0, 1], β ∈ (0, 1−δ1

2γ ), α ∈ (0, 1−δ3
2β‖A‖2 ) and 0 < µ1 <

µ2 <
1

1+
√

1+δ22
.

Then the sequence {un} defined by Algorithm 3.1 converges weakly to some point in Γ.

Proof. Let ẑ be any point in Γ. Observe that ẑ = φ(ẑ) = ϕ(ẑ) and Aẑ = ψ(Aẑ). Further,
by Lemma 2.1, we have ẑ = (1− γ)ẑ + γφ(ẑ)− αA∗(I − ψ)Aẑ.

By (7) and (13), we have

‖un+1 − ẑ‖2 = ‖(1− µ1)(vn − ẑ) + µ1(ϕ(zn)− ẑ)‖2

= (1− µ1)‖vn − ẑ‖2 + µ1‖ϕ(zn)− ẑ‖2 − µ1(1− µ1)‖vn − ϕ(zn)‖2.
(14)

Applying Lemma 2.2, we obtain

‖ϕ(zn)− ẑ‖2 = ‖ϕ((1− µ2)vn + µ2ϕ(vn))− ẑ‖2

≤ ‖vn − ẑ‖2 + (1− µ2)‖vn − ϕ(zn)‖2.
(15)
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Combining (14) and (15), we have

‖un+1 − ẑ‖2 ≤ ‖vn − ẑ‖2 + µ1(µ1 − µ2)‖vn − ϕ(zn)‖2

≤ ‖vn − ẑ‖2.
(16)

Next, we estimate ‖vn − ẑ‖. According to (6) and (11), we obtain

‖vn − ẑ‖2 = ‖un − ẑ − β(un − yn)‖2

= ‖un − ẑ‖2 − 2β〈un − ẑ, un − yn〉+ β2‖un − yn‖2.
(17)

Taking into account (10), we have un − yn = γ(un − φ(un)) + αA∗(I − ψ)Aun. Then,

〈un − ẑ, un − yn〉 = 〈un − ẑ, γ(un − φ(un))〉+ 〈un − ẑ, αA∗(I − ψ)Aun〉
= γ〈un − ẑ, un − φ(un)〉+ α〈Aun −Aẑ, (I − ψ)Aun〉.

(18)

and

‖un − yn‖2 = ‖γ(un − φ(un)) + αA∗(I − ψ)Aun‖2

≤ (γ‖un − φ(un)‖+ α‖A‖‖(I − ψ)Aun‖)2

≤ 2γ2‖un − φ(un)‖2 + 2α2‖A‖2‖(I − ψ)Aun‖2.
(19)

Since φ and ψ are δ1-demicontractive and δ3-demicontractive, respectively, utilizing (9), we
obtain

〈un − ẑ, un − φ(un)〉 ≥ 1− δ1
2
‖un − φ(un)‖2, (20)

and

〈Aun −Aẑ, (I − ψ)Aun〉 ≥
1− δ3

2
‖(I − ψ)Aun‖2. (21)

Taking into account (18), (20) and (21), we have

〈un − ẑ, un − yn〉 ≥
γ(1− δ1)

2
‖un − φ(un)‖2 +

α(1− δ3)

2
‖(I − ψ)Aun‖2. (22)

Substituting (19) and (22) into (17), we attain

‖vn − ẑ‖2 ≤ ‖un − ẑ‖2 − βγ(1− δ1)‖un − φ(un)‖2 − βα(1− δ3)‖(I − ψ)Aun‖2

+ 2β2γ2‖un − φ(un)‖2 + 2β2α2‖A‖2‖(I − ψ)Aun‖2

= ‖un − ẑ‖2 − βγ(1− δ1 − 2βγ)‖un − φ(un)‖2

− βα(1− δ3 − 2βα‖A‖2)‖(I − ψ)Aun‖2

≤ ‖un − ẑ‖2.

(23)

By virtue of (16) and (23), we have

‖un+1 − ẑ‖2 ≤ ‖un − ẑ‖2 + µ1(µ1 − µ2)‖vn − ϕ(zn)‖2

≤ ‖un − ẑ‖2.
(24)

Then, limn→∞ ‖un − ẑ‖ exists, denoted by l∗.
Thanks to (24), we have

µ1(µ2 − µ1)‖vn − ϕ(zn)‖2 ≤ ‖un − ẑ‖2 − ‖un+1 − ẑ‖2 → 0,

which yields that

lim
n→∞

‖vn − ϕ(zn)‖ = 0. (25)

Furthermore, based on (16) and (23), we conclude that

‖un+1 − ẑ‖ ≤ ‖vn − ẑ‖ ≤ ‖un − ẑ‖
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which implies that limn→∞ ‖vn − ẑ‖ = l∗.
Owing to δ2-Lipschitz continuity of ϕ, we have

‖vn − ϕ(vn)‖ ≤ ‖vn − ϕ(zn)‖+ ‖ϕ(zn)− ϕ(vn)‖
≤ ‖vn − ϕ(zn)‖+ δ2‖zn − vn‖
≤ ‖vn − ϕ(zn)‖+ δ2µ2‖vn − ϕ(vn)‖.

