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NUMERICAL RECKONING COMMON FIXED POINT IN CAT(0)

SPACES FOR A GENERAL CLASS OF OPERATORS

Abdul Latif1, Mihai Postolache2, Monairah Omar Alansari3

In this work, we propose a numerical algorithm for the computation of a com-

mon fixed point of two mappings endowed with the L2 property, in the setting of CAT(0)

spaces. Its ∆-convergence is proved, and necessary and sufficient conditions for its

strong convergence are given. These results generalize fixed point results in literature.
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1. Introduction

Due to its importance both from theoretical and applied point of view, fixed point

theory has encountered a wide development in recent years. The directions of study mainly

have focused on three parts. The first one is that of finding various generalizations to the

Banach contraction principle; please, see [4, 8, 23]. The second one refers to the setting in

which fixed point results are obtained, including here ordered metric spaces, dislocated met-

ric spaces, quasi metric spaces, b-metric spaces, extended b-metric spaces, CAT(0) spaces,

hyperbolic spaces and so on; please, see [3, 19, 21, 25]. The third direction comprises de-

signing numerical methods for the approximation of fixed points or common fixed points

associated with appropriate generalized contractive operators. The development of numer-

ical algorithms for the reckoning of fixed points, which started with the Picard sequence,

has been the object of study of many scientists. Mann [17] proposed the next numerical

scheme, for a selfmapping T defined on a convex subset K on a Banach space, by the use of

an auxiliary sequence {αn} from the interval (0, 1).

xn+1 = (1− αn)xn + αnTxn, n ≥ 0,

where x0 is a point in K.

In the same regard, Ishikawa [10] introduced a two step algorithm, by means of two

auxiliary sequences {αn}, and {βn} in (0, 1), as follows

yn = (1− αn)xn + αnTxn,

xn+1 = (1− βn)xn + βnTyn, n ≥ 0,
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where x0 ∈ K, and T is a selfmapping on the convex subset K.

Agarwal et al. [2] proposed a two step iterative method, as follows

yn = (1− αn)xn + αnTxn,

xn+1 = (1− βn)Txn + βnTyn, n ≥ 0,

with the starting point x0 in the convex subset K, and the control sequences {αn}, {βn} in

(0, 1). This scheme was extended to a common fixed point algorithm, by Sahu et al. [20].

Noor [18] introduced a three step iterative method for the determination of a fixed

point for a mapping T on a convex subset K of a Banach space, by the use of three control

parameter sequences from (0, 1), as in the next lines

zn = (1− αn)xn + αnTxn,

yn = (1− βn)xn + βnTzn,

xn+1 = (1− γn)xn + γnTyn, n ≥ 0,

where x0 ∈ K.

In 2016, Thakur et al. [24] introduced the following scheme for the reckoning of fixed

points of nonexpansive mappings

yn = (1− βn)xn + βnTxn,

zn = (1− γn)yn + γnTyn,

xn+1 = (1− αn)Tyn + αnTzn, n ≥ 0,

{αn}, {βn}, and {γn} in (0, 1), with convergence analysis in Banach spaces; see also [9].

Abbas and Nazir [1] constructed, starting with a point x0 in K, the next three-step

algorithm

zn = (1− αn)xn + αnTxn,

yn = (1− βn)Txn + βnTzn,

xn+1 = (1− γn)Tyn + γnTzn, n ≥ 0,

where {αn}, {βn}, and {γn} are in sequences from (0, 1).

In [22], Sintunawarat and Pitea introduced the next numerical algorithm for the

determination of a fixed point of a mapping T : K → K, of Berinde type, as follows

yn = (1− βn)xn + βnTxn,

zn = (1− γn)xn + γnyn, (1)

xn+1 = (1− αn)Tzn + αnTyn, n ≥ 0,

where x0 ∈ K, {αn}, {βn}, and {γn} are sequences in (0, 1), and K is a closed, convex

subset of a Banach space.

