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WEAK CONVERGENCE OF A NEW ITERATE FOR SOLVING SPLIT
FIXED POINT PROBLEMS

Yufei Zhao', Yonghong Yao?

In this paper, we study a split fixred point problem involving three nonlinear
operators in Hilbert spaces. To solve this split fized point problem, we propose a new
iterative algorithm by applying fixed point technique. Under plain conditions, we show
that the sequence generated by the suggested algorithm converges weakly to a solution of
the split fized point problem.

Keywords: split fixed point, demicontractive operator, pseudocontractive operator,
weak convergence.

MSC2020: 47H09, 47H10, 47J25.

1. Introduction

Let H; be a real Hilbert space equipped with the inner produce (-, -) and the induced
norm ||-||, ¢ be a self-mapping of H; and {x, } be a sequence in H;. Throughout, we employ
the following expressions: (i) Fix(p) stands for the fixed point set of ¢, i.e., Fix(¢) := {u €
Hy :u = p(u)}; (i) x, — = means z, weakly convergent to zf as n — oo; (iii) z,, — «f
indicates z,, strongly convergent to x' as n — 00; (iv) wy(7,) denotes the set of the weak
cluster points of {x,} in Hy, i.e., wy(z,) := {v € Hy : there exists a subsequence {x,,} of
{zn} such that z,, — v(i = 00)}.

Let H; and H; be two real Hilbert spaces. Let ¢, ¢ : Hy — Hy and v : Hy — Hjy be
three nonlinear operators. Let A : H; — Hy be a bounded linear operator. In this paper,
we focus on the split fixed point problem which is to find a point p' € H; such that

pl € Fix(p) NFix(¢) and Ap' € Fix(v). (1)

If ¢ = I, then (1) reduces to the following two-sets split fixed point problem of finding a
point pf € H; such that

pt € Fix(¢) and Ap' € Fix(v). (2)

The prototype of the two-sets split fixed point problem is the split feasibility problem
which aims to seek a point p! € H; such that

pl € C and Ap' € Q, (3)

where C' C Hy and @Q C Hy are two closed convex sets.

The mathematical model (3) was refined by Censor et. al. ([3]) from the intensity-
modulated radiation therapy and was investigated extensively by many scholars ([1-3, 18]).
An important method to solve (2) is fixed point method with the help of the equivalent
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relation: p' solves (2) if and only if pT = ¢(pf — cA*(I — ) Ap'),s > 0. Based on this fact,
Censor and Segal [4] introduced an iterative algorithm defined by: zo € Hy,

Znt1 = P(zn — A (I —)Az,), n >0, (4)
where A* is the adjoint of A and < € (0,2/||A?).

The above fixed point method has been further extended and improved by many
scholars, see [5-17, 19-26]. At the same time, we note that solving (2) is equivalent to solve
the fixed point equation & = ¢(z) — ¢A*(I —1p)Axz(s > 0). By using this equivalent relation,
Zheng et. al. [27] suggested an iterative algorithm defined by: yo € Hy,

Yn+1 = (1= w)yn + pld(yn) — <A™ (I =) Ayn), n 2 0. ()

Motivated and inspired by the work in this field, in this paper, we construct an
iterative method to solve (1) by utilizing the fixed point technique. Under plain conditions,
we show that the sequence generated by the suggested method converges weakly to a solution
of the split fixed point problem (1).

2. Preliminaries

In this section, we collect several notations and lemmas. Let H be a real Hilbert
space. First, we have the following two well-known equalities in H:

Iz +ylI> = llz)* + 2(z,y) + [lyll*, Vz,y € H, (6)
and
11 = p)a + payll? = (1= p) 2l + pallyl® = (1 = ) pa |z =yl (7)

for all z,y € H and Yu; € R.
An operator f: H — H is said to be d-demicontractive if Fix(f) # 0 and there is a
constant ¢ € [0,1) such that, for each & € Fix(f),
If(x) = 2] < ||z — &[> + 8|z — f(2)|?, Yz € H, (8)
equivalently,
. 1-9
(x — f(z),x — &) > lz — f(z)||?, Vo€ H. (9)
Recall that an operator g : H — H is said to be
(i) d-Lipschitz if

lg(z) =gl < dllz —yl, Yo,y € H,
where § > 0 is a constant.
(ii) pseudocontractive if

(9(x) — g(y),z —y) < ||z —y|*.Vo,y € H,
equivalently,
lg(z) — gW)II> < llz — ylI> + |(I — g)z — (I — 9)ylI?, Y&,y € H.