Thus, ‖vn − ϕ(vn)‖ ≤ 1
1−δ2µ2

‖vn − ϕ(zn)‖ which together with (25) implies that

lim
n→∞

‖vn − ϕ(vn)‖ = 0. (26)

Moreover, from (12), we obtain

‖zn − vn‖ ≤ µ2‖vn − ϕ(vn)‖ → 0. (27)

In view of (23), we acquire

βγ(1− δ1 − 2βγ)‖un − φ(un)‖2 + βα(1− δ3 − 2βα‖A‖2)‖(I − ψ)Aun‖2

≤ ‖un − ẑ‖2 − ‖vn − ẑ‖2 → 0,

which leads to that

lim
n→∞

‖un − φ(un)‖ = 0 (28)

and

lim
n→∞

‖(I − ψ)Aun‖ = 0. (29)

Note that ‖yn−un‖ ≤ γ‖φ(un)−un‖+α‖A‖‖(I −ψ)Aun‖. Combining with (28) and (29),
we deduce

lim
n→∞

‖yn − un‖ = 0

and hence

‖vn − un‖ ≤ β‖yn − un‖ → 0.

Therefore, ‖un+1 − un‖ ≤ ‖vn − un‖+ µ1‖vn − ϕ(zn)‖ → 0.
Next, we show ωw(un) ⊂ Γ. Choosing any z† ∈ ωw(un), there is a subsequence {unj

}
of {un} such that unj

⇀ z†(j → ∞). It is easy to seen that vnj
⇀ z†, znj

⇀ z† and

Aunj
⇀ Az†. Thus,

I − ϕ is demiclosed at zero

vnj
⇀ z†

‖vnj
− ϕ(vnj

)‖ → 0

⇒ z† ∈ Fix(ϕ),

I − φ is demiclosed at zero

unj
⇀ z†

‖unj
− φ(unj

)‖ → 0

⇒ z† ∈ Fix(φ),

and

I − ψ is demiclosed at zero

Aunj ⇀ Az†

‖(I − ψ)Aunj‖ → 0

⇒ Az† ∈ Fix(ψ).

So, z† ∈ Γ and ωw(un) ⊂ Γ.
Finally, we show that {un} is convergent. In fact, we have (i) ∀ẑ ∈ Γ, limn→∞ ‖un−ẑ‖

exists; (ii) ωw(un) ⊂ Γ. Consequently, according to Lemma 2.3, we conclude that the
sequence {un} converges weakly to some point in Γ. �
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According to Algorithm 3.1 and Theorem 3.1, we can obtain the following algorithms
and corollaries.

Algorithm 3.2. Let α, β and γ be three constants. For an initial guess u0 ∈ H1, define
the sequence {un} iteratively by{

yn = (1− γ)un + γφ(un)− αA∗(I − ψ)Aun,

un+1 = un − β(un − yn), n ≥ 0.

Corollary 3.1. Suppose the following conditions are satisfied:

(i) ‖A‖ 6= 0 and Γ1 6= ∅;
(ii) I − φ and I − ψ are demiclosed at zero;
(iii) δ1 ∈ [0, 1), δ3 ∈ [0, 1), γ ∈ (0, 1], β ∈ (0, 1−δ1

2γ ) and α ∈ (0, 1−δ3
2β‖A‖2 ).

Then, the sequence {un} generated by Algorithm 3.2 converges weakly to some point in Γ1

where Γ1 is the solution set of the split problem (2).

Algorithm 3.3. Let α, β, µ1 and µ2 be four constants. For an initial guess u0 ∈ H1, define
the sequence {un} iteratively by

yn = un − αA∗(I − ψ)Aun,

vn = un − β(un − yn),

zn = (1− µ2)vn + µ2ϕ(vn),

un+1 = (1− µ1)vn + µ1ϕ(zn), n ≥ 0.

Corollary 3.2. Suppose the following conditions are satisfied:

(i) ‖A‖ 6= 0 and Γ 6= ∅;
(ii) I − ψ is demiclosed at zero;
(iii) δ2 ≥ 1, δ3 ∈ [0, 1), β ∈ (0, 1), α ∈ (0, 1−δ3

2β‖A‖2 ) and 0 < µ1 < µ2 <
1

1+
√

1+δ22
.

Then, the sequence {un} generated by Algorithm 3.3 converges weakly to some point in Γ2,
where Γ2 := {x ∈ H1 : x ∈ Fix(ϕ) and Ax ∈ Fix(ψ)}.

4. Conclusion

In this paper, we investigate the split fixed point problem (1) in which two operators
are demicontractive and another one is pseudocontractive. Based on fixed point technique,
we construct an iterative algorithm to solve the split fixed point problem (1). We prove that
the sequence {un} defined by the algorithm 3.1 converges weakly to some solution of (1)
under some plain conditions imposed on the operators and the parameters.
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