The purpose of this work is to develop a numerical scheme for the reckoning of a

common fixed point of two mappings which are endowed with an adequate property defined

by means of an inequality condition imposed on some superior limits associated to it. The

paper is organized as follows. Section 2 is dedicated to preliminary concepts and properties

needed in the sequel. Section 3 contains the main results on ∆-convergence and strong

convergence of an algorithm for the determination of a common fixed points of two operators

which satisfy property (L2). The last section concludes the work.
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2. Preliminaries

We start by introducing some facts on CAT(0) spaces, the framework chosen for our

results.

Consider x and y points in a metric space (X, d). A continuous mapping γ : [0, a]→ X,

with γ(0) = x, γ(a) = y, for which d(γ(t1), γ(t2)) = |t1− t2|, for any t1, t2 ∈ [0, a], is called a

geodesic path which joins x and y, while the image of this mapping is the geodesic segment

from x and y. (X, d) is a geodesic space if any two points of it are linked by a geodesic.

Moreover, if these geodesics are unique, then the space is called uniquely geodesic.

A geodesic triangle in a geodesic space (X, d) is formed by three distinct points and

the geodesic segments between them. A comparison triangle is a triangle in the Euclidian

plane such the lengths of its edges are the same as those of the initial triangle. (X, d) is a

CAT(0) space if the inequality

d(x, y) ≤ dR2(x̄, ȳ),

holds for any x and y in X, where x̄, ȳ are the corresponding comparison points.

A characterization of CAT(0) spaces was provided in [4], by the use of a condition of

Bruhat and Tits [5]. They stated that a space (X, d) is a CAT(0) one if and only if the next

inequality is satisfied for any points x1, x2, x ∈ X

d2(x, x̄) ≤ 1

2
d2(x, x1) +

1

2
d2(x, x2)− 1

4
d2(x1, x2),

where x̄ is the midpoint of the segment joining the points x1, and x2.

This property can be used in order to obtain another inequality, for details please see

[13], for the more general case of hyperbolic spaces.

Proposition 2.1. Let (X, d) be a CAT(0) space, x, y, z ∈ X, and t ∈ [0, 1]. The next

inequality holds

d2
(
(1− t)x⊕ ty, z

)
≤ (1− t)d2(x, y) + td2(y, z)− t(1− t)d2(x, y).

In our results we are going to use extensively a convexity-like property, recalled next.

Proposition 2.2. ([11]) Let (X, d) be a CAT(0) space, x, y, and z ∈ X. Then, for any

t ∈ [0, 1], the following inequality is satisfied

d
(
(1− t)x⊕ ty, z

)
≤ (1− t)d(x, y) + td(y, z).

One important property which features the CAT(0) spaces is the fulfillment of the

Opial condition. We recollect below the definition of the property introduced by Opial [16].

Definition 2.1. ([16]) A Banach space X satisfies the Opial property if for any sequence

{xn} in X, which converges weakly to x, the next inequality holds

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖,

for any y 6= x.

In the study of CAT(0) spaces, there are some sets which are very useful in proving

convergence properties for sequences with suitable properties.

Definition 2.2. For a complete CAT(0) space (X, d), consider a bounded sequence {xn}.
The set

A(xn) = {x ∈ X
∣∣R(x, xn) = R(xn)}

is called the asymptotic center of the sequence {xn}, where

R(xn) = inf
x∈X

R(x, xn)
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is the asymptotic radius, and

R(x, xn) = lim sup
n→∞

d(x, xn).

Dhompongsa et al. [6] proved that, in case of complete CAT(0) spaces, the asymptotic

center consists of one element only.

Kirk and Panyanak [12] introduced a type of convergence which they called the ∆-

convergence, in the setting of Banach spaces. We recall the definition of such a convergence

for the case of CAT(0) spaces.

Definition 2.3. Let {xn} be a sequence in the CAT(0) space (X, d). This sequence is

∆-convergent to x ∈ X if its asymptotic center is a singleton formed by the element x.

With respect to this kind of convergence, the next lemma states two of its remarkable

properties.