Lemma 2.1 ([27]). Let Hy and Hs be two real Hilbert spaces. Let A : Hy — Hj be a bounded
linear operator and let A* be the adjoint operator of A. Let ¢ : Hy — Hy and ¢ : Hy — Hy
be two demicontractive operators. Then,

x € Fix(¢) and Az € Fix(¢)ew € Fix(¢p — cA*(I — ) A),
for all ¢ > 0.
Lemma 2.2 ([28, 29]). Let Hy be a real Hilbert space. Let ¢ : Hy — Hj be a d3-Lipschitz
pseudocontractive operator. Then,
(i) ¢ is demi-closedness, namely, x, — p(n — o0) and ¢(x,) — q(n — oo) imply that
o(p) =q.
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(ii) for each z € Fix(yp), we have
(1 = p2) + pap(2) = 217 < lo = 21° + (1 = p2)l|l2 — (1 = p2) + pragp()) ||,

1
for all x € Hy, where 0 < pg < o

Lemma 2.3. (Opial) Let T' be a nonempty closed convex subset of a real Hilbert space H .
Let {u,} be a sequence in Hy. Suppose that

(i) V2 eT, limy— oo ||un, — 2|| exists;

(ii) ww(u,) CT.
Then the sequence {un,} converges weakly to some point in T'.

3. Main results

In this section, to solve the split fixed point problem (1), we construct a new iterate
algorithm and show that the sequence generated by the algorithm converges weakly to a
solution of (1) under some mild conditions.

Let Hy and Hy be two real Hilbert spaces. Let A : Hy — Hy be a bounded linear
operator and let A* be the adjoint operator of A. Let ¢ : Hy — H; be a Jo-Lipschitz
pseudocontractive operator. Let ¢ : Hy — H; be a d;-demicontractive operator and 1 :
Hs; — Hs be a d3-demicontractive operator.

The solution set of the split fixed point problem (1) is denoted by T', namely,

I':={z € Hy : z € Fix(¢) NFix(p) and Az € Fix(¢)}.
Now, we present an iterative algorithm to solve the split fixed point problem (1).

Algorithm 3.1. Let o, 8, v, u1 and ps be five constants. For an initial guess ug € Hi,
define the sequence {u,} iteratively by

Yn = (1 = Y)un + ¢ (un) — aA*(I — ) Auy, (
Vn = Up — B(Un — Yn), (
Zn = (1 - UQ)Un + ﬂ2§0(vn)7 (12
Upy1 = (1 — p1)vn + p19(2,), n > 0. (

3

Next, we analyse the convergence of the sequence {u,} generated by Algorithm

Theorem 3.1. Suppose the following conditions are satisfied:

(i) [lAll # 0 and I' # 0;
(ii) I —¢ and I — ) are demiclosed at zero;
(i) 61 € [0,1), & > 1, &3 € [0,1), v € (0,1], B € (0,452
2 <

1),046(0,2%72‘?‘2) and 0 < py <

1

144/1462°

Then the sequence {u,} defined by Algorithm 3.1 converges weakly to some point in T.
Proof. Let 2 be any point in I'. Observe that 2 = ¢(£) = p(2) and A2 = ¢(AZ). Further,

by Lemma 2.1, we have 2 = (1 — )2 + y¢(2) — aA*(I — ¢) AZ.
By (7) and (13), we have

[uns1 = 212 = (1 = 1) (vn = 2) + (9 (20) — 2)|1? (14)
= (1= p)llvn = 211 + mlle(zn) = 211* = p (1 = p1)Jon — o (2a) ||
Applying Lemma 2.2, we obtain
lp(zn) = 2117 = (1 = p2)vn + p2¢(vs)) — 2 (15)

< jvn — 2”2 + (1 = p2)||vn — W(zn)||2
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Combining (14) and (15), we have

[tnr1 = 2% < lon = 217 + pa (1 = p2) Jon = @(z0) |12

< o 412 o
Next, we estimate ||v, — Z||. According to (6) and (11), we obtain
lon = 211 = llun — 2 = Blun — yn)|1? (17)
= |lun — 2H2 = 2B(un — £, up — yn) + BQHUn - yn||2
Taking into account (10), we have u, — yn = Y(un — ¢(un)) + aA*(I — ) Auy,. Then,
(un = 2, tn = Yn) = (Un — £,7(un — ¢(un))) + (un — 2,0A™(I — ) Auy,) (18)

=Y (up — Z,un — d(uy)) + a{Au, — AZ, (I — ) Auy,).
and
[un = ynll* = 17 (un — d(un)) + @A™ (I — ) Aup||?
< (Vlun = dun)|l + | Al = ¥) Aun))? (19)
< 29 [Jun — d(un)|* + 202 [|AIP[|(T = ) Aun||*.