Lemma 2.1. i) ([12]) Any bounded sequence in a complete CAT(0) space possesses a ∆-

convergent sequence.

ii) ([7]) The asymptotic center of a sequence bounded, included in a closed and convex

subset K of a complete CAT(0) space belongs to K.

The asymptotic center plays a key role in the lemma below, which guarantees in an

appropriate way the coincidence of some limits.

Lemma 2.2. ([7]) Suppose that {xn} is a bounded sequence in a complete CAT(0) space

(X, d), A(xn) = {x} and limn→∞ d(xn, x) is convergent. If {tn} is a subsequence of {xn}
for which A(tn) = {t}, then x = t.

In 2011, Fuster and Gálvez [15] introduced a class of generalized nonexpansive map-

pings, the so-called operators endowed with the condition (L).

Definition 2.4. ([15]) Let K be a nonempty subset of a CAT(0) space X, and T : K → K.

T fulfills the property (L) if the next two conditions are satisfied

i) For any nonempty, closed, convex D of K, which is T -invariant (that is TD ⊆ K),

there exists an almost fixed point sequence of T (i.e. a sequence {xn} so that d(xn, Txn) is

convergent to zero);

ii) For any almost fixed point sequence {xn} of T in K, and x ∈ K, the following

inequality holds true

lim sup
n→∞

d(xn, Tx) ≤ lim sup
n→∞

d(xn, x).

Fuster and Gálvez [15] have also proved that the class of mappings which fulfill the

property (L) properly contains that of the Suzuki operators [23], and also that of the Garćıa-

Falset (E) mappings [8].

In the following, by L2 operators we refer to those mappings which satisfy condition

ii) from the above definition.

We introduce now our numerical algorithm, as follows. Assume that K is a nonempty,

and convex subset of a CAT(0) space X. For two mappings T , S : K → K, and x0 ∈ K, we

introduce the next numerical scheme, inspired by [22]:

yn = (1− βn)xn ⊕ βnTxn,
zn = (1− γn)Sxn ⊕ γnyn,

xn+1 = (1− αn)Tzn ⊕ αnTyn, n ≥ 0.

(2)

In order to prove the almost fixed point property with respect to this numerical

algorithm, we need the next auxiliary result.
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Lemma 2.3. ([14]) In the complete CAT(0) space (X, d), consider a point x, and two

sequences {tn}, {un}. {sn} is a sequence of real numbers bounded away by 0 and 1. Presume

that there exists ` ∈ R so that lim supn→∞ d(tn, x) ≤ `, lim supn→∞ d(un, x) ≤ `, and

limn→∞ d(sntn ⊕ (1− sn)un) = `. Then the sequence {d(tn, un)} is convergent to zero.

3. Main results

First, we give a result which states the convergence of a sequence linked with those

in the proposed scheme (2), for quasi-nonexpansive mappings with common fixed points.

Lemma 3.1. Presume that the quasi-nonexpansive mappings T , S : K → K are defined

on a nonempty, closed, convex subset K of a CAT(0) space (X, d), and possess at least one

common fixed point. Then, for any common fixed point, the sequence {d(xn, p)} defined by

algorithm (2) exists.

Proof. As both mappings are quasi-nonexpansive, it follows that

d(yn, p) = d((1− βn)xn ⊕ βnTxn) ≤ (1− βn)d(xn, p) + βnd(Txn, p)

≤ (1− βn)d(xn, p) + βnd(xn, p) = d(xn, p), n ≥ 0. (3)

Furthermore, by the use of this inequality, we get

d(zn, p) = d((1− γn)Sxn ⊕ γnyn) ≤ (1− γn)d(Sxn, p) + γnd(yn, p)

≤ (1− γn)d(xn, p) + γnd(yn, p) ≤ d(xn, p), n ≥ 0. (4)

From the definition of algorithm (2), and the two previous inequalities, we obtain

d(xn+1, p) = d((1− αn)Tzn ⊕ αnTyn) ≤ (1− αn)d(Tzn, p) + αnd(Tyn, p)

≤ (1− αn)d(zn, p) + αnd(yn, p) ≤ d(xn, p), n ≥ 0,

that is {d(xn, p)} is a decreasing sequence of positive numbers, therefore it is convergent. �

We continue now with a theorem which refers to the existence of almost fixed point

sequences associated to operators T and S, generated by algorithm (2).

Theorem 3.1. Let K be a nonempty, closed, and convex subset of a complete CAT(0) space

X, and {xn}, {yn}, and {zn} sequences obtained by the application of scheme (2) for the

quasi-nonexpansive operators T , S : K → K, whose common fixed point set is not void.

Then, the next statements hold true:

i) The sequence d(Tyn, T zn) is convergent to zero.

ii) {xn} is an almost fixed point sequence for the mapping T .

iii) The sequence {d(Sxn, yn)} converges to zero.

iv) The sequence {d(xn, yn)} converges to zero.

v) {xn} is an almost fixed point sequence for the operator S.

Proof. i) Let p be a common fixed point of both T and S. According to Lemma 3.1, the

sequence {d(xn, p)} is convergent. Denote by ` its limit. From the quasinonexpansiveness of

the operators T , and S, we get that d(Txn, p) ≤ d(xn, p), and d(Sxn, p) ≤ d(xn, p), n ≥ 1,

therefore it follows that

lim sup
n→∞

d(Txn, p) ≤ `,

and

lim sup
n→∞

d(Sxn, p) ≤ `.
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On the other hand, having in mind inequality (3), we obtain that

lim sup
n→∞

d(yn, p) ≤ lim sup
n→∞

d(xn, p) = lim
n→∞

d(xn, p) = `. (5)

Since T is quasi-nonexpansive, it follows that

lim sup
n→∞

d(Tyn, p) ≤ lim sup
n→∞

d(yn, p) ≤ `. (6)

By the use of inequality (4), from Lemma 3.1 it can be observed that

lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = lim
n→∞

d(xn, p) = `

which, jointly with the quasi-nonexpansiveness of the mapping T , implies that

lim sup
n→∞

d(Tzn, p) ≤ lim sup
n→∞

d(zn, p) ≤ `. (7)

By the use of the last relation from algorithm (2), we have

` = lim
n→∞

d(xn+1, p) = lim
n→∞

d
(
(1− αn)Tzn ⊕ αnTyn, p

)
,

which, together with inequalities (6), and (7) allow the application of Lemma 2.3, compelling

that limn→∞ d(Tyn, T zn) = 0.

ii) By the use of the properties of d, and the fact that there exists limn→∞ d(Tyn, T zn),

we get

` = lim
n→∞

d(xn+1, p) = lim inf
n→∞

d
(
(1− αn)Tzn ⊕ αnTyn, p

)
≤ lim inf

n→∞

(
(1− αn)d(Tzn, p) + αnd(Tyn, p)

)
≤ lim inf

n→∞

(
(1− αn)d(Tzn, p) + αnd(Tyn, T zn) + αnd(Tzn, p)

)
≤ lim inf

n→∞

(
d(Tzn, p) + αnd(Tyn, T zn)

)
≤ lim inf

n→∞

(
d(Tzn, p) + d(Tyn, T zn)

)
= lim inf

n→∞
d(Tzn, p) + lim

n→∞
d(Tyn, T zn)

= lim inf
n→∞

d(Tzn, p) ≤ `,

hence lim infn→∞ d(Tzn, p) = `. Combining this relation with inequality (7), we obtain that

the sequence limn→∞ d(Tzn, p) = `.