Since ¢ and % are d;-demicontractive and d3-demicontractive, respectively, utilizing (9), we
obtain

-0
(i = 2t = ) 2 1 = ) (20)
and
(Aut = A%, (1 =) Aun) > 22221 ) A (21)
Taking into account (18), (20) and (21), we have
(i = 21 =) 2 L — g2 + L - At 22)

Substituting (19) and (22) into (17), we attain
lon = 201 < [lun — 211 = By(1 = 81)l[un — ¢(un)||* = Ba(l = 63)[|(I — ¥) Auy||?
+ 26292 un — d(un)[I* + 2620 [ A|(|(I — ) Au||?
= [lun — 2[1* = By(1 = 61 — 267)|lun — ¢(un)]® (23)
— Ba(l = 83 — 26a || AP (I — ) Aun|®
< lun — 2]
By virtue of (16) and (23), we have
[unsr = 21% < flun = 212 + pa (1 = p2)llvn — 9 (20)]°

24
< un — 2P 2
Then, lim,_ ||u, — 2|| exists, denoted by I*.
Thanks to (24), we have
pi(pz = ) o = @(2a)I” < llun = 2[1 = llunts — 2> = 0,
which yields that
Jim[|v, — ¢ (20)]] = 0. (25)

Furthermore, based on (16) and (23), we conclude that

[tnta = 2| < Jon = 2| < [lun = 2]
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which implies that lim,, . ||v, — 2| = I*.
Owing to do-Lipschitz continuity of ¢, we have
[on — @(ua)ll < llvn = @(zn) [l + [l (2n) — ¢ (vn)
< v = @(zn)ll + d2/12n — va|
< lvn = @(zn)|| + 212 [lvn — (vn)]l-
Thus, ||v, — ()] < ﬁ”vn — ¢(2zp)|| which together with (25) implies that
Jim[|vy, —p(vn)|| = 0. (26)
Moreover, from (12), we obtain
[2n = onl < p2flvn —@(vn)]| = 0. (27)
In view of (23), we acquire
By(1 = 61 = 2B7)llun — ¢(un)|* + Bo(1 = 05 — 2Ba| A*)||(I — ) Auy |I®
< lun = 21 = llon = £[* — 0,
which leads to that
Tim_ [, — ¢(u,)]| =0 (28)
and
lim (/7 - ) Au, | = 0. (29)

Note that ||y, — | < Y||é(un) — un || + || Al|||(I — ) Au,||. Combining with (28) and (29),

we deduce
Jim llgn — uall =0
and hence
llvn — un” < 5“%1 - un” — 0.
Therefore, |[unt1 — Unll < ||on — Unl| + p1|lvn — @(2n)]| — 0.

Next, we show wy,(u,) C I'. Choosing any z' € w,,(u,), there is a subsequence {u,, }
of {u,} such that u,, — 27(j — o0). It is easy to seen that v,, — zf, z,, — 2! and

Aty — Azt Thus,
I — ¢ is demiclosed at zero
Vp; = 2Ty = 2 e Fix(yp),
[[on; = @(vn,)Il =0
I — ¢ is demiclosed at zero
Up,; — 2Ty = 2 e Fix(¢),
[[tin; — @(un,)[| =0

and
I — % is demiclosed at zero

Au,, — Az} = Azt € Fix(y).
(I = ) Aun, || =0

So, 2T € T and wy, (u,) C T.

Finally, we show that {uy} is convergent. In fact, we have (i) VZ € T, limy, 00 ||tn—Z||
exists; (ii) wy(u,) C T. Consequently, according to Lemma 2.3, we conclude that the

sequence {u,} converges weakly to some point in IT".

O
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According to Algorithm 3.1 and Theorem 3.1, we can obtain the following algorithms
and corollaries.

Algorithm 3.2. Let o, 8 and 7y be three constants. For an initial guess ug € Hy, define
the sequence {u,} iteratively by

Yn = (L = 7)un +79(un) — aA* (I — ) Auy,
Un+1 = Up — B(un - yn)a n Z 0.

Corollary 3.1. Suppose the following conditions are satisfied:
(i) [[A]l 0 and Ty # 0;

(ii) I — ¢ and I — 1 are demiclosed at zero;

(iii) &1 €1[0,1), 85 €[0,1), v € (0,1], B € (0,152) and o € (0, 5747 )-

Then, the sequence {u,} generated by Algorithm 3.2 converges weakly to some point in T'y
where 'y is the solution set of the split problem (2).

Algorithm 3.3. Let o, B, 1 and pe be four constants. For an initial guess ug € Hy, define
the sequence {u,} iteratively by

Yn = Up — @A™ (I — ) Auy,,

Up = Up — B(Un — Yn),

zn = (1 — p2)vn + p2p(vn),

Uny1 = (1= p1)vp + p1@(zn), n > 0.

Corollary 3.2. Suppose the following conditions are satisfied:
(i) Al # 0 and I" # 0;
(ii) I — 1 is demiclosed at zero;
(iii) 69 > 1, 03 €[0,1), B € (0,1), a € (Qﬁ) and 0 < py < g < ——t

144/1462°
Then, the sequence {u,} generated by Algorithm 3.8 converges weakly to some point in T,
where I'y := {x € H;y : x € Fix(¢) and Az € Fix(¢)}.

4. Conclusion

In this paper, we investigate the split fixed point problem (1) in which two operators
are demicontractive and another one is pseudocontractive. Based on fixed point technique,
we construct an iterative algorithm to solve the split fixed point problem (1). We prove that
the sequence {u,} defined by the algorithm 3.1 converges weakly to some solution of (1)
under some plain conditions imposed on the operators and the parameters.
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