Taking lim inf in the inequalities

d(Tzn, p) ≤ d(Tzn, T yn) + d(Tyn, p) ≤ d(Tzn, Tyn) + d(yn, p),

we get that lim infn→∞ d(yn, p) ≥ `. By relation (5), it follows that there exists limn→∞ d(yn,

p), and its value is `. Since yn = (1− γn)xn ⊕ αnTxn, applying Lemma 2.3, we obtain that

limn→∞ d(xn, Txn) = 0.

iii) By the use of the triangle inequality, the fact that limn→∞ d(Tzn, p) = `, and

inequality (4), we obtain

` = lim
n→∞

d(Tzn, p) = lim sup
n→∞

d(Tzn, p) ≤ lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = `,

therefore there exists limn→∞ d(zn, p) = `. Since zn = (1−γn)Sxn⊕γnyn, lim supn→∞ d(Sxn,

p) ≤ `, and limn→∞ d(yn, p) = `, by Lemma 2.3 it follows that limn→∞ d(Sxn, yn) = 0.

iv) The following inequalities hold true

d(yn, xn) = d
(
(1− βn)xn ⊕ γnTxn, xn

)
≤ (1− βn)d(xn, xn) + βnd(Txn, xn) ≤ d(Txn, xn), n ≥ 0.
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By considering n→∞, we get that the sequence {d(xn, yn)} converges to zero.

v) Eventually, it can be noticed that

d(Sxn, xn) ≤ d(Sxn, yn) + d(yn, xn),

and, by the use of points iii) and iv) already proved, it follows that {xn} is an almost fixed

point sequence. �

We are now in a position to provide a ∆-convergence result for algorithm (2), with

respect to a common fixed point for two operators which fulfill condition L2.

Theorem 3.2. Let K be a nonempty, closed, convex subset of the complete CAT(0) space

(X, d), and T , S : K → K two operators endowed with the property L2, which have at least

one common fixed point. Then the iterative sequence {xn} generated by algorithm (2) is

∆-convergent to a common fixed point of S and T .

Proof. Consider that W(xn) is the reunion of all the asymptotic centers over all the subse-

quences of the sequence {xn}.
The first stage in our proof is to show that each element from W(xn) is also a fixed

point of the mappings T , and S, respectively.

Consider t ∈ W(xn), and {tn} a subsequence of {xn} whose asymptotic center is

the set formed by the element t, that is R(t, tn) = R(tn). As {d(xn, p)} is convergent,

where p is a common fixed point of T and S, it means that {xn} is bounded, so {tn}
is bounded. Then, there exists a subsequence {sn} of {tn}, so that ∆ − limn→∞ sn =

s ∈ K. Since limn→∞ d(Txn, xn) = 0, and {sn} is a subsequence of {xn}, it follows that

limn→∞ d(sn, T sn) = 0, so {sn} is an almost fixed point sequence. By the use of the (L2)

property, and of that of Opial, we obtain

lim sup
n→∞

d(sn, T s) ≤ lim sup
n→∞

d(sn, s) ≤ lim sup
n→∞

d(sn, T s),

hence

lim sup
n→∞

d(sn, T s) = lim sup
n→∞

d(sn, s).

Having in view the property of the asymptotic center, we get that s is a fixed point of

T . Furthermore, as the sequence {d(xn, s)} is convergent, by Lemma 2.2, we get that s = t,

so W(xn) is included into the set of the fixed points of the mapping T .

Similarly, a corresponding property may be proved for the operator S, hence each

element of the set W(xn) is a common fixed point of the two mappings T and S.

Let us prove now that W(xn) contains one element only. Presuming the contrary,

there can be found a subsequence {sn} of {xn} so that its ∆-limit is s 6= t. Then Lemma 2.2

necessarily implies that s = t, therefore the supposition was false, and W(xn) is a singleton,

and the conclusion follows. �

In case T is the identity mapping, scheme (2) becomes the Ishikawa algorithm for the

CAT(0) spaces, and Theorem 3.2 reduces to the ∆-convergence of this scheme in the setting

of CAT(0) spaces, for operators endowed with the L2 property (so subsequently for Suzuki

nonexpansive operators, or Garćıa-Falset ones).

If we consider S as the identity operator in (2), we obtain the numerical algorithm

(1), and Theorem 3.2 reduces to a result on its ∆-convergence, in case of mappings which

fulfill the condition (L2) (that is it refers also to Suzuki type mappings or Garćıa-Falset

operators).

We continue with a theorem which gives necessary and sufficient conditions for the

strong convergence of the sequence generated by scheme (2).
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Theorem 3.3. Let K be a nonempty, closed, and convex subset of a CAT(0) space (X, d),

and S, T : K → K, which satisfies condition L2. Then the sequence {xn}, generated by (2)

converges to a point from F, the set of common fixed points of the two operators, if and only

if lim infn→∞ d(xn,F).

Proof. Suppose first that the sequence {xn}, generated by (2), is strongly converges to a

common fixed point p ∈ F. Then, it follows that

lim inf
n→∞

d(xn,F) = lim inf
n→∞

inf
q∈F

d(xn, q)

≤ lim inf
n→∞

d(xn, p) = 0,

and the conclusion has been proved.

Presume now that lim infn→∞ d(xn,F) = 0. By Lemma 3.1, we get that {d(xn, p)} is

a decreasing sequence, for any p ∈ F. We obtain

d(xn+1,F) = inf
q∈F

d(xn+1, q) ≤ inf
q∈F

d(xn, q) = d(xn,F),

hence the sequence {d(xn,F)} is decreasing, so convergent, let us say to `. As lim infn→∞ d(xn,

F) = 0, we get that ` = 0. Consider ε > 0. Then, there exists a rank N so that for any

n > N , d(xn,F) < ε
4 , that is

inf
q∈F

d(xn,F) <
ε

4
.

It follows that we can find p ∈ F so that d(xN , p) <
ε
2 . By the triangle inequality, for

m, n > N , we have

d(xn, xm) ≤ d(xm, p) + d(xn, p),

which, as d(xn, p) is decreasing, implies

d(xm, xn) ≤ d(xN , p) + d(xN , p) ≤ ε,

so {xn} is a Cauchy sequence in a complete CAT(0) space, so it converges to x ∈ K. Since

limn→∞ d(xn,F) = 0, we get that d(x,F) = 0. It can be easily check that F is a closed set,

therefore x ∈ F, and the conclusion follows. �

As particular cases of this theorem, we emphasize that of T being the identity map-

ping, which leads to a result on the strong convergence of the Ishikawa numerical scheme,

and that of S being the identity operator, which gives the strong convergence of process (1).

We will give now another strong convergence result, based on a condition involving a

nondecreasing sequence.

Theorem 3.4. Consider that K is a nonempty, closed, and convex subset of a CAT(0)

space (X, d) and S, T selfmappings on K which satisfy condition L2, and F is nonempty.

Suppose that there exists an increasing function f : [0,∞)→ [0,∞), with f(0) = 0, f(a) > 0

for a > 0, and at least one of the following assumptions hold:

i) d(x, Tx) ≥ f(d(x,F)), for any x ∈ K;

ii) d(x, Sx) ≥ f(d(x,F)), for any x ∈ K.

Then, the sequence generated by algorithm (2) is convergent to a common fixed point

of mappings S and T .

Proof. As in the proof of Theorem 3.3, we get that the sequence {d(xn,F)} is decreasing,

so it has a limit.

Presume that condition i) holds. Then, since limn→∞ d(xn, Txn) = 0, we obtain

lim
n→∞

f(d(xn,F)) ≤ lim
n→∞

d(xn, Txn) = 0,
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which, combined with the properties of the function f , leads to limn→∞ d(xn,F) = 0. Using

Theorem 3.3, we get the conclusion.

The case when property ii) holds can be solved similarly. �

4. Conclusions

We have introduced a numerical scheme for the determination of a common fixed

associated with two mappings which satisfy a property defined by means of lim sup, which

we called L2 property, in the framework of CAT(0) spaces. Properties regarding almost

fixed point sequences related to it are studied. A necessary and sufficient condition of

∆-convergence is stated. Two theorems on its strong convergence are stated and proved,

provided additional conditions are fulfilled. These results generalize existing results in spe-

cialized literature.
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[5] F. Bruhat, J. Tits: Groupes réductifs sur un corps local. I. Données radicielles valuées, Inst. Hautes
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